Lateral Capacitance–Voltage Method of NanoMOSFET for Detecting the Hot Carrier Injection
<p>Dependence of the threshold voltage change on the linear size of charged area.</p> "> Figure 2
<p>C–V dependences of drain–substrate junction at different gate lengths of MOSFET.</p> "> Figure 3
<p>C–V dependences of drain–substrate junction without embedded charge (<b>1</b>) and at embedding the local oxide charge near the drain (<b>2</b>).</p> "> Figure 4
<p>Minor carrier concentration distribution in substrate (base) in case of absence (<b>a</b>) and presence (<b>b</b>) of embedding local oxide charge. V<sub>ds</sub> = 0.5 V and the indicated concentration is in cm<sup>−3</sup>.</p> "> Figure 5
<p>Dependence of the amplitude of changes in lateral capacitances ΔCdbmax and ΔCsbmax (<b>a</b>) and their difference (<b>b</b>) on linear size of the embedded charge at the drain end of the gate oxide.</p> ">
Abstract
:Featured Applications
Abstract
1. Introduction
2. Capacitances of Lateral Junctions
3. Simulation Methodology
4. Simulations Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martin-Martinez, J.; Gerardin, S.; Amat, E.; Rodríguez, R.; Nafria, M.; Aymerich, X.; Paccagnella, A.; Ghidini, G. Channel-Hot-Carrier Degradation and Bias Temperature Instabilities in CMOS Inverters. IEEE Trans. Electron Devices 2009, 56, 2155–2159. [Google Scholar] [CrossRef]
- Duan, M.; Zhang, J.F.; Ji, Z.; Zhang, W.; Kaczer, B.; Asenov, A. Key Issues and Solutions for Characterizing Hot Carrier Aging of Nanometer Scale nMOSFETs. IEEE Trans. Electron Devices 2017, 64, 2478–2484. [Google Scholar] [CrossRef] [Green Version]
- Kaczer, B.; Grasser, T.; Roussel, P.J.; Franco, J.; Degraeve, R.; Ragnarsson, L.-A.; Simoen, E.; Groeseneken, G.; Reisinger, H. Origin of NBTI variability in deeply scaled pFETs. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; Volume 2010, pp. 26–32. [Google Scholar] [CrossRef]
- Gao, R.; Manut, A.B.; Ji, Z.; Ma, J.; Duan, M.; Zhang, J.F.; Franco, J.; Hatta, S.W.M.; Zhang, W.; Kaczer, B.; et al. Reliable Time Exponents for Long Term Prediction of Negative Bias Temperature Instability by Extrapolation. IEEE Trans. Electron Devices 2017, 64, 1467–1473. [Google Scholar] [CrossRef]
- Lee, N.-H.; Kim, H.; Kang, B. Impact of Off-State Stress and Negative Bias Temperature Instability on Degradation of Nanoscale pMOSFET. IEEE Electron Device Lett. 2011, 33, 137–139. [Google Scholar] [CrossRef]
- Hofmann, K.; Holzhauser, S.; Kuo, C.Y. A comprehensive analysis of NFET degradation due to off-state stress. In IEEE International Integrated Reliability Workshop Final Report 2004; IEEE: South Lake Tahoe, CA, USA, 2005. [Google Scholar]
- Martin-Martinez, J.; Diaz, J.; Rodríguez, R.; Nafria, M.; Aymerich, X. New Weighted Time Lag Method for the Analysis of Random Telegraph Signals. IEEE Electron Device Lett. 2014, 35, 479–481. [Google Scholar] [CrossRef]
- Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M.B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X. A new high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM. In EUROSOI-ULIS 2015: 2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon; IEEE: Piscataway, NJ, USA, 2015; Volume 115, pp. 133–136. [Google Scholar]
- Yun, Y.; Seo, J.-H.; Kwon, Y.-K.; Kang, B. Effect of oxide-trapped charge on the anomalous drain avalanche hot carrier degradation of a SiO2 dielectric nMOSFET. Microelectron. Reliab. 2019, 100–101, 113449. [Google Scholar] [CrossRef]
- Leblebici, Y.; Kang, S.-M.S. Hot-Carrier Reliability of MOS VLSI Circuits; Springer US: New York, NY, USA, 1993; Volume 227. [Google Scholar]
- Kufluoglu, H. Mosfet Degradation Due to NBTI and HCI and Its Implications for Reliability-Aware VLSI, Diss. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2007. [Google Scholar]
- Pagey, M.P. Characterization and Modeling of Hot-Carrier Degradation in Sub-Micron NMOSFETS. Master’s Thesis, Vanderbilt University, Nashville, TN, USA, 2002. [Google Scholar]
- Mistry, K.R.; Doyle, B. AC versus DC hot-carrier degradation in n-channel MOSFETs. IEEE Trans. Electron Devices 1993, 40, 96–104. [Google Scholar] [CrossRef]
- Takeda, E.; Nakagome, Y.; Kume, H.; Asai, S. New hot-carrier injection and device degradation in submicron MOSFETs. In IEE Proceedings I—Solid-State and Electron Devices; IET: London, UK, June 1983; Volume 130, pp. 144–150. [Google Scholar] [CrossRef]
- Takeda, E.; Kume, H.; Toyabe, T.; Asai, S. Submicrometer MOSFET Structure for Minimizing Hot-Carrier Generation. IEEE J. Solid State Circuits 1982, 17, 241–248. [Google Scholar] [CrossRef]
- Fair, R.B.; Sun, R.C. Threshold-voltage instability in MOSFET’s due to channel hot-hole emission. IEEE Trans. Electron Devices 1981, 28, 83–94. [Google Scholar]
- Koike, N.; Tatsuuma, K. A Drain Avalanche Hot Carrier Lifetime Model for n- and p-Channel MOSFETs. IEEE Trans. Device Mater. Reliab. 2004, 4, 457–466. [Google Scholar] [CrossRef]
- Thewes, R. Degradation Analoger CMOS. Schaltungen Durch Heibe Ladungstraiger. Ph.D. Thesis, Universitait Dortmund, Dortmund, Germany, 1995. [Google Scholar]
- Weber, W.; Brox, M.; Bellens, R.; Heremans, P.; Groeseneken, G.; Schwerin, A.V.; Maes, H.E. Hot Carrier Design Constraints in MOS Devices and Circuits; Wang, C.T., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1991; p. 1. [Google Scholar]
- Stadlober, B. About long-term effects of hot-carrier stress on n-MOSFETS. Microelectron. Reliab. 2000, 40, 1485–1490. [Google Scholar] [CrossRef]
- Cristoloveanu, S.; Haddara, H.; Revil, N. Defect localization induced by hot carrier injection in short-channel MOSFETs: Concept, modeling and characterization. Microelectron. Reliab. 1993, 33, 1365–1385. [Google Scholar] [CrossRef]
- Park, S.P.; Kang, K.; Roy, K. Reliability Implications of Bias-Temperature Instability in Digital ICs. IEEE Des. Test Comput. 2009, 26, 8–17. [Google Scholar] [CrossRef]
- Mahapatra, S.; Parikh, C.; Rao, V.R.; Viswanathan, C.; Vasi, J. Device scaling effects on hot-carrier induced interface and oxide-trapped charge distributions in MOSFETs. IEEE Trans. Electron Devices 2000, 47, 789–796. [Google Scholar] [CrossRef]
- Grasser, T. (Ed.) Hot Carrier Degradation in Semiconductor Devices; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Seo, J.-H.; Kim, G.-J.; Son, D.; Lee, N.-H.; Kang, Y.; Kang, B. Method to predict length dependency of negative bias temperature instability degradation in p-MOSFETs. Jpn. J. Appl. Phys. 2016, 55, 08PD03. [Google Scholar] [CrossRef]
- Matsuoka, F.; Iwai, H.; Hayashida, H.; Hama, K.; Toyoshima, Y.; Maeguchi, K. Analysis of hot-carrier-induced degradation mode on Pmosfet’s. IEEE Trans. Electron 1990, 37, 1487–1495. [Google Scholar] [CrossRef]
- Yun, Y.; Seo, J.-H.; Son, D.; Kang, B. Method to estimate profile of threshold voltage degradation in MOSFETs due to electrical stress. Microelectron. Reliab. 2018, 88, 186–190. [Google Scholar] [CrossRef]
- Atamuratov, A.E.; Yusupov, A.; Adinaev, K. Experimental Assessment of the Nonuniform Radiation-Induced Space-Charge Distribution in the Surface Region of Silicon. Inorg. Mater. 2001, 37, 767–768. [Google Scholar] [CrossRef]
- Atamuratov, A.E.; Matrasulov, D.U.; Khabibullaev, P.K. Detection of a charge built in the oxide layer of a metal-oxide-semiconductor field-effect transistor by lateral C-V measurement. Dokl. Phys. 2007, 52, 322–325. [Google Scholar] [CrossRef]
- Starkov, I.; Starkov, A.S. Investigation of the threshold voltage turn-around effect in long-channel n-MOSFETs due to hot-carrier stress. Microelectron. Reliab. 2014, 54, 33–36. [Google Scholar] [CrossRef]
- Djezzar, B.; Tahi, H.; Benabdelmoumene, A.; Chenouf, A. A propagation concept of negative bias temperature instability along the channel length in p-type metal oxide field effect transistor. Solid State Electron. 2013, 82, 46–53. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atamuratov, A.E.; Yusupov, A.; Atamuratova, Z.A.; Chedjou, J.C.; Kyamakya, K. Lateral Capacitance–Voltage Method of NanoMOSFET for Detecting the Hot Carrier Injection. Appl. Sci. 2020, 10, 7935. https://doi.org/10.3390/app10217935
Atamuratov AE, Yusupov A, Atamuratova ZA, Chedjou JC, Kyamakya K. Lateral Capacitance–Voltage Method of NanoMOSFET for Detecting the Hot Carrier Injection. Applied Sciences. 2020; 10(21):7935. https://doi.org/10.3390/app10217935
Chicago/Turabian StyleAtamuratov, Atabek E., Ahmed Yusupov, Zukhra A. Atamuratova, Jean Chamberlain Chedjou, and Kyandoghere Kyamakya. 2020. "Lateral Capacitance–Voltage Method of NanoMOSFET for Detecting the Hot Carrier Injection" Applied Sciences 10, no. 21: 7935. https://doi.org/10.3390/app10217935
APA StyleAtamuratov, A. E., Yusupov, A., Atamuratova, Z. A., Chedjou, J. C., & Kyamakya, K. (2020). Lateral Capacitance–Voltage Method of NanoMOSFET for Detecting the Hot Carrier Injection. Applied Sciences, 10(21), 7935. https://doi.org/10.3390/app10217935