A Coaxial Dielectric Barrier Discharge Reactor for Treatment of Winter Wheat Seeds
<p>Experimental setup of the coaxial DBD reactor used for seed treatment.</p> "> Figure 2
<p>Current and voltage waveforms of the discharges generated in (<b>a</b>) argon and (<b>b</b>) helium along with pictures of the discharges in (<b>c</b>) argon and (<b>d</b>) helium.</p> "> Figure 2 Cont.
<p>Current and voltage waveforms of the discharges generated in (<b>a</b>) argon and (<b>b</b>) helium along with pictures of the discharges in (<b>c</b>) argon and (<b>d</b>) helium.</p> "> Figure 3
<p>Dependence of the discharge power on applied voltage for argon (black) and helium (red).</p> "> Figure 4
<p>Optical emission spectra of the discharges generated in (<b>a</b>) argon and (<b>b</b>) helium.</p> "> Figure 5
<p>Temperature measured (<b>a</b>) inside the reactor for both gases during 10 min of plasma on and cooling process after plasma is turned off. (<b>b</b>) Temperature at the seed coat of wheat treated for treatment times varying from 1 to 10 min using an argon (black) and helium (red) discharge.</p> "> Figure 6
<p>Water contact angle of wheat seeds treated for different treatment times from 1 to 30 min using an argon (black curve) and helium (red curve) discharge. Gas control values for both gases are in the same range as the control points: argon control is 107° ± 12° and helium control is 111° ± 9°. Curves were fitted with a logistic function.</p> "> Figure 7
<p>Germination acceleration of wheat seeds treated for different times (from 3 to 30 min) for both discharges (<b>a</b>) argon and (<b>b</b>) helium. Germination curves were fitted with the Hill function.</p> "> Figure 8
<p>Comparison of germination acceleration of wheat seeds treated with both discharges (argon in black and helium in red) for (<b>a</b>) 3 min, (<b>b</b>) 5 min, and (<b>c</b>) 10 min. Germination curves were fitted with the Hill function. * represents a statistically significant difference (<span class="html-italic">p</span> ≤ 0.001–0.02).</p> "> Figure 9
<p>(<b>a</b>) Discharge power increase and (<b>b</b>) linear rise of gas temperature with voltage duty cycle variation for the argon discharge after 4 min from starting the plasma.</p> "> Figure 10
<p>Germination acceleration of argon-treated wheat seeds with different voltage duty cycles for 4 min. Germination curves were fitted with the Hill function.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasma Source
2.2. Electrical Characterization
2.3. Optical Emission Spectrocopy (OES)
2.4. Temperature Measurements
2.5. Plasma Treatment of Wheat Seeds
2.6. Water Contact Angle (WCA) Analysis
2.7. Germination Tests
2.8. Statistical Analysis
3. Results and Discussion
3.1. Discharge Characterization of the DBD Reactor Operating with Different Feed Gases
3.2. Impact of the DBD Reactor Operation Time on the Temperature Evolution
3.3. Effects on Seed Surface Wettability of Wheat for Both Discharges
3.4. Effects on Seed Germination of Wheat Treated with Argon and Helium Plasmas
3.5. Variation of Voltage Duty Cycle Affects the Discharge Temperature without Harming the Seeds
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shewry, P.R. Darwin review: Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [PubMed]
- Food and Agriculture Organization of the United Nations 2018, “Crops”, FAOSTAT. Countries-Select All; Elements-Production Quantity; Items-Wheat; Years-2018. Available online: http://www.fao.org/faostat/en/#data/QC/ (accessed on 20 June 2020).
- Brandenburg, R.; Fridman, A.; Reuter, S.; Bogaerts, A.; Bongers, W.; Schiorlin, M.; Verreycken, T.; Ken, K. White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process. Polym. 2018, 16, 1700238. [Google Scholar]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ŠERÁ, B.; ŠERÝ, M. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Sci. Technol. 2018, 20, 044012. [Google Scholar]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M. Plasma Agriculture from Laboratory to Farm: A Review. Process 2020, 8, 1002. [Google Scholar] [CrossRef]
- Šimončicová, J.; Kryštofová, S.; Medvecká, V.; Ďurišová, K.; Kaliňáková, B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 5117–5129. [Google Scholar]
- Weltmann, K.D.; von Woedtke, T. Plasma medicine—Current state of research and medical application. Plasma Phys. Control. Fusion 2016, 59, 14031. [Google Scholar]
- Ito, M.; Oh, J.-S.; Ohta, T.; Shiratani, M.; Hori, M. Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Process. Polym. 2017, 15, 1–15. [Google Scholar] [CrossRef]
- Puač, N.; Gherardi, M.; Shiratani, M. Plasma agriculture: A rapidly emerging field. Plasma Process. Polym. 2018, 15, 1700174. [Google Scholar]
- Adhikari, B.; Pangomm, K.; Veerana, M.; Mitra, S.; Park, G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020, 11, 1–15. [Google Scholar]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Understanding the Role of Plasma Technology in Food Industry. Food Bioprocess Technol. 2016, 9, 734–750. [Google Scholar]
- Iranbakhsh, A.; Ardebili, N.O.; Ardebili, Z.O.; Shafaati, M.; Ghoranneviss, M. Non-thermal Plasma Induced Expression of Heat Shock Factor A4A and Improved Wheat (Triticum aestivum L.) Growth and Resistance Against Salt Stress. Plasma Chem. Plasma Process. 2017, 38, 29–44. [Google Scholar] [CrossRef]
- Filatova, I.; Azharonok, V.; Lushkevich, V.; Zhukovsky, A.; Gadzhieva, G.; Spasi, K. Plasma seeds treatment as a promising technique for seed germination improvement. In Proceedings of the 31st International Conference on Phenomena in Ionized Gases, Granada, Spain, 14–19 July 2013; pp. 4–7. [Google Scholar]
- Scholtz, V.; Sera, B.; Khun, J.; Sery, M.; Julák, J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019, 2019, 7917825. [Google Scholar] [CrossRef] [Green Version]
- Zahoranová, A.; Henselová, M.; Hudecová, D.; Kaliňáková, B.; Kováčik, D.; Medvecká, V.; Černák, M. Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface. Plasma Chem. Plasma Process. 2016, 36, 397–414. [Google Scholar]
- Roy, N.C.; Hasan, M.M.; Talukder, M.R.; Hossain, M.D.; Chowdhury, A.N. Prospective Applications of Low Frequency Glow Discharge Plasmas on Enhanced Germination, Growth and Yield of Wheat. Plasma Chem. Plasma Process. 2018, 38, 13–28. [Google Scholar]
- Jiang, J.; He, X.; Li, L.; Li, J.; Shao, H.; Xu, Q.; Ye, R.; Dong, Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 2014, 16, 54–58. [Google Scholar]
- Sera, B.; Spatenka, P.; Sery, M.; Vrchotova, N.; Hruskova, I. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans. Plasma Sci. 2010, 38, 2963–2968. [Google Scholar]
- Meng, Y.; Qu, G.; Wang, T.; Sun, Q.; Liang, D.; Hu, S. Enhancement of Germination and Seedling Growth of Wheat Seed Using Dielectric Barrier Discharge Plasma with Various Gas Sources. Plasma Chem. Plasma Process. 2017, 37, 1105–1119. [Google Scholar]
- Guo, Q.; Meng, Y.; Qu, G.; Wang, T.; Yang, F.; Liang, D.; Hu, S. Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics 2018, 39, 120–131. [Google Scholar]
- Li, Y.; Wang, T.; Meng, Y.; Qu, G.; Sun, Q.; Liang, D.; Hu, S. Air Atmospheric Dielectric Barrier Discharge Plasma Induced Germination and Growth Enhancement of Wheat Seed. Plasma Chem. Plasma Process. 2017, 37, 1621–1634. [Google Scholar]
- Los, A.; Ziuzina, D.; Akkermans, S.; Boehm, D.; Cullen, P.J.; Van Impe, J.; Bourke, P. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res. Int. 2018, 106, 509–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, R.; Lalueza, A.; López-Santos, C.; Ghobeira, R.; Cools, P.; Morent, R.; de Geyter, N.; González-Elipe, A.R. Physicochemical surface analysis and germination at different irrigation conditions of DBD plasma-treated wheat seeds. Plasma Process. Polym. 2020, e2000086. [Google Scholar] [CrossRef]
- Henselová, M.; Slováková, Ľ.; Martinka, M.; Zahoranová, A. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia (Bratisl) 2012, 67, 490–497. [Google Scholar]
- Ling, L.; Jiafeng, J.; Jiangang, L.; Minchong, S.; Xin, H.; Hanliang, S.; Yuanhua, D. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014, 4, 5859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.J.; Jo, J.O.; Huynh, D.L.; Mongre, R.K.; Ghosh, M.; Singh, A.K.; Lee, S.B.; Mok, Y.S.; Hyuk, P.; Jeong, D.K. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Sci. Rep. 2017, 7, 1–12. [Google Scholar]
- Sadhu, S.; Thirumdas, R.; Deshmukh, R.R.; Annapure, U.S. Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT-Food Sci. Technol. 2017, 78, 97–104. [Google Scholar] [CrossRef]
- Shiratani, M.; Sarinont, T.; Amano, T.; Hayashi, N.; Koga, K. Plant Growth Response to Atmospheric Air Plasma Treatments of Seeds of 5 Plant Species. MRS Adv. 2016, 1, 1265–1269. [Google Scholar] [CrossRef]
- Sarinont, T.; Amano, T.; Attri, P.; Koga, K.; Hayashi, N.; Shiratani, M. Effects of plasma irradiation using various feeding gases on growth of Raphanus sativus L. Arch. Biochem. Biophys. 2016, 605, 129–140. [Google Scholar] [CrossRef]
- Mihai, A.L.; Dobrin, D.; Măgureanu, M.; Popa, M.E. Positive effect of non-thermal plasma treatment on radish seeds. Rom. Reports Phys. 2014, 66, 1110–1117. [Google Scholar]
- Bußler, S.; Herppich, W.B.; Neugart, S.; Schreiner, M.; Ehlbeck, J.; Rohn, S.; Schlüter, O. Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’). Food Res. Int. 2015, 76, 132–141. [Google Scholar]
- Stolárik, T.; Henselová, M.; Martinka, M.; Novák, O.; Zahoranová, A.; Černák, M. Effect of Low-Temperature Plasma on the Structure of Seeds, Growth and Metabolism of Endogenous Phytohormones in Pea (Pisum sativum L.). Plasma Chem. Plasma Process. 2015, 35, 659–676. [Google Scholar]
- Gao, X.; Zhang, A.; Héroux, P.; Sand, W.; Sun, Z.; Zhan, J.; Wang, C.; Hao, S.; Li, Z.; Li, Z.; et al. Effect of Dielectric Barrier Discharge Cold Plasma on Pea Seed Growth. J. Agric. Food Chem. 2019, 67, 10813–10822. [Google Scholar] [CrossRef] [PubMed]
- Švubová, R.; Kyzek, S.; Medvecká, V.; Slováková, Ľ.; Gálová, E.; Zahoranová, A. Novel insight at the Effect of Cold Atmospheric Pressure Plasma on the Activity of Enzymes Essential for the Germination of Pea (Pisum sativum L. cv. Prophet) Seeds. Plasma Chem. Plasma Process. 2020, 40, 1221–1240. [Google Scholar]
- Khamsen, N.; Onwimol, D.; Teerakawanich, N.; Dechanupaprittha, S.; Kanokbannakorn, W.; Hongesombut, K.; Srisonphan, S. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma. ACS Appl. Mater. Interfaces 2016, 8, 19268–19275. [Google Scholar] [PubMed]
- Zahoranová, A.; Hoppanová, L.; Šimončicová, J.; Tučeková, Z.; Medvecká, V.; Hudecová, D.; Kaliňáková, B.; Kováčik, D.; Černák, M. Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation. Plasma Chem. Plasma Process. 2018, 38, 969–988. [Google Scholar]
- Gómez-Ramírez, A.; López-Santos, C.; Cantos, M.; García, J.L.; Molina, R.; Cotrino, J.; Espinós, J.P.; González-Elipe, A.R. Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Sci. Rep. 2017, 7, 1–12. [Google Scholar]
- Cui, D.; Yin, Y.; Wang, J.; Wang, Z.; Ding, H.; Ma, R.; Jiao, Z. Research on the Physio-Biochemical Mechanism of Non-Thermal Plasma-Regulated Seed Germination and Early Seedling Development in Arabidopsis. Front. Plant Sci. 2019, 10, 1322. [Google Scholar]
- Ghasempour, M.; Iranbakhsh, A.; Ebadi, M.; Oraghi Ardebili, Z. Seed priming with cold plasma improved seedling performance, secondary metabolism, and expression of deacetylvindoline O-acetyltransferase gene in Catharanthus roseus. Contrib. to Plasma Phys. 2020, 60, e201900159. [Google Scholar]
- Guo, Q.; Wang, Y.; Zhang, H.; Qu, G.; Wang, T.; Sun, Q.; Liang, D. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 2017, 7, 1–14. [Google Scholar]
- Sera, B.; Gajdova, I.; Cernák, M.; Gavril, B.; Hnatiuc, E.; Kováčik, D.; Kríha, V.; Sláma, J.; Serý, M.; Spatenka, P. How various plasma sources may affect seed germination and growth. In Proceedings of the 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 24–26 May 2012; pp. 1365–1370. [Google Scholar]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochim. Acta-Part B At. Spectrosc. 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016, 630, 1–84. [Google Scholar] [CrossRef] [Green Version]
- Bunme, P.; Khamsen, N.; Kasemsuwan, V.; Jitkajornwanich, K.; Pichetjamroen, A.; Teerakawanich, N.; Srisonphan, S. Polarity effect of pulsed corona discharge plasma on seed surface modification. In Proceedings of the 2017 International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 8–10 March 2017. [Google Scholar]
- Brandenburg, R. Corrigendum: Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments (2017 Plasma Sources Sci. Technol. 26 053001). Plasma Sources Sci. Technol. 2018, 27, 079501. [Google Scholar] [CrossRef]
- Butscher, D.; Zimmermann, D.; Schuppler, M.; Rudolf, P.; Rohr, V. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control 2016, 60, 636–645. [Google Scholar] [CrossRef]
- Pérez Pizá, M.C.; Prevosto, L.; Zilli, C.; Cejas, E.; Kelly, H.; Balestrasse, K. Effects of non–thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innov. Food Sci. Emerg. Technol. 2018, 49, 82–91. [Google Scholar]
- Billah, M.; Sajib, S.A.; Roy, N.C.; Rashid, M.M.; Reza, M.A.; Hasan, M.M.; Talukder, M.R. Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo L.) seed germination and growth. Arch. Biochem. Biophys. 2020, 681, 108253. [Google Scholar] [CrossRef] [PubMed]
- Măgureanu, M.; Sîrbu, R.; Dobrin, D.; Gîdea, M. Stimulation of the Germination and Early Growth of Tomato Seeds by Non-thermal Plasma. Plasma Chem. Plasma Process. 2018, 38, 989–1001. [Google Scholar]
- Abedi, S.; Iranbakhsh, A.; Oraghi Ardebili, Z.; Ebadi, M. Seed priming with cold plasma improved early growth, flowering, and protection of Cichorium intybus against selenium nanoparticle. J. Theor. Appl. Phys. 2020, 14, 113–119. [Google Scholar]
- Safari, N.; Iranbakhsh, A.; Ardebili, Z.O. Non-thermal plasma modi fi ed growth and differentiation process of Capsicum annuum PP805 Godiva in in vitro conditions. Plasma Sci. and Technol. 2017, 19, 055501. [Google Scholar] [CrossRef]
- Ghaemi, M.; Majd, A.; Iranbakhsh, A. Transcriptional responses following seed priming with cold plasma and electromagnetic field in Salvia nemorosa L. J. Theor. Appl. Phys. 2020, 1–6. [Google Scholar] [CrossRef]
- Ahn, C.; Gill, J.; Ruzic, D.N. Growth of Plasma-Treated Corn Seeds under Realistic Conditions. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Filatova, I.; Lyushkevich, V.; Goncharik, S.; Zhukovsky, A.; Krupenko, N.; Kalatskaja, J. The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. J. Phys. D Appl. Phys. 2020, 53, 244001. [Google Scholar] [CrossRef]
- Mujahid, Z.; Tounekti, T.; Khemira, H. Cold plasma treatment to release dormancy and improve growth in grape buds: A promising alternative to natural chilling and rest breaking chemicals. Sci. Rep. 2020, 10, 1–10. [Google Scholar]
- Tounekti, T.; Mujahid, Z.U.I.; Khemira, H. Non-thermal dielectric barrier discharge (DBD) plasma affects germination of coffee and grape seeds. AIP Conf. Proc. 2018, 1976, 10–14. [Google Scholar]
- Rusu, B.G.; Postolache, V.; Cara, I.G.; Pohoata, V.; Mihaila, I.; Topala, I.; Jitareanu, G. Method of fungal wheat seeds disease inhibition using direct exposure to air cold plasma. Rom. J. Phys. 2018, 63, 1–13. [Google Scholar]
- Sivachandiran, L.; Khacef, A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Adv. 2017, 7, 1822–1832. [Google Scholar]
- Velichko, I.; Gordeev, I.; Shelemin, A.; Nikitin, D.; Brinar, J.; Pleskunov, P.; Choukourov, A.; Pazderů, K.; Pulkrábek, J. Plasma Jet and Dielectric Barrier Discharge Treatment of Wheat Seeds. Plasma Chem. Plasma Process. 2019, 39, 913–928. [Google Scholar] [CrossRef]
- Da Silva, A.R.M.; Farias, M.L.; da Silva, D.L.S.; Vitoriano, J.O.; de Sousa, R.C.; Alves-Junior, C. Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa Caesalpiniafolia. Colloids Surf. B Biointerfaces 2017, 157, 280–285. [Google Scholar]
- Holub, M. On the measurement of plasma power in atmospheric pressure DBD plasma reactors. Int. J. Appl. Electromagn. Mech. 2012, 39, 81–87. [Google Scholar] [CrossRef]
- Abbasi Khalaki, M.; Ghorbani, A.; Dadjou, F. Influence of Nano-Priming on Festuca ovina Seed Germination and Early Seedling Traits under Drought Stress, in Laboratory Condition. Ecopersia 2019, 7, 133–139. [Google Scholar]
- Karakas, E.; Akman, M.A.; Laroussi, M. The evolution of atmospheric-pressure low-temperature plasma jets: Jet current measurements. Plasma Sources Sci. Technol. 2012, 21, 034016. [Google Scholar] [CrossRef]
- Tu, X.; Verheyde, B.; Corthals, S.; Paulussen, S.; Sels, B.F. Effect of packing solid material on characteristics of helium dielectric barrier discharge at atmospheric pressure. Phys. Plasmas 2011, 18, 1–5. [Google Scholar]
- Martens, T.; Bogaerts, A.; Brok, W.J.M.; Van Dijk, J. The influence of impurities on the performance of the dielectric barrier discharge. Appl. Phys. Lett. 2010, 96, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Kostov, K.G.; Borges, A.C.; Koga-Ito, C.Y.; Nishime, T.M.C.; Prysiazhnyi, V.; Honda, R.Y. Inactivation of Candida albicans by Cold Atmospheric Pressure Plasma Jet. IEEE Trans. Plasma Sci. 2015, 43, 770–775. [Google Scholar] [CrossRef]
- Schmidt-Bleker, A.; Winter, J.; Bösel, A.; Reuter, S.; Weltmann, K.-D. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device. Plasma Sources Sci. Technol. 2016, 25, 015005. [Google Scholar]
- Kostov, K.G.; Nishime, T.M.C.; Hein, L.R.O.; Toth, A. Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies. Surf. Coat. Technol. 2013, 234, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Los, A.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Bourke, P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Process. Polym. 2019, 16, 1800148. [Google Scholar] [CrossRef]
- Dobrin, D.; Magureanu, M.; Mandache, N.B.; Ionita, M.D. The effect of non-thermal plasma treatment on wheat germination and early growth. Innov. Food Sci. Emerg. Technol. 2015, 29, 255–260. [Google Scholar] [CrossRef]
- Iranbakhsh, A.; Ghoranneviss, M.; Oraghi Ardebili, Z.; Oraghi Ardebili, N.; Hesami Tackallou, S.; Nikmaram, H. Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation. Biol. Plant. 2017, 61, 702–708. [Google Scholar] [CrossRef]
- Domingos, P.; Prado, A.M.; Wong, A.; Gehring, C.; Feijo, J.A. Nitric oxide: A multitasked signaling gas in plants. Mol. Plant 2015, 8, 506–520. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Wojtyla, Ł.; Lechowska, K.; Kubala, S.; Garnczarska, M. Different modes of hydrogen peroxide action during seed germination. Front. Plant Sci. 2016, 7, 1–16. [Google Scholar]
- Barba-Espin, G.; Diaz-Vivancos, P.; Clemente-Moreno, M.J.; Albacete, A.; Faize, L.; Faize, M.; Pérez-Alfocea, F.; Hernández, J.A. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 2010, 33, 981–994. [Google Scholar]
- Sasaki, K.; Kishitani, S.; Abe, F.; Sato, T. Promotion of seedling growth of seeds of rice (Oryza sativa L. cv. Hitomebore) by treatment with H2O2 before sowing. Plant Prod. Sci. 2005, 8, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Jablonowski, H.; von Woedtke, T. Research on plasma medicine-relevant plasma-liquid interaction: What happened in the past five years? Clin. Plasma Med. 2015, 3, 42–52. [Google Scholar] [CrossRef]
Geometry | Movement System | Volume ** | Gap | Gas | Pressure | Electrical Parameters | Gas Temp. | Plant Species | Treatment Time | Ref. | |
Frequency | Power and Voltage | ||||||||||
Planar | No | ≈28.5 cm3 | 3 mm | Ar (1–2 slm) | 1 atm | 13 kHz | 0.84 W/cm2 | <30 °C | Chicory seeds | 60 and 120s | [51] |
0.84 W/cm2 and 10 kV | Catharanthus roseus | 15, 30, 60 and 90 s | [40] | ||||||||
23 kHz | 0.84 W/cm2 | Wheat seeds | 15, 30, 60, 90, and 120 s | [13] | |||||||
0.84 W/cm2 and 11 kV | Pepper seeds | 60 and 120 s | [52] | ||||||||
N.I. | 0.84 W/cm2 | Salvia nemorosa L. | 80 and 100 s | [53] | |||||||
Planar | Yes | 20 cm3 | 10 mm | He (10 slm) | 1 atm | 35 kHz | 15 kV | Room temp. | Hybrid corn | 10 s | [54] |
Planar | Yes | ≈95.4 cm3 | 60 mm | Air | ≈0.5 atm * | 4.5 kHz | 45 W and 5 kV | ~37 °C | Black gram seeds | 20, 40, 60, 90, 120, 180 s | [49] |
Planar | Yes | 100 cm3 | 5 mm | Ar (5.6 slm) | 1 atm | 2.5–10 kHz (pulsed) | 6–10 kV | <100 °C | Onion, radish, cress and alfalfa seeds | 2–10 min | [47] |
Planar | No | 5300 cm3 | 20 mm | Air | ≈0.002 atm * | 5.28 Mhz | 0.025 W/cm3 | <37 °C | Maize, Lupine and Winter wheat seeds | 2, 4, 5 and 7 min | [55] |
Planar | No | ≈21.1 cm3 | 4.2 mm | Air | ≈0.5 atm * | 1 kHz | 6.4 W and 8.2 kV | <25.5 °C | Quinoa seeds | 10, 30, 60, 180, and 900 s | [38] |
Planar | No | ≈62.8 cm3 | 8 mm | Air (1.5 slm) | 1 atm | 50 Hz | 9–17 kV | Room temp. | Wheat seeds | 4 min | [21] |
13 kV | 4 min | [41] | |||||||||
1.5 W and 13 kV | 1, 4, 7, 10, and 13 min | [22] | |||||||||
O2, air, Ar, N2 (1.5 slm) | 13kV | 4 min | [20] | ||||||||
Planar | No | ≈78.5 cm3 | 10 mm | He (2 slm) + 0.5% O2 | 1 atm | 10 kHz | 30 W | N.I. | Grape seeds | 2, 5 and 10 min | [56] |
He (2 slm) | 50 W | 10 °C above room temp. | Grape and coffee seeds | 30, 60, 120, and 240 s | [57] | ||||||
Planar needle array | Yes | ≈113.1 cm3 | 10 mm | O2 and N2 (6 slm) | 1 atm | 50 Hz | 65 W or 85 W | Room temperature | Soybean seeds | 1, 2, and 3 min | [48] |
Planar | No | ≈19.6 cm3 | 10 mm | Air | 1 atm | 50 Hz | 10 kV | <40.2 °C | Wheat seeds | 3 min | [58] |
Planar | No | 6 cm3 | 10 mm | Air (1 slm) | 1 atm | 200 Hz (pulsed) | 130 W/cm3 and 21 kV | Room temp. | Radish, tomato and sweet pepper seeds | 10 and 20 min | [59] |
Planar | Yes | ≈4 cm3 | <4 mm | Air | 1 atm | 22.5 kHz | 30 W and 10 kV | <40 °C | Wheat seeds | 2–10 s | [60] |
Planar | No | ≈19.1 cm3 | 12 mm | He (5 slm) | 1 atm | 16 kHz | 30 W and 20 kV | N.I. | Wheat seeds | 10–900 s | [24] |
Planar | No | ≈141.4 cm3 | 8 mm | Air | 1 atm | N.I. | 9–35 W | N.I. | Pea seeds | 1, 3, 5, 7, and 10 min | [34] |
Coaxial | No | N.I. | N.I. | N.I. | 1 atm | 990 Hz (pulsed) | 1.8 mW/cm2 and 35 kV | N.I. | Mimosa caesalpiniafolia | 3, 9, and 15 min | [61] |
Coaxial | Yes | N.I. | 4 mm | Air (15 slm) | 1 atm | 50 Hz | 0.55; 1.01 and 1.43 W/13; 15 and 17 kV | Room temp. | Tomato seeds | 13 min (13 kV)–7 min (15 kV)–5, 30, and 45 min (17 kV) | [50] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishime, T.M.C.; Wannicke, N.; Horn, S.; Weltmann, K.-D.; Brust, H. A Coaxial Dielectric Barrier Discharge Reactor for Treatment of Winter Wheat Seeds. Appl. Sci. 2020, 10, 7133. https://doi.org/10.3390/app10207133
Nishime TMC, Wannicke N, Horn S, Weltmann K-D, Brust H. A Coaxial Dielectric Barrier Discharge Reactor for Treatment of Winter Wheat Seeds. Applied Sciences. 2020; 10(20):7133. https://doi.org/10.3390/app10207133
Chicago/Turabian StyleNishime, Thalita M. C., Nicola Wannicke, Stefan Horn, Klaus-Dieter Weltmann, and Henrike Brust. 2020. "A Coaxial Dielectric Barrier Discharge Reactor for Treatment of Winter Wheat Seeds" Applied Sciences 10, no. 20: 7133. https://doi.org/10.3390/app10207133
APA StyleNishime, T. M. C., Wannicke, N., Horn, S., Weltmann, K. -D., & Brust, H. (2020). A Coaxial Dielectric Barrier Discharge Reactor for Treatment of Winter Wheat Seeds. Applied Sciences, 10(20), 7133. https://doi.org/10.3390/app10207133