A Compact Rectifier Design Method Utilizing Harmonics
<p>The block diagram of the proposed rectifier.</p> "> Figure 2
<p>The schematic of the rectifier utilizing the 2nd and 3rd harmonic: <span class="html-italic">l</span><sub>1</sub> = 4.7 mm, <span class="html-italic">l</span><sub>2</sub> = 4.7 mm, <span class="html-italic">l</span><sub>3</sub> = 4.2 mm, <span class="html-italic">l</span><sub>4</sub> = 8.3 mm, <span class="html-italic">l</span><sub>5</sub> = 9.2 mm, <span class="html-italic">l</span><sub>6</sub> = 9.2 mm, <span class="html-italic">l</span><sub>7</sub> = 4.5 mm, <span class="html-italic">l</span><sub>8</sub> = 2.2 mm, <span class="html-italic">l</span><sub>9</sub> = 1.5 mm, <span class="html-italic">l</span><sub>10</sub> = 4.8 mm, <span class="html-italic">l</span><sub>11</sub> = 4.5 mm, <span class="html-italic">w</span><sub>1</sub> = 1.7 mm, <span class="html-italic">w</span><sub>2</sub> = 0.55 mm, <span class="html-italic">w</span><sub>3</sub> = 1.5 mm, <span class="html-italic">w</span><sub>4</sub> = 0.5 mm, <span class="html-italic">w</span><sub>5</sub> = 1 mm, <span class="html-italic">w</span><sub>6</sub> = 1 mm, <span class="html-italic">w</span><sub>7</sub> = 1 mm, <span class="html-italic">w</span><sub>8</sub> = 1 mm, <span class="html-italic">w</span><sub>9</sub> = 1 mm, <span class="html-italic">w</span><sub>10</sub> = 1 mm, <span class="html-italic">w</span><sub>1</sub> = 1 mm.</p> "> Figure 3
<p>For different length of the stub <span class="html-italic">l</span><sub>10</sub>: the position of the input impedance of the DC-pass filter in the Smith Chart.</p> "> Figure 4
<p>Simulated harmonic amplitude with the length of the stub <span class="html-italic">l</span><sub>10</sub> at 18 dBm input power.</p> "> Figure 5
<p>Simulated rectifying efficiency and the harmonic amplitude of different rectifiers at different input powers: (<b>a</b>) the rectifier utilizing both the 2nd and 3rd harmonics; (<b>b</b>) the rectifier utilizing the 2nd harmonic; (<b>c</b>) the rectifier utilizing the 3rd harmonic; (<b>d</b>) the harmonic suppression rectifier.</p> "> Figure 6
<p>The schematic diagram of the rectifier efficiency measurement system.</p> "> Figure 7
<p>The measured and simulated result of the rectifier utilizing the 2nd and 3rd harmonics: (<b>a</b>) the measured and simulated harmonic amplitude varies with input power; (<b>b</b>) the measured and simulated rectifying efficiency varies with input power; (<b>c</b>) the measured and simulated rectifying efficiency varies with the load; (<b>d</b>) the measured and simulated output voltage varies with input power.</p> "> Figure 7 Cont.
<p>The measured and simulated result of the rectifier utilizing the 2nd and 3rd harmonics: (<b>a</b>) the measured and simulated harmonic amplitude varies with input power; (<b>b</b>) the measured and simulated rectifying efficiency varies with input power; (<b>c</b>) the measured and simulated rectifying efficiency varies with the load; (<b>d</b>) the measured and simulated output voltage varies with input power.</p> ">
Abstract
:1. Introduction
2. Design and Simulation
2.1. Principle
2.2. Simulation
3. Experimental Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, W.C. The History of Power Transmission by Radio Waves. IEEE Trans. Microw. Theory Tech. 1984, 32, 1230–1242. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, H.; Guo, Y. A Time-Modulated Array with Digitally Preprocessed Rectangular Pulses for Wireless Power Transmission. IEEE Trans. Antennas Propag. 2020, 68, 3283–3288. [Google Scholar] [CrossRef]
- Re, P.D.H.; Podilchak, S.K.; Rotenberg, S.A.; Goussetis, G.; Lee, J. Circularly Polarized Retrodirective Antenna Array for Wireless Power Transmission. IEEE Trans. Antennas Propag. 2020, 68, 2743–2752. [Google Scholar]
- Xie, L.; Shi, Y.; Hou, Y.T.; Lou, W. Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun. Mag. 2013, 20, 140–145. [Google Scholar]
- Takabayashi, N.; Shinohara, N.; Mitani, T.; Furukawa, M.; Fujiwara, T. Rectification Improvement with Flat-Topped Beams on 2.45-GHz Rectenna Arrays. IEEE Trans. Microw. Theory Tech. 2020, 68, 1151–1163. [Google Scholar] [CrossRef]
- Liu, C.; Tan, F.; Zhang, H.; He, Q. A Novel Single-Diode Microwave Rectifier with a Series Band-Stop Structure. IEEE Trans. Microw. Theory Tech. 2017, 65, 600–606. [Google Scholar] [CrossRef]
- Ladan, S.; Wu, K. Nonlinear modeling and harmonic recycling of millimeter-wave rectifier circuit. IEEE Trans. Microw. Theory Tech. 2015, 63, 937–944. [Google Scholar] [CrossRef]
- Wang, C.; Shinohara, N.; Mitani, T. Study on 5.8-GHz Single-Stage Charge Pump Rectifier for Internal Wireless System of Satellite. IEEE Trans. Microw. Theory Tech. 2017, 65, 1058–1065. [Google Scholar] [CrossRef]
- Zhao, F.; Inserra, D.; Wen, G.; Li, J.; Huang, Y. A High-Efficiency Inverse Class-F Microwave Rectifier for Wireless Power Transmission. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 725–728. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.-X.; Gao, S.-P.; Wu, W. Wireless power transfer antenna alignment using third harmonic. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 536–538. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.-X.; Gao, S.; Zhong, Z.; Wu, W. Exploiting Third Harmonic of Differential Charge Pump for Wireless Power Transfer Antenna Alignment. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 71–73. [Google Scholar] [CrossRef]
- Joseph, S.D.; Huang, Y.; Hsu, S.S.H.; Alieldin, A.; Song, C. Second Harmonic Exploitation for High-Efficiency Wireless Power Transfer Using Duplexing Rectenna. IEEE Trans. Microw. Theory Tech. 2021, 69, 482–494. [Google Scholar] [CrossRef]
- Mitani, T.; Kawashima, S.; Shinohara, N. Experimental Study on a Retrodirective System Utilizing Harmonic Reradiation from Rectenna. IEICE Trans. Electron. 2019, 102, 666–672. [Google Scholar] [CrossRef]
Ref | Frequency (GHz) | Input Power (dBm) | Harmonic Type | Harmonic Amplitude (dBm) | Efficiency (%) | Implementation Type | Size (λg × λg) | Method |
---|---|---|---|---|---|---|---|---|
[10] | 2.45 | 6 | 3rd | −22 | 76% | Microstrip and lumped component | 1.16 × 1.32 | coupler |
[11] | 2.45 | 18 | 3rd | −17.2 | 70.6% | Microstrip and lumped component | 1.28 × 1.52 | coupler |
[12] | 0.915 | 15 | 2nd | −2 | 71% | Lumped component | 0.07 × 0.17 | separate harmonic utilization path |
[13] | 2.45 | 10.7 | 2nd | −4.1 | 42.5% | Microstrip | N.A. | N.A. |
This work | 5.8 | 18.3 | 2nd and 3rd | −2.4 and 0.1 | 71.3% | Microstrip | 0.69 × 1.38 | DC-pass filter |
The Type of Harmonic Utilization | ZF, 2f0 (Ω) | ZF, 3f0 (Ω) |
---|---|---|
2nd and 3rd | jX or +∞ | jX or +∞ |
2nd | jX or +∞ | 0 |
3rd | 0 | jX or +∞ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; He, G.; Yang, X.; Gao, S. A Compact Rectifier Design Method Utilizing Harmonics. Appl. Sci. 2021, 11, 2295. https://doi.org/10.3390/app11052295
Qin X, He G, Yang X, Gao S. A Compact Rectifier Design Method Utilizing Harmonics. Applied Sciences. 2021; 11(5):2295. https://doi.org/10.3390/app11052295
Chicago/Turabian StyleQin, Xuelong, Guoqiang He, Xuexia Yang, and Steven Gao. 2021. "A Compact Rectifier Design Method Utilizing Harmonics" Applied Sciences 11, no. 5: 2295. https://doi.org/10.3390/app11052295
APA StyleQin, X., He, G., Yang, X., & Gao, S. (2021). A Compact Rectifier Design Method Utilizing Harmonics. Applied Sciences, 11(5), 2295. https://doi.org/10.3390/app11052295