Theoretical Zero-Thickness Broadband Holograms Based on Acoustic Sieve Metasurfaces
<p>Schematic diagram of a hologram based on an array of identical PSs. The PSs (represented by red dots) are at the grid nodes (represented by <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>) of an <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>×</mo> <mi>N</mi> </mrow> </semantics></math> array with a distance <span class="html-italic">d</span> between two neighboring nodes, where <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mo>…</mo> <mo>,</mo> <mo> </mo> <mi>N</mi> </mrow> </semantics></math>. The grid node <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> takes the value <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo> </mo> <mi>or</mi> <mo> </mo> <mn>1</mn> </mrow> </semantics></math>, where 1 means a PS exists in this grid node and 0 means no PS. According to the Rayleigh–Sommerfeld theory, the diffraction pattern in the image plane is the superposition of the sound waves generated by these PSs.</p> "> Figure 2
<p>Holographic imaging based on the PS array. The background medium is chosen as air with a sound velocity <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>340</mn> <mo> </mo> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math> and a density <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1.2</mn> <mo> </mo> <mi>kg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </semantics></math>, and the radiation frequency is set at <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>34</mn> <mrow> <mo> </mo> <mi>kHz</mi> </mrow> </mrow> </semantics></math>, so the wavelength is <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>/</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>10</mn> <mo> </mo> <mi>mm</mi> </mrow> </semantics></math>. (<b>a</b>) Desired image (a four-pointed star). The black parts in the figure represent the presence of sound energy with equal magnitudes (the sound energy at these locations can be considered to be 1), and the white parts represent the absence of sound energy (the sound energy at these locations can be considered to be 0); (<b>b</b>) The overall map of the hologram based on the PS array designed by the modified genetic algorithm. Each black dot represents a PS. The distance between grid nodes is <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and the distance of the desired image plane from the hologram is <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>120</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>; (<b>c</b>) Normalized energy distribution in the image plane.</p> "> Figure 3
<p>Mimicking of a PS by a small hole. (<b>a</b>) Illustration for a simulation model of PS (or holes of various diameters) radiation. The green part is a rigid circular boundary with a diameter of <math display="inline"><semantics> <mrow> <mn>30</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>; (<b>b</b>) Normalized energy profiles <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>hole</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>E</mi> <mrow> <mi>hole</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> of holes of various diameters calculated using numerical simulation based on the model of (<b>a</b>). The various pseudocolors of the curves represent the various hole diameters <span class="html-italic">d</span>. The black curve is the normalized energy profile <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>PS</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>E</mi> <mrow> <mi>PS</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> radiating from an ideal PS; (<b>c</b>) A quantitative evaluation of radiations from holes of various diameters. Each blue circle represents an RMSE between <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>hole</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <mi>MAX</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>hole</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> (color curves in (<b>b</b>)) from a <span class="html-italic">d</span>-diameter hole and <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>PS</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <mi>MAX</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>PS</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> (black curve in (<b>b</b>)) from the ideal PS. Each red dot represents the logarithm of the simulated <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>hole</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mrow> <mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>hole</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mo>=</mo> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </msub> </mrow> </semantics></math> from a <span class="html-italic">d</span>-diameter hole.</p> "> Figure 4
<p>Holographic imaging of an ASM. (<b>a</b>) The overall map of the ASM-based hologram based on small holes. The light gray area is the zero-thickness rigid screen and the small circles are the holes with a diameter of <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.2</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>; (<b>b</b>) Normalized energy distribution in the image plane calculated by numerical simulation from the hologram shown in (<b>a</b>). In the numerical simulation, all of the acoustic and geometric parameters of the holographic imaging system based on the ASM are the same as those of the holographic imaging system based on the PS array.</p> "> Figure 5
<p>Acoustic broadband holographic imaging. (<b>a</b>–<b>f</b>) The normalized sound energy distributions in the image planes of the ASM-based hologram are calculated using the numerical simulation when the incident frequencies (<math display="inline"><semantics> <mi>f</mi> </semantics></math>) are <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>1.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>1.2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>1.5</mn> <msub> <mi>f</mi> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, respectively. The imaging distances (<math display="inline"><semantics> <mi>z</mi> </semantics></math>) are <math display="inline"><semantics> <mrow> <mn>60</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>80</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>100</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>144</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>180</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>240</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, respectively.</p> "> Figure 6
<p>Graph of RMSE against frequency. The RMSE values between the holographic images and the desired image shown in <a href="#applsci-12-06453-f002" class="html-fig">Figure 2</a>a are calculated using numerical simulation based on the combination of the FEM and the BEM. The studied frequency range is from <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>Holographic images of the cases that may cause errors. (<b>a</b>–<b>c</b>) The normalized sound energy distributions in the image planes of the ASM-based hologram with a small displacement of holes from their ideal places are calculated using numerical simulation when the incident frequencies are <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, respectively. (<b>d</b>–<b>f</b>) The normalized sound energy distributions in the image planes of the ASM-based hologram with a dispersion of hole size are calculated using numerical simulation when the incident frequencies are <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, respectively. (<b>g</b>–<b>i</b>) The normalized sound energy distributions in the image planes of the ASM-based hologram for incidence wave with a 5° declination are calculated using numerical simulation when the incident frequencies are <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, respectively. Since the incident direction of the plane sound wave is inclined, the position of the image is shifted by <math display="inline"><semantics> <mrow> <mi>z</mi> <mi>tan</mi> <mn>5</mn> <mo>°</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>Holographic images of <math display="inline"><semantics> <mrow> <mn>0.1</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>-thick steel plate with holes. (<b>a</b>–<b>c</b>) The normalized sound energy distributions in the image planes of the hologram fabricated with <math display="inline"><semantics> <mrow> <mn>0.1</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> -thick steel plate with holes are calculated using numerical simulation when the incident frequencies are <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, respectively.</p> ">
Abstract
:1. Introduction
2. Theories and Methods
2.1. Rayleigh–Sommerfeld Theory
2.2. Modified Genetic Algorithm
2.3. Numerical Simulation
3. Results
3.1. Hologram Realized by the Array of Identical Point Sources
- (1)
- Randomly generate a chromosome (each subsequent generation of the chromosome is named , , …, , …). contains all , each as a gene, and the value of each gene is only 0 or 1. Moreover, let .
- (2)
- Calculate the sound field (each subsequent generation of the sound field is named , , …, , …) generated by chromosome in the desired image plane (the distance from the hologram is ) based on Equation (1), and let .
- (3)
- Using and the desired sound field in the image plane, the root-mean-square error (RMSE) is calculated as the value of the fitness function (each subsequent generation of the fitness function is represented by , , …, , …), and let .
- (4)
- Perform a mutation operation ( or ) for a random gene whose coordinate is in the parent chromosome A to generate the offspring chromosome .
- (5)
- Calculate the effect of this mutation for the sound field in the desired image plane using the Rayleigh–Sommerfeld theory, represented by . When the mutation operation is , according to Equation (1), satisfiesWhen the mutation operation is , satisfies
- (6)
- Superimpose this effect on the parent sound field to get the offspring sound field in the desired image plane, as follow
- (7)
- Calculate the value (RMSE) of the offspring fitness function by and .
- (8)
- Compare the magnitudes of and , and take the smaller one as the new parent fitness function. The chromosome with the smaller fitness function is taken as the new parent chromosome and the sound field with the smaller fitness function is taken as the new parent sound field. That is, if , then let , , ; if , then let , , . If is always less than for a certain number (such as 100,000 times) of iterations, then record chromosome and end the iteration.
- (9)
- If the iteration does not end, go back to step 4.
3.2. Theoretical Zero-Thickness Holograms Based on Acoustic Sieve Metasurfaces
3.3. Theoretical Zero-Thickness Broadband Holograms
4. Discussion
4.1. Selection of Geometric Parameters
4.2. Robustness
4.3. Actual Situation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, R.K. Acoustic holography. Proc. IEEE 1971, 59, 1319–1335. [Google Scholar] [CrossRef]
- Ahmed, M.; Wang, K.Y.; Metherell, A.F. Holography and its application to acoustic imaging. Proc. IEEE 1979, 67, 466–483. [Google Scholar] [CrossRef]
- Hertzberg, Y.; Navon, G. Bypassing absorbing objects in focused ultrasound using computer generated holographic technique. Med. Phys. 2011, 38, 6407–6415. [Google Scholar] [CrossRef]
- Sapozhnikov, O.A.; Tsysar, S.A.; Khokhlova, V.A.; Kreider, W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields. J. Acoust. Soc. Am. 2015, 138, 1515–1532. [Google Scholar] [CrossRef] [Green Version]
- Kreider, W.; Yuldashev, P.V.; Sapozhnikov, O.A.; Farr, N.; Partanen, A.; Bailey, M.R.; Khokhlova, V.A. Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1683–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Gambin, S.; Jimenez, N.; Benlloch, J.M.; Camarena, F. Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Phys. Rev. Appl. 2019, 12, 014016. [Google Scholar] [CrossRef]
- Melde, K.; Choi, E.; Wu, Z.G.; Palagi, S.; Qiu, T.; Fischer, P. Acoustic Fabrication via the Assembly and Fusion of Particles. Adv. Mater. 2018, 30, 1704507. [Google Scholar] [CrossRef]
- Kruizinga, P.; van der Meulen, P.; Fedjajevs, A.; Mastik, F.; Springeling, G.; de Jong, N.; Bosch, J.G.; Leus, G. Compressive 3D ultrasound imaging using a single sensor. Sci. Adv. 2017, 3, e1701423. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.C.; Holle, A.W.; Melde, K.; Qiu, T.; Poeppel, K.; Kadiri, V.M.; Fischer, P. Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel. Adv. Mater. 2020, 32, 1904181. [Google Scholar] [CrossRef] [Green Version]
- Baudoin, M.; Thomas, J.L.; Al Sahely, R.; Gerbedoen, J.C.; Gong, Z.X.; Sivery, A.; Matar, O.B.; Smagin, N.; Favreau, P.; Vlandas, A. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat. Commun. 2020, 11, 4244. [Google Scholar] [CrossRef]
- Baudoin, M.; Gerbedoen, J.C.; Riaud, A.; Matar, O.B.; Smagin, N.; Thomas, J.L. Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers. Sci. Adv. 2019, 5, eaav1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Gao, W.; Zhu, R.; Wang, Z.; Xu, Z.; Zheng, B. Ultrathin Acoustic Metasurface Holograms with Arbitrary Phase Control. Appl. Sci. 2019, 9, 3585. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, N.; Groby, J.-P.; Romero-García, V. Spiral sound-diffusing metasurfaces based on holographic vortices. Sci. Rep. 2021, 11, 10217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, W.; Liao, Y.; Zhou, X.; Li, J.; Hu, G.; Zhang, X. Creation of acoustic vortex knots. Nat. Commun. 2020, 11, 3956. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Zhu, B.; Li, X.; Jin, J.; Chen, Z.; Chen, Y.; Zhou, Q. Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms. Appl. Phys. Lett. 2018, 113, 243502. [Google Scholar] [CrossRef]
- Tian, Y.; Zuo, S.; Cheng, Y.; Liu, X. Phase-controlled acoustic metasurface with high efficiency and its applications. J. Appl. Acoust. 2018, 37, 691–700. [Google Scholar] [CrossRef]
- Tian, Y.; Wei, Q.; Cheng, Y.; Liu, X. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude. Appl. Phys. Lett. 2017, 110, 191901. [Google Scholar] [CrossRef]
- Brown, M.D.; Cox, B.; Treeby, B.E. Stackable acoustic holograms. Appl. Phys. Lett. 2020, 116, 261901. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.; Fan, X.; Yang, J.; Liang, B.; Zhu, X.; Cheng, J. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 2018, 9, 1632. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Shen, C.; Wang, W.; Li, J.; Suo, D.; Popa, B.-I.; Jing, Y.; Cummer, S.A. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Sci. Rep. 2016, 6, 35437. [Google Scholar] [CrossRef]
- Melde, K.; Mark, A.G.; Qiu, T.; Fischer, P. Holograms for acoustics. Nature 2016, 537, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Assouar, B. Systematic design of multiplexed-acoustic-metasurface hologram with simultaneous amplitude and phase modulations. Phys. Rev. Mater. 2019, 3, 045201. [Google Scholar] [CrossRef]
- Fan, S.W.; Zhu, Y.F.; Cao, L.Y.; Wang, Y.F.; Chen, A.L.; Merkel, A.; Wang, Y.S.; Assouar, B. Broadband tunable lossy metasurface with independent amplitude and phase modulations for acoustic holography. Smart Mater. Struct. 2020, 29, 105038. [Google Scholar] [CrossRef]
- Brown, M.D. Phase and amplitude modulation with acoustic holograms. Appl. Phys. Lett. 2019, 115, 053701. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiari-Nejad, M.; Elnahhas, A.; Hajj, M.R.; Shahab, S. Acoustic holograms in contactless ultrasonic power transfer systems: Modeling and experiment. J. Appl. Phys. 2018, 124, 244901. [Google Scholar] [CrossRef]
- Cox, L.; Melde, K.; Croxford, A.; Fischer, P.; Drinkwater, B.W. Acoustic Hologram Enhanced Phased Arrays for Ultrasonic Particle Manipulation. Phys. Rev. Appl. 2019, 12, 064055. [Google Scholar] [CrossRef] [Green Version]
- Fushimi, T.; Yamamoto, K.; Ochiai, Y. Acoustic hologram optimisation using automatic differentiation. Sci. Rep. 2021, 11, 12678. [Google Scholar] [CrossRef]
- Morales, R.; Ezcurdia, I.; Irisarri, J.; Andrade, M.A.B.; Marzo, A. Generating Airborne Ultrasonic Amplitude Patterns Using an Open Hardware Phased Array. Appl. Sci. 2021, 11, 2981. [Google Scholar] [CrossRef]
- Hirayama, R.; Martinez Plasencia, D.; Masuda, N.; Subramanian, S. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 2019, 575, 320–323. [Google Scholar] [CrossRef]
- Fushimi, T.; Marzo, A.; Drinkwater, B.W.; Hill, T.L. Acoustophoretic volumetric displays using a fast-moving levitated particle. Appl. Phys. Lett. 2019, 115, 064101. [Google Scholar] [CrossRef]
- Hoshi, T.; Takahashi, M.; Iwamoto, T.; Shinoda, H. Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound. IEEE Trans. Haptics 2010, 3, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Seah, S.A.; Carter, T.; Subramanian, S. Rendering Volumetric Haptic Shapes in Mid-Air using Ultrasound. Acm Trans. Graph. 2014, 33, 181. [Google Scholar] [CrossRef] [Green Version]
- Marzo, A.; Drinkwater, B.W. Holographic acoustic tweezers. Proc. Natl. Acad. Sci. USA 2019, 116, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzo, A.; Seah, S.A.; Drinkwater, B.W.; Sahoo, D.R.; Long, B.; Subramanian, S. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 2015, 6, 8661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Wang, J.; Cai, F.; Zhang, R.; Zhao, D.; Xia, X.; Wang, J.; Zheng, H. A deep learning approach for the fast generation of acoustic holograms. J. Acoust. Soc. Am. 2021, 149, 2312–2322. [Google Scholar] [CrossRef]
- Ebbini, E.S.; Cain, C.A. Multiple-focus ultrasound phased-array pattern synthesis: Optimal driving-signal distributions for hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1989, 36, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Ibbini, M.S.; Cain, C.A. A field conjugation method for direct synthesis of hyperthermia phases-array heating patterns. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1989, 36, 3–9. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Cheng, Y.; Liu, X. Acoustic holography using composite metasurfaces. Appl. Phys. Lett. 2020, 116, 030501. [Google Scholar] [CrossRef]
- Huang, K.; Liu, H.; Garcia-Vidal, F.J.; Hong, M.H.; Luk’yanchuk, B.; Teng, J.H.; Qiu, C.W. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 2015, 6, 7059. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Liu, H.; Si, G.Y.; Wang, Q.; Lin, J.; Teng, J.H. Photon-nanosieve for ultrabroadband and large-angle-of-view holograms. Laser Photonics Rev. 2017, 11, 1700025. [Google Scholar] [CrossRef]
- Huang, K.; Dong, Z.G.; Mei, S.T.; Zhang, L.; Liu, Y.J.; Liu, H.; Zhu, H.B.; Teng, J.H.; Luk’yanchuk, B.; Yang, J.K.W.; et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev. 2016, 10, 500–509. [Google Scholar] [CrossRef]
- Huang, L.L.; Chen, X.Z.; Muhlenbernd, H.; Zhang, H.; Chen, S.M.; Bai, B.F.; Tan, Q.F.; Jin, G.F.; Cheah, K.W.; Qiu, C.W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 2808. [Google Scholar] [CrossRef] [Green Version]
- Li, J.C.; Peng, Z.J.; Fu, Y.C. Diffraction transfer function and its calculation of classic diffraction formula. Opt. Commun. 2007, 280, 243–248. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Zuo, S.; Lv, Q.; Yin, G.; Guo, J. Theoretical Zero-Thickness Broadband Holograms Based on Acoustic Sieve Metasurfaces. Appl. Sci. 2022, 12, 6453. https://doi.org/10.3390/app12136453
Tian Y, Zuo S, Lv Q, Yin G, Guo J. Theoretical Zero-Thickness Broadband Holograms Based on Acoustic Sieve Metasurfaces. Applied Sciences. 2022; 12(13):6453. https://doi.org/10.3390/app12136453
Chicago/Turabian StyleTian, Ye, Shuyu Zuo, Qian Lv, Guanjun Yin, and Jianzhong Guo. 2022. "Theoretical Zero-Thickness Broadband Holograms Based on Acoustic Sieve Metasurfaces" Applied Sciences 12, no. 13: 6453. https://doi.org/10.3390/app12136453
APA StyleTian, Y., Zuo, S., Lv, Q., Yin, G., & Guo, J. (2022). Theoretical Zero-Thickness Broadband Holograms Based on Acoustic Sieve Metasurfaces. Applied Sciences, 12(13), 6453. https://doi.org/10.3390/app12136453