Combining Signal Features of Ground-Penetrating Radar to Classify Moisture Damage in Layered Building Floors
<p>Principle of GPR. Multiple A-scans collected along a survey line form a B-scan.</p> "> Figure 2
<p>Schematic of the work steps presented in <a href="#sec2-applsci-11-08820" class="html-sec">Section 2</a> divided by their respective subsections.</p> "> Figure 3
<p>Modular test specimen with screed, insulation, and concrete base layer.</p> "> Figure 4
<p>Evaluation of the resulting insulation damage through the use of embedded humidity sensors.</p> "> Figure 5
<p>NMR measurements showing the depth-resolved moisture distribution during the saturation process of the 5 cm CT (<b>left</b>) and CA (<b>right</b>) screed.</p> "> Figure 6
<p>Measurement procedure with 40 cm long radar survey lines 1 and 2. The neutron probe is placed in the center of the construction.</p> "> Figure 7
<p>Exemplary A-scan with three prominent amplitudes influenced by present material interfaces.</p> "> Figure 8
<p>Processing steps to extract A- and B-scan features.</p> "> Figure 9
<p>Measurements at a 7 cm CT and 10 cm EPS floor construction for the scenarios: (<b>a</b>) Dry, (<b>b</b>) damage insulation, and (<b>c</b>) damage screed. The bottom (<b>d</b>–<b>f</b>) shows the respective A-scan vector plots for each B-scan (top).</p> "> Figure 10
<p>Measurements at an 7 cm CA and 6 cm GW floor construction for the scenarios: (<b>a</b>) dry, (<b>b</b>) damage insulation and (<b>c</b>) damage screed. The bottom (<b>d</b>–<b>f</b>) shows the respective A-scan vector plots for each B-scan (top).</p> "> Figure 11
<p>Water ingress (dark dyeing) in the 6 cm GW insulation. The pictures show the respective bottom of each used insulation plate (40 cm × 40 cm × 2 cm) in quadrant IV.</p> "> Figure 12
<p>Combined confusion matrices for the individual insulation (green) and screed (gray) thicknesses considered in the experiment. The classifier’s accuracies within one cell are presented in the same order as in <a href="#applsci-11-08820-t002" class="html-table">Table 2</a>. Rows and columns include the actual and the predicted (⌃) scenario, respectively. The blue confusion matrix summarizes the overall accuracies for each scenario.</p> "> Figure 13
<p>Water ingress (dark dyeing) in the 2 cm GW insulation. The picture shows the bottom of the used insulation plate (40 cm × 40 cm × 2 cm) in quadrant IV.</p> "> Figure 14
<p>Measurements at a 6 cm CT and 6 cm PS floor construction for the scenarios: (<b>a</b>) dry, (<b>b</b>) damaged insulation, and (<b>c</b>) damaged screed. The bottom (<b>d</b>–<b>f</b>) shows the respective A-scan vector plots for each B-scan (top).</p> "> Figure 15
<p>Scatter plots showing the feature combination of <math display="inline"><semantics> <msub> <mi>F</mi> <mi>B</mi> </msub> </semantics></math> & <math display="inline"><semantics> <msub> <mi>F</mi> <mi>C</mi> </msub> </semantics></math> (<b>left</b>), <math display="inline"><semantics> <msub> <mi>F</mi> <mi>B</mi> </msub> </semantics></math> & <math display="inline"><semantics> <msub> <mi>F</mi> <mi>D</mi> </msub> </semantics></math> (<b>middle</b>) and <math display="inline"><semantics> <msub> <mi>F</mi> <mi>D</mi> </msub> </semantics></math> & <math display="inline"><semantics> <msub> <mi>F</mi> <mi>E</mi> </msub> </semantics></math> (<b>right</b>).</p> ">
Abstract
:1. Introduction
1.1. Moisture Measurement with GPR
2. Materials and Methods
2.1. Modular Test Specimen
2.2. Water Damage in Insulation Layer
2.3. Water Damage in Screed Layer
2.4. Hardware and Measurement Procedure
2.5. Feature Extraction
2.5.1. A-Scan Features
|
2.5.2. B-Scan Features
- Feature : Standard deviation of
- Feature : Standard deviation of
- Feature : Span of
- Feature : Standard deviation of
- Feature : Span of
2.5.3. Feature Selection
2.6. Classification of Damage Scenarios
- Multinomial logistic regression (MLR)
- Random forest (RF)
- Support vector machine (SVM)
- Artificial neural network (ANN)
3. Results
3.1. Measurements at Modular Specimen
3.2. Damage Scenario Classification
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
CA | Anhydrite |
CE | Civil engineering |
CT | Cement |
DAQ | Data acquisition |
GPR | Ground penetrating radar |
DW | Direct Wave |
EM | Electromagnetic |
EP | Expanded polysterene |
GW | Glass wool |
MLR | Multinomial logistic regression |
NMR | Nuclear magnetic resonance |
PS | Perlites |
R | Receiver |
RF | Random forest |
RW | Reflection Wave |
STFT | Short-time Fourier transform |
SVM | Support vector machine |
T | Transmitter |
XP | Extruded polysterene |
References
- GDV. Annual of Gesamtverband der Deutschen Versicherungswirtschaft e.V. 2019. Available online: https://www.gdv.de/de/zahlen-und-fakten/versicherungsbereiche/wohngebaeude-24080 (accessed on 20 July 2021).
- Chanasky, D.S.; Naeth, M.A. Field measurement of soil moisture using neutron probes. Can. J. Soil Sci. 1996, 76, 317–323. [Google Scholar] [CrossRef]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, A.P. Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Slater, L.; Comas, X. The Contribution of Ground Penetrating Radar to Water Resource Research. In Ground Penetrating Radar: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Saarenketo, T.; Scullion, T. Road evaluation with ground-penetrating radar. J. Appl. Geophys. 2000, 43, 119–138. [Google Scholar] [CrossRef]
- Klysz, G.; Balayssac, J.P. Determination of volumetric water content of concrete using ground-penetrating radar. Cem. Concr. Res. 2007, 37, 1164–1171. [Google Scholar] [CrossRef]
- Grote, K.; Hubbard, S.; Harvey, J.; Rubin, Y. Evaluation of infiltration in layered pavements using surface GPR reflection techniques. J. Appl. Geophys. 2005, 57, 129–153. [Google Scholar] [CrossRef]
- Laurens, S.; Balayssac, J.P.; Rhazi, J.; Klysz, G.; Arliguie, G. Non-destructive evaluation of concrete moisture by GPR: Experimental study and direct modeling. Mater. Struct. 2005, 38, 827–832. [Google Scholar] [CrossRef]
- Lai, W.L.; Kou, S.C.; Tsang, W.F.; Poon, C.S. Characterization of concrete properties from dielectric properties using ground-penetrating radar. Cem. Concr. Res. 2009, 39, 687–695. [Google Scholar] [CrossRef]
- Kurz, F.; Sgarz, H. Measurement of Moisture Content in Building Materials using Radar Technology. In Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany, 15–17 September 2015. [Google Scholar]
- Klewe, T.; Strangfeld, C.; Kruschwitz, S. Review of moisture measurements in civil engineering with ground penetrating radar—Applied methods and signal features. Constr. Build. Mater. 2021, 278, 122250. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Electromagnetic Detection of Soil Moisture: Progress Report I. Can. J. Remote Sens. 1977, 3, 76–86. [Google Scholar] [CrossRef]
- Soutsos, M.N.; Bungey, J.H.; Millard, S.G.; Shaw, M.R.; Patterson, A. Dielectric properties of concrete and their influence on radar testing. NDT&E Int. 2001, 34, 419–425. [Google Scholar] [CrossRef]
- Daniels, D.J. Ground Penetrating Radar, 2nd ed.; The Institution of Engineering and Technology: London, UK, 2007. [Google Scholar]
- Annan, A.P. Electromagnetic Principles of Ground Penetrating Radar. In Ground Penetrating Radar: Theory and Applications; Jol, H.M., Ed.; Elsevierr: Amsterdam, The Netherlands, 2009; Chapter 1; pp. 4–38. [Google Scholar]
- Bohren, C.; Huffman, D. Absorption and Scattering of Light by Small Particles; Wiley: Hoboken, NJ, USA, 1983. [Google Scholar]
- Debye, P.J.W. Polar molecules. J. Soc. Chem. Ind. 1929, 48, 1036–1037. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Kaatze, U. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data 1989, 34, 371–374. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; John Wiley & Sons: Somerset, NJ, USA, 2012. [Google Scholar]
- Yelf, R. Where is true time zero? In Proceedings of the Tenth International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004. [Google Scholar] [CrossRef]
- Coppock, J.B.M.; Cookson, E.D. The effect of humidity on mould growth on constructional materials. J. Sci. Food Agric. 1951, 2, 534–537. [Google Scholar] [CrossRef]
- ASTM D2216-19. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM 2019, 4, 8. [Google Scholar]
- Blümich, B.; Blümler, P.; Eidmann, G.; Guthausen, A.; Haken, R.; Schmitz, U.; Saito, K.; Zimmer, G. The NMR-mouse: Construction, excitation, and applications. Magn. Reson. Imaging 1998, 16, 479–484. [Google Scholar] [CrossRef]
- Blümich, B.; Perlo, J.; Casanova, F. Mobile single-sided NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2008, 52, 197–269. [Google Scholar] [CrossRef]
- Lai, W.L.; Kind, T.; Kruschwitz, S.; Wöstmann, J.; Wiggenhauser, H. Spectral absorption of spatial and temporal ground-penetrating radar signals by water in construction materials. NDT&E Int. 2014, 67, 55–63. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Material | Thickness D [cm] | Density [g·cm−3] | Porosity * [%] |
---|---|---|---|
Cement screed (CT) | 5, 6, 7 | 1.92 | 20.76 |
Anhydrite screed (CA) | 5, 6, | 2.05 | 27.18 |
Expanded polysterene (EP) | 2, 5, 7, 10 | 0.027 | - |
Extruded polysterene (XP) | 2, 5, 7, 10 | 0.037 | - |
Glass wool (GW) | 2, 6, 10 | 0.061 | - |
Perlites (PS) | 2, 6, 10 | 0.092 | - |
Classifier | Accuracy (%) | Accuracy * (%) | ||
---|---|---|---|---|
Mean | Std | Mean | Std | |
MLR | 86.4 | 3.0 | 89,7 | 3.1 |
RF | 88.3 | 3.7 | 92.2 | 2.6 |
SVM | 84.3 | 3.3 | 86.6 | 3.9 |
ANN | 88.2 | 3.6 | 93.5 | 2.5 |
Feature | Origin in A-Scan | Score |
---|---|---|
0.61 | ||
1.0 | ||
0.95 | ||
0.48 | ||
0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klewe, T.; Strangfeld, C.; Ritzer, T.; Kruschwitz, S. Combining Signal Features of Ground-Penetrating Radar to Classify Moisture Damage in Layered Building Floors. Appl. Sci. 2021, 11, 8820. https://doi.org/10.3390/app11198820
Klewe T, Strangfeld C, Ritzer T, Kruschwitz S. Combining Signal Features of Ground-Penetrating Radar to Classify Moisture Damage in Layered Building Floors. Applied Sciences. 2021; 11(19):8820. https://doi.org/10.3390/app11198820
Chicago/Turabian StyleKlewe, Tim, Christoph Strangfeld, Tobias Ritzer, and Sabine Kruschwitz. 2021. "Combining Signal Features of Ground-Penetrating Radar to Classify Moisture Damage in Layered Building Floors" Applied Sciences 11, no. 19: 8820. https://doi.org/10.3390/app11198820
APA StyleKlewe, T., Strangfeld, C., Ritzer, T., & Kruschwitz, S. (2021). Combining Signal Features of Ground-Penetrating Radar to Classify Moisture Damage in Layered Building Floors. Applied Sciences, 11(19), 8820. https://doi.org/10.3390/app11198820