Multimodal Few-Shot Learning for Gait Recognition
<p>Design of the shoe insole used in our experiments.</p> "> Figure 2
<p>The design of the proposed network architecture.</p> "> Figure 3
<p>Illustration of the multimodal triplet loss.</p> "> Figure 4
<p>Illustration of gait recognition using the trained model. In the example, unit step <math display="inline"><semantics> <msub> <mi mathvariant="bold">s</mi> <mrow> <mo>*</mo> <mo>,</mo> <mi>u</mi> </mrow> </msub> </semantics></math> is recognized as that of the “green” subject, whereas unit step <math display="inline"><semantics> <msub> <mi mathvariant="bold">s</mi> <mrow> <mo>*</mo> <mo>,</mo> <mi>w</mi> </mrow> </msub> </semantics></math> is not recognized.</p> "> Figure 5
<p>Illustration of the approach we used to split the data into training, unknown known test, and unknown unknown test datasets.</p> "> Figure 6
<p>Comparison of the ACC, TPR, and TNR results as a function of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>ν</mi> </semantics></math> for the ensemble, convolutional neural network (CNN), and recurrent neural network (RNN). The same color denotes a similar rate (maximum 1% difference), with yellow indicating the highest rates.</p> "> Figure 7
<p>Performance as function of <math display="inline"><semantics> <mi>τ</mi> </semantics></math> for fixed <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>ν</mi> </semantics></math>. We set <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>0.06</mn> </mrow> </semantics></math> for the ensemble model, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>0.06</mn> </mrow> </semantics></math> for the CNN model, and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>2.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math> for the RNN model.</p> "> Figure 8
<p>Performance of the uni-modal ensemble model as function of <math display="inline"><semantics> <mi>τ</mi> </semantics></math> for fixed <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>0.06</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Performance comparison between sensing modalities.</p> "> Figure 10
<p>t-SNE plots of embedding vectors of subjects in the <span class="html-italic">unknown known</span> and the <span class="html-italic">unknown unknown</span> test datasets with multi-modal sensing. Each subject is represented by a unique color.</p> "> Figure 11
<p>Distributions of distances between homogeneous unit steps and between heterogeneous unit steps in the latent space.</p> ">
Abstract
:1. Introduction
Related Work
2. Method
2.1. Data Pre-Processing
2.2. Network Architecture
2.3. Convolutional Neural Network
2.4. Recurrent Neural Network
2.5. Embedding Vector
2.6. Loss Function
2.7. Few-Shot Learning
- Compute
- Find provisional subject
- If , then “u is recognized as p”
- Otherwise, “u is not recognized”
3. Experiment
3.1. Datasets and Evaluation Metric
3.2. Multi-Modal Sensing
3.3. Uni-Modal Sensing
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 1973, 14, 201–211. [Google Scholar] [CrossRef]
- Cutting, J.E.; Kozlowski, L.T. Recognizing friends by their walk: Gait perception without familiarity cues. Bull. Psychon. Soc. 1977, 9, 353–356. [Google Scholar] [CrossRef]
- Cutting, J.E.; Proffitt, D.R.; Kozlowski, L.T. A biomechanical invariant for gait perception. J. Exp. Psychol. Hum. Percept. Perform. 1978, 4, 357. [Google Scholar] [CrossRef]
- Manap, H.H.; Tahir, N.M.; Yassin, A.I.M. Statistical analysis of parkinson disease gait classification using Artificial Neural Network. In Proceedings of the 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 14–17 December 2011; pp. 60–65. [Google Scholar]
- Wahid, F.; Begg, R.K.; Hass, C.J.; Halgamuge, S.; Ackland, D.C. Classification of Parkinson’s disease gait using spatial-temporal gait features. Inst. Electr. Electron. Eng. J. Biomed. Health Inform. 2015, 19, 1794–1802. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, C. Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Inf. Sci. 2015, 317, 246–258. [Google Scholar] [CrossRef]
- Gao, J.; Cui, Y.; Ji, X.; Wang, X.; Hu, G.; Liu, F. A Parametric Identification Method of Human Gait Differences and its Application in Rehabilitation. Appl. Sci. 2019, 9, 4581. [Google Scholar] [CrossRef] [Green Version]
- Dehzangi, O.; Taherisadr, M.; ChangalVala, R. IMU-based gait recognition using convolutional neural networks and multi-sensor fusion. Sensors 2017, 17, 2735. [Google Scholar] [CrossRef] [Green Version]
- Connor, P.; Ross, A. Biometric recognition by gait: A survey of modalities and features. Comput. Vis. Image Underst. 2018, 167, 1–27. [Google Scholar] [CrossRef]
- Choudhury, S.D.; Tjahjadi, T. Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors. Pattern Recognit. 2012, 45, 3414–3426. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.H.; Ho, M.F.; Huang, C.L. Gait analysis for human identification through manifold learning and HMM. Pattern Recognit. 2008, 41, 2541–2553. [Google Scholar] [CrossRef]
- Liao, R.; Yu, S.; An, W.; Huang, Y. A model-based gait recognition method with body pose and human prior knowledge. Pattern Recognit. 2020, 98, 107069. [Google Scholar] [CrossRef]
- Moon, J.; Minaya, N.H.; Le, N.A.; Park, H.C.; Choi, S.I. Can Ensemble Deep Learning Identify People by Their Gait Using Data Collected from Multi-Modal Sensors in Their Insole? Sensors 2020, 20, 4001. [Google Scholar] [CrossRef]
- Muaaz, M.; Mayrhofer, R. Smartphone-based gait recognition: From authentication to imitation. IEEE Trans. Mob. Comput. 2017, 16, 3209–3221. [Google Scholar] [CrossRef]
- Wan, C.; Wang, L.; Phoha, V.V. A survey on gait recognition. ACM Comput. Surv. (CSUR) 2018, 51, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Scheirer, W.J.; de Rezende Rocha, A.; Sapkota, A.; Boult, T.E. Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1757–1772. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Huang, S.J.; Chen, S. Recent advances in open set recognition: A survey. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Choi, S.I.; Lee, S.S.; Park, H.C.; Kim, H. Gait type classification using smart insole sensors. In Proceedings of the TENCON 2018—2018 IEEE Region 10 Conference, Jeju, Korea, 28–31 October 2018; pp. 1903–1906. [Google Scholar]
- Murray, M.P.; Drought, A.B.; Kory, R.C. Walking patterns of normal men. J. Bone Jt. Surg. 1964, 46, 335–360. [Google Scholar] [CrossRef]
- Lee, S.S.; Choi, S.T.; Choi, S.I. Classification of Gait Type Based on Deep Learning Using Various Sensors with Smart Insole. Sensors 2019, 19, 1757. [Google Scholar] [CrossRef] [Green Version]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8 June 2015; pp. 815–823. [Google Scholar]
- Schölkopf, B.; Williamson, R.C.; Smola, A.J.; Shawe-Taylor, J.; Platt, J.C. Support vector method for novelty detection. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 1 January 2000; pp. 582–588. [Google Scholar]
- Niyogi, S.A.; Adelson, E.H. Analyzing and recognizing walking figures in XYT. In Proceedings of the 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; Volume 94, pp. 469–474. [Google Scholar]
- Świtoński, A.; Polański, A.; Wojciechowski, K. Human identification based on gait paths. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Ghent, Belgium, 22–25 August 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 531–542. [Google Scholar]
- Yu, T.; Zou, J.H. Automatic human Gait imitation and recognition in 3D from monocular video with an uncalibrated camera. Math. Probl. Eng. 2012, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tran, L.; Yin, X.; Atoum, Y.; Liu, X.; Wan, J.; Wang, N. Gait Recognition via Disentangled Representation Learning. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16 June 2019; pp. 4710–4719. [Google Scholar]
- Yogarajah, P.; Chaurasia, P.; Condell, J.; Prasad, G. Enhancing gait based person identification using joint sparsity model and L1-norm minimization. Inf. Sci. 2015, 308, 3–22. [Google Scholar] [CrossRef]
- Li, C.; Min, X.; Sun, S.; Lin, W.; Tang, Z. DeepGait: A learning deep convolutional representation for view-invariant gait recognition using joint Bayesian. Appl. Sci. 2017, 7, 210. [Google Scholar] [CrossRef]
- Lenac, K.; Sušanj, D.; Ramakić, A.; Pinčić, D. Extending Appearance Based Gait Recognition with Depth Data. Appl. Sci. 2019, 9, 5529. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xu, J.; Weng, J. Multi-gait recognition using hypergraph partition. Mach. Vis. Appl. 2017, 28, 117–127. [Google Scholar] [CrossRef]
- Chen, X.; Weng, J.; Lu, W.; Xu, J. Multi-gait recognition based on attribute discovery. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1697–1710. [Google Scholar] [CrossRef] [PubMed]
- Bodor, R.; Drenner, A.; Fehr, D.; Masoud, O.; Papanikolopoulos, N. View-independent human motion classification using image-based reconstruction. Image Vis. Comput. 2009, 27, 1194–1206. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Zhang, Z.; Little, J.J.; Huang, D. View-invariant discriminative projection for multi-view gait-based human identification. IEEE Trans. Inf. Forensics Secur. 2013, 8, 2034–2045. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Wang, L.; Wang, X.; Tan, T. A comprehensive study on cross-view gait based human identification with deep cnns. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3 December 2012; pp. 1097–1105. [Google Scholar]
- Liu, L.; Peng, Y.; Wang, S.; Liu, M.; Huang, Z. Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors. Inf. Sci. 2016, 340, 41–57. [Google Scholar] [CrossRef]
- el Achkar, C.M.; Lenoble-Hoskovec, C.; Paraschiv-Ionescu, A.; Major, K.; Büla, C.; Aminian, K. Instrumented shoes for activity classification in the elderly. Gait Posture 2016, 44, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Gadaleta, M.; Rossi, M. Idnet: Smartphone-based gait recognition with convolutional neural networks. Pattern Recognit. 2018, 74, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Choi, S.I.; Moon, J.; Park, H.C.; Choi, S.T. User Identification from Gait Analysis Using Multi-Modal Sensors in Smart Insole. Sensors 2019, 19, 3785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cevikalp, H.; Neamtu, M.; Wilkes, M.; Barkana, A. Discriminative common vectors for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.; Mahmood, A. Improved gait recognition based on specialized deep convolutional neural network. Comput. Vis. Image Underst. 2017, 164, 103–110. [Google Scholar] [CrossRef]
- Footlogger Insole. Available online: http://footlogger.com/hp_new/?page_id=11 (accessed on 20 October 2020).
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11 April 2011; pp. 315–323. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Model | Sensing | TPR | TNR | ACC | |||
---|---|---|---|---|---|---|---|
Ensemble | 1.9 | 0.06 | Multi | −0.1 | 0.9342 | 0.9375 | 0.9360 |
Pressure | −0.09 | 0.8889 | 0.8845 | 0.8876 | |||
Acceleration | −0.08 | 0.8871 | 0.9087 | 0.8985 | |||
Rotation | −0.1 | 0.8965 | 0.8895 | 0.8930 | |||
CNN | 1.8 | 0.06 | Multi | −0.1 | 0.9274 | 0.9250 | 0.9263 |
Pressure | −0.08 | 0.8803 | 0.8802 | 0.8808 | |||
Acceleration | −0.09 | 0.8892 | 0.8788 | 0.8840 | |||
Rotation | −0.08 | 0.8705 | 0.8919 | 0.8816 | |||
RNN | 2.2 | 0.08 | Multi | −0.1 | 0.8745 | 0.8759 | 0.8757 |
Pressure | −0.07 | 0.7752 | 0.7760 | 0.7757 | |||
Acceleration | −0.1 | 0.8173 | 0.8283 | 0.8224 | |||
Rotation | −0.1 | 0.8015 | 0.8221 | 0.8129 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, J.; Le, N.A.; Minaya, N.H.; Choi, S.-I. Multimodal Few-Shot Learning for Gait Recognition. Appl. Sci. 2020, 10, 7619. https://doi.org/10.3390/app10217619
Moon J, Le NA, Minaya NH, Choi S-I. Multimodal Few-Shot Learning for Gait Recognition. Applied Sciences. 2020; 10(21):7619. https://doi.org/10.3390/app10217619
Chicago/Turabian StyleMoon, Jucheol, Nhat Anh Le, Nelson Hebert Minaya, and Sang-Il Choi. 2020. "Multimodal Few-Shot Learning for Gait Recognition" Applied Sciences 10, no. 21: 7619. https://doi.org/10.3390/app10217619
APA StyleMoon, J., Le, N. A., Minaya, N. H., & Choi, S.-I. (2020). Multimodal Few-Shot Learning for Gait Recognition. Applied Sciences, 10(21), 7619. https://doi.org/10.3390/app10217619