Adaptive Subset-Based Digital Image Correlation for Fatigue Crack Evaluation
<p>Overview of the automated size determination algorithm of adaptive subsets: <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>q</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi>R</mi> <mi>q</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math> are the pair reference images. <math display="inline"><semantics> <mrow> <msub> <mi>O</mi> <mi>i</mi> </msub> </mrow> </semantics></math> is the seed point on <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>q</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> </mrow> </semantics></math> is the reference subset centered at <math display="inline"><semantics> <mrow> <msub> <mi>O</mi> <mi>i</mi> </msub> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mi>j</mi> </msub> </mrow> </semantics></math> is the size parameter of <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msub> <mi>M</mi> <mi>j</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> × <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msub> <mi>M</mi> <mi>j</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <msubsup> <mi>S</mi> <mi>i</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math> is the matched subset of <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> </mrow> </semantics></math> centered at <math display="inline"><semantics> <mrow> <msubsup> <mi>O</mi> <mi>i</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math>. <math display="inline"><semantics> <mi>D</mi> </semantics></math> is the matching distance between <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi>S</mi> <mi>i</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math>. <math display="inline"><semantics> <msup> <mi>D</mi> <mo>′</mo> </msup> </semantics></math> is the derivative of <math display="inline"><semantics> <mi>D</mi> </semantics></math>. <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>i</mi> </msub> </mrow> </semantics></math> is the converging size and <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>i</mi> </msub> </mrow> </semantics></math> is the adaptive subset size. PDF is the probability density function.</p> "> Figure 2
<p>Experimental setup: (<b>a</b>) data acquisition system, (<b>b</b>) aluminum plate specimen and the target region of interest (ROI).</p> "> Figure 3
<p>Determination results of adaptive subset sizes: (<b>a</b>) the number of adaptive subset sizes according to the subset length and (<b>b</b>) spatial distribution of the adaptive subset sizes.</p> "> Figure 4
<p>Validation test results of the adaptive subset sizes: horizontal displacements of (<b>a</b>) 200 μm, (<b>b</b>) 500 μm and (<b>c</b>) 1 mm.</p> "> Figure 5
<p>Randomly selected two different seed points within the ROI of the aluminum specimen.</p> "> Figure 6
<p>Determination of subset sizes using subset intensity gradient (SSSIG) at the randomly selected two different seed points: (<b>a</b>) seed point 1 and (<b>b</b>) seed point 2.</p> "> Figure 7
<p>Validation test results of SSSIG: the subset size of 7 × 7 pixels with a horizontal displacement of (<b>a</b>) 200 μm, (<b>b</b>) 500 μm and (<b>c</b>) 1 mm. The subset size of 9 × 9 pixels with a horizontal displacement of (<b>d</b>) 200 μm, (<b>e</b>) 500 μm and (<b>f</b>) 1 mm.</p> "> Figure 8
<p>Experimental setup: (<b>a</b>) data acquisition system and (<b>b</b>) the ROI on the fatigue crack specimen.</p> "> Figure 9
<p>Determination results of adaptive subset sizes: (<b>a</b>) the number of adaptive subset sizes according to the subset length and (<b>b</b>) spatial distribution of the adaptive subset sizes.</p> "> Figure 10
<p>Digital image correlation (DIC) analysis results using the proposed algorithm under the uniaxial tensile loads of: (<b>a</b>) 0.2, (<b>b</b>) 1.0, (<b>c</b>) 1.4 and (<b>d</b>) 1.7 mm.</p> "> Figure 11
<p>Randomly selected two seed points in the ROI of the fatigue crack specimen.</p> "> Figure 12
<p>Determination of subset sizes using SSSIG at the randomly selected two different seed points: (<b>a</b>) seed point 1 and (<b>b</b>) seed point 2.</p> "> Figure 13
<p>DIC analysis results using SSSIG. The subset size of 13 × 13 pixels with uniaxial tensile conditions of: (<b>a</b>) 0.2, (<b>b</b>) 1.0, (<b>c</b>) 1.4 and (<b>d</b>) 1.7 mm; the subset size of 19 × 19 pixels with uniaxial tensile conditions of (<b>e</b>) 0.2, (<b>f</b>) 1.0, (<b>g</b>) 1.4 and (<b>h</b>) 1.7 mm.</p> "> Figure 13 Cont.
<p>DIC analysis results using SSSIG. The subset size of 13 × 13 pixels with uniaxial tensile conditions of: (<b>a</b>) 0.2, (<b>b</b>) 1.0, (<b>c</b>) 1.4 and (<b>d</b>) 1.7 mm; the subset size of 19 × 19 pixels with uniaxial tensile conditions of (<b>e</b>) 0.2, (<b>f</b>) 1.0, (<b>g</b>) 1.4 and (<b>h</b>) 1.7 mm.</p> ">
Abstract
:1. Introduction
2. Automated Determination Algorithm of Adaptive Subset Sizes
3. The Feasibility Tests of Adaptive Subset Sizes
4. Fatigue Crack-Opening Evaluation Tests
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klepka, A.; Staszewski, W.J.; Jenal, R.B.; Szwedo, M.; Iwaniec, J.; Uhl, T. Nonlinear acoustics for fatigue crack detection—Experimental investigations of vibro-acoustic wave modulations. Struct. Health Monit. 2012, 11, 197–211. [Google Scholar] [CrossRef]
- An, Y.K.; Sohn, H. Visualization of non-propagating lamb wave modes for fatigue crack evaluation. J. Appl. Phys. 2015, 117, 114904. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Jang, K.; An, Y.K. Self-sensing nonlinear ultrasonic fatigue crack detection under temperature variation. Sensors 2018, 18, 2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Y.K.; Kim, J.M.; Sohn, H. Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures. NDT E Int. 2014, 65, 54–63. [Google Scholar] [CrossRef]
- Montinaro, N.; Cerniglia, D.; Pitarresi, G. Evaluation of vertical fatigue cracks by means of flying laser thermography. J. Nondestruct. Eval. 2019, 38, 48. [Google Scholar] [CrossRef]
- Hwang, S.; An, Y.K.; Kim, J.M.; Sohn, H. Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography. Opt. Laser Eng. 2019, 119, 9–17. [Google Scholar] [CrossRef]
- Bohacova, M. Methodology of short fatigue crack detection by the eddy current method in a multi-layered metal aircraft structure. Eng. Fail. Anal. 2013, 35, 597–608. [Google Scholar] [CrossRef]
- Camerini, C.; Rebello, J.M.A.; Braga, L.; Santos, R.; Chady, T.; Psuj, G.; Pereira, G. In-line inspection tool with eddy current instrumentation for fatigue crack detection. Sensors 2018, 18, 2161. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, A.; Hato, T.; Adachi, S.; Oshikubo, Y.; Tsukada, K.; Tanabe, K. Development of eddy current testing system using HTS-SQUID on a hand cart for detection of fatigue cracks of steel plate used in expressways. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Groves, R.; Furfari, D.; Barnes, S.; James, S.; Fu, S.; Irving, P.; Tatam, R. Full-field laser shearography instrumentation for the detection and characterization of fatigue cracks in titanium 10-2-3. J. Astm. Int. 2006, 3, 1–13. [Google Scholar] [CrossRef]
- Liu, H.; Guo, S.; Chen, Y.F.; Tan, C.Y.; Zhang, L. Acoustic shearography for crack detection in metallic plates. Smart Mater. Struct. 2018, 27, 085018. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Zhang, L.; Chen, Y.F.; Tan, C.Y.; Guo, S.; Cui, F. Directed acoustic shearography for crack detection around fastener holes in aluminum plates. NDT E Int. 2018, 100, 124–131. [Google Scholar] [CrossRef]
- Pour-Ghaz, M.; Barrett, T.; Ley, T.; Materer, N.; Apblett, A.; Weiss, J. Wireless crack detection in concrete elements using conductive surface sensors and radio frequency identification technology. J. Mater. Civ. Eng. 2014, 26, 923–929. [Google Scholar] [CrossRef]
- Caizzone, S.; DiGiampaolo, E. Wireless passive RFID crack width sensor for structural health monitoring. IEEE Sens. J. 2015, 15, 6767–6774. [Google Scholar] [CrossRef] [Green Version]
- Marindra, A.M.J.; Tian, G.Y. Chipless RFID sensor tag for metal crack detection and characterization. IEEE Trans. Microw. Theory Tech. 2018, 66, 2452–2462. [Google Scholar] [CrossRef]
- Giri, P.; Kharkovsky, S.; Samali, B. Inspection of metal and concrete specimens using imaging system with laser displacement sensor. Int. J. Electron. 2017, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.; Kim, B.H.; Cho, S.J.; An, Y.K. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot. Comput. Aided Civ. Inf. 2020, 12550. [Google Scholar] [CrossRef]
- Bae, H.J.; Jang, K.; An, Y.K. Deep super resolution crack network (SrcNet) for improving computer vision-based automated crack detectability in in-situ bridges. Struct. Health Monit. 2020, in press. [Google Scholar]
- Peralta, P.; Choi, S.H.; Gee, J. Experimental quantification of the plastic blunting process for stage II fatigue crack growth in one-phase metallic materials. Int. J. Plast. 2007, 23, 1763–1795. [Google Scholar] [CrossRef]
- Hutt, T.; Cawley, P. Feasibility of digital image correlation for detection of cracks at fastener holes. NDT E Int. 2009, 42, 141–149. [Google Scholar] [CrossRef]
- Rupil, J.; Roux, S.; Hild, F.; Vincent, L. Fatigue microcrack detection with digital image correlation. J. Strain. Anal. Eng. 2011, 46, 492–509. [Google Scholar] [CrossRef]
- Meng, L.; Jin, G.; Yao, X. Errors caused by misalignment of the optical camera axis and the object surface in the DSCM. Tsinghua Sci. Technol. 2006, 46, 1930–1932. [Google Scholar]
- Wang, Z.Y.; Li, H.Q.; Tong, J.W.; Ruan, J.T. Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images. Exp. Mech. 2007, 47, 701–707. [Google Scholar] [CrossRef]
- Bornert, M.; Bremand, F.; Doumalin, P.; Dupre, J.-C.; Fazzini, M.; Grediac, M.; Hild, F.; Mistou, S.; Molimard, J.; Orteu, J.-J.; et al. Assessment of digital image correlation measurement errors: Methodology and results. Exp. Mech. 2009, 49, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Tong, W. An evaluation of digital image correlation criteria for strain mapping applications. Strain 2005, 41, 167–175. [Google Scholar] [CrossRef]
- Lu, H.; Cary, P.D. Deformation measurement by digital image correlation: Implementation of a second-order displacement gradient. Exp. Mech. 2000, 40, 393–400. [Google Scholar] [CrossRef]
- Schreier, H.W.; Sutton, M.A. Systematic errors in digital image correlation due to undermatched subset shape functions. Exp. Mech. 2002, 42, 303–310. [Google Scholar] [CrossRef]
- Lava, P.; Cooreman, S.; Coppieters, S.; Strycker, M.E.; Debruyne, D. Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Opt. Laser Eng. 2009, 47, 747–753. [Google Scholar] [CrossRef]
- Wang, B.; Pan, B. Random errors in digital image correlation due to matched or overmatched shape functions. Exp. Mech. 2015, 55, 1717–1727. [Google Scholar] [CrossRef]
- Yaofeng, S.; Pang, J.H.L. Study of optimal subset size in digital image correlation of speckle pattern images. Opt. Laser Eng. 2007, 45, 967–974. [Google Scholar] [CrossRef]
- Pan, B.; Xie, H.; Wang, Z.; Qian, K.; Wang, Z. Study on subset size selection in digital image correlation for speckle patterns. Opt. Express. 2008, 16, 7037–7048. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.; Burguete, R.L.; Shterenlikht, A. An objective criterion for the selection of an optimum DIC pattern and subset size. In Proceedings of the XIth International Congress and Exposition, Orlando, FL, USA, 2–5 June 2008. [Google Scholar]
- Hassan, G.M.; MacNish, C.; Dyskin, A.; Shufrin, I. Digital image correlation with dynamic subset selection. Opt. Laser Eng. 2016, 84, 1–9. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, R.; Zou, Y. Self-adaptive and bidirectional dynamic subset selection algorithm for digital image correlation. J. Inf. Process. Syst. 2017, 13, 305–320. [Google Scholar]
- LaVision. StrainMaster. Available online: http://www.lavision.de/en/products/strainmaster/strainmaster-dic.php (accessed on 20 May 2020).
- GOM. GOM Correlate. Available online: https://www.gom.com/3d-software/gom-correlate.html (accessed on 20 May 2020).
- Correlated Solution, “VIC-2D”. Available online: https://www.correlatedsolutions.com/vic-2d/ (accessed on 20 May 2020).
The Number of Spatial Error Points | |||
---|---|---|---|
Case | |||
Adaptive subset | 0 | 0 | 0 |
SSSIG 7 × 7 pixels | 829 | 134 | 0 |
SSSIG 9 × 9 pixels | 67 | 8 | 71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.S.; An, Y.-K. Adaptive Subset-Based Digital Image Correlation for Fatigue Crack Evaluation. Appl. Sci. 2020, 10, 3574. https://doi.org/10.3390/app10103574
Kang MS, An Y-K. Adaptive Subset-Based Digital Image Correlation for Fatigue Crack Evaluation. Applied Sciences. 2020; 10(10):3574. https://doi.org/10.3390/app10103574
Chicago/Turabian StyleKang, Myung Soo, and Yun-Kyu An. 2020. "Adaptive Subset-Based Digital Image Correlation for Fatigue Crack Evaluation" Applied Sciences 10, no. 10: 3574. https://doi.org/10.3390/app10103574
APA StyleKang, M. S., & An, Y.-K. (2020). Adaptive Subset-Based Digital Image Correlation for Fatigue Crack Evaluation. Applied Sciences, 10(10), 3574. https://doi.org/10.3390/app10103574