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Abstract: This study focuses on the reliability assessment of a series system composed of
Weibull-distributed components. Because high-reliability components rarely fail during
life testing or actual operation, conventional system reliability analysis methods based on
failure time data do not work well. This paper presents a practical approach to address
this issue, with a major interest in inferring the lower confidence limits of system reliability
and reliable life. The proposed system reliability assessment method utilizes the minimum
lifetime distribution theory to derive the closed-form confidence limits for system reliability
indexes from Weibull zero-failure data. Furthermore, a system reliability update procedure
is introduced, integrating life data at both the component and system levels. Monte Carlo
simulations demonstrate that the proposed approach is more accurate than conventional
methods. Finally, an engineering example of reliability assessment and life prediction for a
satellite infrared Earth sensor is presented to illustrate the advantages and applications of
the proposed method.

Keywords: Weibull distribution; series system; zero-failure; reliability assessment;
confidence limit

1. Introduction
Advancements in high-reliability and long-lifespan technologies have made life testing

of electromechanical products increasingly costly. Conducting a large number of system-
level tests for comprehensive reliability analyses is impractical. Insufficient test information
results in the imprecise assessment of product reliability and life, failing to accurately
reflect the actual reliability level of these products [1]. In aerospace engineering, large
electromechanical products are usually modeled as series systems consisting of multiple
critical components. Therefore, using relatively inexpensive and readily available compo-
nent test data has become a popular means to improve the accuracy of system reliability
assessments [2–4].

Assessing the reliability of series systems using component test data has been a
significant issue in reliability engineering. Existing methods can generally be classified
into three categories [5]: classical approximation methods, Monte Carlo simulation (MCS)
methods, and Bayesian methods. Classical approximation methods, such as the Lindstrom–
Madden (LM) [6] and modified maximum likelihood (MML) [7] methods, are widely
employed in aerospace engineering because of their simplicity in synthesizing system
reliability from the bottom up. These methods rely on the principle of invariance of
point estimate, which involves the transformation of component-level life test data into
system-level binomial data, followed by binomial distribution reliability analysis methods.
However, this conversion process causes a substantial loss of test information and reduces
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the assessment accuracy [8,9]. Moreover, the MML method fails to consider the impact of
zero-failure components and often gives overly optimistic estimates [10].

The MCS method is particularly suitable when directly constructing an analytical
model of system reliability is difficult [11]. Liu et al. [12] investigated a system reliability
evaluation algorithm based on MCS and applied it to assess the reliability of grinding
machines. Similarly, Cai et al. [13] used MCS to determine the confidence limit of reliability
for a power distribution system, assuming that component life follows an exponential or
Weibull distribution. The key to the MCS method is determining the fiducial distributions
of component reliability, achieved through the generalized pivot quantity method [14].
However, it is almost impossible to accurately construct the fiducial distributions when
dealing with zero-failure data. In other words, the MCS method cannot handle situations
with zero-failure components in a series system.

The Bayesian approach provides an effective means of combining prior information on
component lifetime distribution parameters with sample data for system reliability analysis.
Guo et al. [15] developed a hybrid model that combines the Bayesian method with the
variance propagation method to estimate the confidence intervals of zero-failure systems,
but this approach is limited to binomial data. The Bayesian model proposed by Reese
et al. [16] can naturally integrate life data from different layers of the system, including
various types of censored life data. Nevertheless, in the Bayesian framework, the selection
of prior distribution and its hyperparameters is subjective. The additional uncertainty
introduced by component priors may significantly impact the stability of system reliability
estimates [17,18].

Existing studies typically assume that sufficient failure time data can be obtained
from component-level testing. However, with advancements in industrial manufacturing,
many products have become increasingly reliable. Failures of high-quality products are
rare during limited testing time, even under accelerated test scenarios [19]. Moreover,
to minimize test time and save test costs, reliability engineers often opt for zero-failure
test programs. Consequently, zero-failure data are frequently observed or collected [20].
Without failure time information, conventional reliability analysis methods tend to be
inadequate, even ineffective.

In the industry, the exponential and 2-parameter Weibull distributions are the two most
widely and successfully applied lifetime distribution models. Notably, the 2-parameter
Weibull distribution simplifies to the exponential distribution when its shape parameter is
set to one. Although considerable studies have been published on the statistical inference of
Weibull zero-failure models [21,22], little research has focused on estimating the lower con-
fidence limits (LCLs) of system reliability under zero-failure conditions. Therefore, investi-
gating reliability assessment methods for series systems composed of Weibull-distributed
components based on zero-failure data holds significant engineering value. This research
has three primary goals. First, it aims to develop a new method for estimating the LCLs
of system reliability and reliable life, along with deriving the corresponding closed-form
expressions. The second objective is to improve the accuracy of system reliability assess-
ment by integrating multi-source life data at both the components and system levels. The
third objective involves comparing the proposed method with conventional engineering
methods through simulation studies and a specific engineering example.

The rest of the paper is organized as follows. Section 2 describes the system reliability
model and zero-failure data. Section 3 discusses the reliability assessment and reliable
life prediction of series systems with Weibull zero-failure data, followed by an update
procedure proposed for leveraging system-level zero-failure data. Section 4 performs a
simulation comparison study, and Section 5 provides an example application. Finally,
Section 6 summarizes the results of this paper.
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2. Model and Data
The 2-parameter Weibull distribution has achieved widespread success as a reliability

model, attributed to its flexibility in modeling different failure mechanisms and its ability
to approximate other distributions well under special conditions. Thus, it serves as an
excellent theoretical model for component failure times.

2.1. Reliability Series Model with Weibull-Distributed Components

Suppose that the system consists of m independent components connected in series,
and the life of each component follows a 2-parameter Weibull distribution. The reliability
function of component i can be express as

Ri(t) = exp
[
−
(

t
β i

)αi
]

, t ≥ 0, αi > 0, βi > 0, i = 1, 2, · · · , m (1)

where αi and βi represent the shape parameter and characteristic life for component i, and
t is the mission time.

In this work, the main interest is in the reliability and reliable life of a series system.
According to the series model, the system reliability function is

R(t) =
m

∏
i=1

Ri(t) = exp

[
−

m

∑
i=1

(
t
βi

)αi
]

(2)

For a given reliability R ∈ [0, 1], the reliable life of the system, denoted by tR (indicating
that on average 100R% of the population will not fail before tR), is the only root of the
following equation:

R = exp

[
−

m

∑
i=1

(
tR
βi

)αi
]

, tR > 0 (3)

In particular, if the m components are identical, i.e., αi = α0 and βi = β0,
i = 1, 2, · · · , m, Equation (2) simplifies to

R(t) = exp
[
−m

(
t

β0

)α0
]

(4)

The life of a series system consists of independent and identically distributed compo-
nents following a 2-parameter Weibull distribution, which is well known as the weakest
link model. In contrast, when the components differ, deriving an explicit expression for the
system’s lifetime distribution becomes nearly impossible. For mathematical convenience,
many authors (e.g., [23–25]) have assumed that the series system failures are asymptotically
exponential, regardless of the component lifetime distributions. This assumption lacks
sound physical explanation and theoretical support.

2.2. Weibull Zero-Failure Data

The Weibull shape parameter holds engineering significance because it reflects the
dispersion of product lifespan and the consistency of production quality. A smaller shape
parameter indicates greater dispersion in product life. This study focuses only on the case
where the shape parameter αi is assumed to be known. As found by Fan et al. [26], the
shape parameter cannot be accurately estimated without available failure time data. In
practice, a conservative value for shape parameter αi can be determined through various
means, including (1) a statistical analysis of historical failure data from similar products and
(2) referencing shape parameter values of widely used material structures. For example, a
Weibull shape parameter value of 0.7 for a hard disc drive of a mature design is deemed
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appropriate in a typical in-house acceleration test [27]. In another example, Cui et al. [28]
combined expert experience, historical information, and test results of key components to
determine the shape parameter of a satellite thruster to be 3.

Let tij, j = 1, 2, · · · , ni, be a set of Weibull zero-failure data for the i-th component,
including field test data and past service data, where ni is the number of specimens. If the
shape parameter αi is a known constant, the generalized total test time (GTT) of component
i, denoted by Ti, is given by

Ti =
ni

∑
j=1

tαi
ij , i = 1, 2, · · · , m (5)

In the following, the Weibull zero-failure data of component i is expressed as (αi, Ti).
Based on the zero-failure data for all components, the LCLs of system reliability R(t) and
reliable life tR at the confidence level of γ will be given below.

3. Methodology
In the context of the Weibull distribution, Fu et al. [29] derived a closed-form expression

for the reliability LCL of zero-failure components. Specifically, for Weibull zero-failure
data (αi, Ti), the LCL of the reliability Ri(t) at the confidence level γ is calculated by the
following equation:

RLi,γ(t) = exp
{
−χ2

γ(2)t
αi /(2Ti)

}
(6)

where χ2
γ(2) is the γth quantile of the chi-square distribution with 2 degrees of freedom.

Based on Equation (6), this section investigates a reliability assessment methodology
for series systems using minimum lifetime distribution theory. Furthermore, a system
reliability updating procedure is proposed that enhances the above system reliability
assessment results by incorporating system-level life data, achieving a multi-level life data
fusion assessment.

3.1. Reliability Assessment Method for Series Systems Under No-Failure Scenarios

This subsection discusses the LCLs for reliability and the reliable life of series systems
in two scenarios, depending on whether the series system contains identical components.

3.1.1. All Components Are Different

Theorem 1. Assume that the series system consists of mdifferent components. Given the mission
time t, if we take

η(t) = min
(

T1

tα1
,

T2

tα2
, · · · ,

Tm

tαm

)
(7)

then the LCL of the series system reliability R(t) with the confidence level γ can be calculated as

RL,γ(t) = exp
{
−χ2

γ(2)/[2η(t)]
}

(8)

which satisfies

P
[
R(t) ≥ RL,γ(t)

]
≥ γ (9)

Proof of Theorem 1. Firstly, given the confidence level γ, the LCL RLi,γ(t) of the reliability
Ri(t) for component i is obtained by Equation (6), which satisfies

P
[
Ri(t) ≥ RLi,γ(t)

]
≥ γ, i = 1, 2, · · · , m (10)
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Substituting Equation (6) into Equation (10) yields

P

[
ln Ri(t) ≥ −

χ2
γ(2)tαi

2Ti

]
≥ γ, i = 1, 2, · · · , m (11)

and

P

[
ηi(t) ≤ −

χ2
γ(2)

2 ln Ri(t)

]
≥ γ, i = 1, 2, · · · , m (12)

where ηi(t) = Ti/tαi is the minimum life distribution parameter.
For a value of zi taken by the random variable ηi(t), such that

zi = −
χ2

γ(2)
2 ln Ri(t)

=
ln(1 − γ)

ln Ri(t)
, i = 1, 2, · · · , m (13)

then the confidence level γ can be obtained as

γ = 1 − exp[zi ln Ri(t)]= 1 − Rzi
i (t), i = 1, 2, · · · , m (14)

Substituting Equations (13) and (14) into (12), the following inequality holds:

P[ηi(t) ≤ zi] ≥ 1 − Rzi
i (t), i = 1, 2, · · · , m (15)

According to the minimum lifetime distribution theory in a series model, let
η(t) = min[η1(t), η2(t), · · · , ηm(t)]. Since ηi(t) are independent of each other, it can be
deduced from Equation (15) that

P[η(t) ≤ z] = 1 −
m
∏
i=1

{1 − P[ηi(t) ≤ z]}

≥ 1 −
m
∏
i=1

Rz
i (t) = 1 −

[
m
∏
i=1

Ri(t)
]z

= 1 − Rz(t)
(16)

Let γ = 1 − Rz(t); then, we find

z =
ln(1 − γ)

ln R(t)
= −

χ2
γ(2)

2 ln R(t)
, (17)

and substitute it into Equation (16) to obtain

P

[
η(t) ≤ −

χ2
γ(2)

2 ln R(t)

]
≥ γ (18)

By appropriate equivalent transformation, we have

P
(

R(t) ≥ exp
{
−χ2

γ(2)/[2η(t)]
}
= RL,γ(t)

)
≥ γ (19)

Equation (19) is the definition for the LCL of R(t). □

Similar to the system reliability function R(t), its LCL RL,γ(t) also varies with the
mission time t. In other words, Equation (8) constructs an LCL curve of the reliability
function at the confidence level γ. For continuous distributions, the LCL curve of the
reliability function is equivalent to that of the reliable life function at the same confidence
level [30]. Figure 1 visualizes this equivalence of LCL curves, revealing the relationship
between system reliability and reliable life.
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According to the above analysis, for a given reliability R, the LCL of tR at the confi-
dence level γ can be solved inversely by Equation (8), i.e.,

R = exp
{
−χ2

γ(2)/
[
2η

(
tRL,γ

)]}
(20)

Since Equation (20) is a strictly monotonic decreasing function of tRL,γ, it is recom-
mended to solve it iteratively using the bisection method. In practical calculation, contin-
uously adjust the mission time t in Equation (7) and repeat the series system reliability
assessment process until RL,γ(t) obtained from Equation (8) equals the given reliability R.
The corresponding time t is then the solution for tRL,γ.

3.1.2. Some Components Are Identical

In the case of a series system containing several identical components, these compo-
nents can be combined into a single equivalent component, and its equivalent test time can
be calculated according to Theorem 2.

Theorem 2. Assuming that there are m∗ (1 < m∗ < m) identical components and the GTT of these
components is T0 = ∑m∗

i=1 Ti (no failure), it is equivalent to treating the m∗ identical components as
a whole and conducting a test with an equivalent GTT of T∗

0 (no failure). T∗
0 is calculated by the

following equation:
T∗

0 = T0/m∗ (21)

Proof of Theorem 2. Let the Weibull shape parameter of identical components be α1; then,
the corresponding reliability is defined as R1(t), and (α1, T0) represents the zero-failure
data of these components. According to Equation (6), the LCL of R1(t) at the confidence
level γ is

RL1,γ(t) = exp
{
−χ2

γ(2)t
α1 /(2T0)

}
(22)

For a new component consisting of m∗ identical components in series, the LCL of its
reliability R∗(t) = Rm∗

1 (t) at the confidence level γ is

R∗
L,γ(t) = Rm∗

L1,γ(t) = exp
{
−χ2

γ(2)m
∗tα1 /(2T0)

}
(23)

If these components are treated as a whole and subjected to a life test resulting in
zero failure with a GTT of T∗

0 , as mentioned in Section 2.1, the lifetime of a series system
consisting of identical components obeys a 2-parameter Weibull distribution with a constant
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shape parameter α1. Therefore, the LCL of its reliability R∗(t) at the confidence level γ can
still be obtained from Equation (6):

R∗
L,γ(t) = exp

{
−χ2

γ(2)t
α1 /(2T∗

0 )
}

(24)

According to the same principle of reliability confidence limits, the values of R∗
L,γ(t)

obtained from Equations (23) and (24) should be equal. By comparing the results of these
two equations, Theorem 2 is proved. □

Subsequently, the new equivalent component with a GTT of T∗
0 is connected in series

with the remaining m − m∗ components, forming a series system with m − m∗ + 1 different
components. Figure 2 illustrates the simplification of the system reliability model when
identical components are present. The simplified configuration satisfies the conditions
required for the proposed method in Section 3.1.1. Finally, the LCLs for the reliability and
reliable life of the series system can be calculated using Equations (8) and (20), respectively.
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3.2. Reliability Updating Procedure for Series Systems Using System-Level Data

For products amenable to whole-machine life testing, system-level test data directly
provide crucial life information. During actual product operation, substantial service
life data accumulate, reflecting the product’s actual reliability within its operational envi-
ronment. Incorporating these system-level life data to update the reliability assessment
derived from component-level data can significantly improve the accuracy of the system
reliability assessment.

Suppose that n zero-failure data t1, t2, · · · , tn are obtained from a system field test or
actual operation. Since all components constituting the series system have not failed at
these censored moments, zero-failure data are available for all components. This dataset can
be combined with the original component life data (αi, Ti) to form a new set of component
zero-failure data

(
αi, Ti + ∑n

i=1 tαi
i
)
, thereby enriching the component-level life information.

Subsequently, the series system reliability can be reassessed using the method in Section 3.1
to obtain more accurate LCLs of the series system reliability and reliable life. For specific
calculations, it is sufficient to directly replace the GTT Ti with T′

i = Ti + ∑n
i=1 tαi

i for each
component in Section 3.1, i = 1, 2, · · · , m.

By combining Equation (8) with the new component zero-failure data (αi, T′
i), the

LCL of system reliability R(t) can be updated from RL,γ(t) to R′
L,γ(t), that is

R′
L,γ(t) = exp

{
−χ2

γ(2)/2min
(

T′
1

tα1
, · · · ,

T′
m

tαm

)}
, (25)
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According to Equation (25) and the equivalence principle of the confidence limit
curves, the LCL of the system’s reliable life tR can be updated from tRL,γ to t′RL,γ, that is

R = exp

{
−χ2

γ(2)/2min

[
T′

1(
t′RL,γ

)α1
, · · · ,

T′
m(

t′RL,γ
)αm

]}
(26)

Figure 3 illustrates the framework of the system reliability assessment and update
algorithm. This algorithm offers several advantages. First, it efficiently integrates multi-
source lifetime information, such as test data and operation data of components and the
system, providing sufficient data support for accurate system reliability assessment. Second,
by simplifying the system reliability model, the framework can handle cases where the
system contains identical components. Finally, the algorithm is based on the GTTs of all
components and directly derives closed expressions of the LCLs for system reliability and
reliable life, which is convenient for engineering applications.
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4. Simulation Comparative Study
This section employs the Monte Carlo method to compare the proposed method with

the conventional LM method. The LM method is widely accepted in the engineering
community due to its simplicity and applicability to cases involving zero-failure compo-
nents. Numerous simulation comparisons verify that the proposed method outperforms
the LM method. For illustration, a series system consisting of three independent Weibull-
distributed components is presented as a representative example.

Two combinations of distribution parameters are designed to represent two typical
scenarios, as described in the second column of Table 1. In Scenario 1, the series system
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consists of a mixture of exponential and Weibull distributions. In Scenario 2, the series
system comprises Weibull distributions with different shape parameters, all of which are
greater than one. Given the component distribution parameters, the real value of system
reliability is calculated using Equation (2), where m = 3.

Table 1. Distribution parameters and GTT simulation results in the two scenarios.

Scenario Distribution Parameters
GTT of Components

T1 T2 T3

1 (α1, α2, α3) = (1.5, 1, 1)
(β1, β2, β3) = (400, 600, 1000) 3907 642 574

2 (α1, α2, α3) = (3, 2.5, 2)
(β1, β2, β3) = (60, 60, 60) 80,266 14,045 3736

In each scenario, Weibull zero-failure data are generated for all components. For a
given sample size ni, the simulation steps for the GTT Ti are as follows:

1. Generate Ni (where Ni should be much larger than ni) random numbers from the
distribution model W(αi, βi) of component i and arrange them in ascending order;

2. Select the first ni data as the failure data τi1, τi2, · · · , τini of component i, where
i = 1, 2, 3;

3. Take the integer slightly less than the failure data τij as the zero-failure data tij of
component i, where i = 1, 2, 3, j = 1, 2, · · · , ni;

4. Calculate the Ti for component i from Equation (5).

Following the above steps; the GTTs of all components are simulated and listed in the
last three columns of Table 1. Then, at a confidence level of γ = 0.9, both the LM and the
proposed methods are used to calculate the LCLs of the series system reliability at different
time moments, ranging from 0 to 10. The simulation comparison results under the two
scenarios are shown in Figure 4.
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A comparison of the two scenarios in Figure 4 reveals that the shapes of the system
reliability curves differ: Scenario 1 is approximately linear, while Scenario 2 shows a
slow and then fast curve. This difference arises because the life of the series system is
limited by the weakest component, and its lifetime distribution directly determines the
overall reliability characteristics of the system. Numerous simulations show that the
system reliability curves follow one of these two patterns, regardless of the combination of
component lifetime distribution parameters. Therefore, the two selected sets of distribution
parameters are typically representative.
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In both scenarios, the LCL curves for system reliability calculated by both the LM and
the proposed approaches lie below the real reliability curve, indicating that the evaluation
results of both methods are safe and conservative in engineering applications. Furthermore,
the LCLs obtained by the proposed method are consistently higher than those from the LM
method and closer to the real value at any given time. The advantages of the proposed
method become more evident as time increases. In other words, the proposed method offers
higher accuracy than the LM method when dealing with component zero-failure data, espe-
cially for systems in long-term service. Highly accurate reliability assessment conclusions
help engineers make more rational decisions when designing and optimizing systems.

5. Engineering Application
The infrared Earth sensor (IES) is the core attitude measurement subsystem in a

satellite. Its main function is to capture Earth boundary information in the far-infrared
wavelength range by optical means and then output processed satellite attitude information
relative to the geocentric vector. Accurately assessing the reliability of the IES is vital to
ensure the safe operation of the satellite and prolong its service lifespan. This section
aims to verify whether the reliability of an IES at the end of the 8-year lifespan meets the
index requirement of 0.93 with a 90% confidence level using the original dataset of its key
components provided in the literature [31].

The overall reliability of an IES depends on three key components: the electronic circuit,
the rotating device, and the infrared detector. During operation, a failure of any component
will lead to the failure of the whole system. Accordingly, the reliability assessment model
of the IES can be expressed as a series model of the electronic circuit, the rotating device,
and the infrared detector. The system reliability block diagram is shown in Figure 5.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 11 of 18 
 

5. Engineering Application 
The infrared Earth sensor (IES) is the core attitude measurement subsystem in a sat-

ellite. Its main function is to capture Earth boundary information in the far-infrared wave-
length range by optical means and then output processed satellite attitude information 
relative to the geocentric vector. Accurately assessing the reliability of the IES is vital to 
ensure the safe operation of the satellite and prolong its service lifespan. This section aims 
to verify whether the reliability of an IES at the end of the 8-year lifespan meets the index 
requirement of 0.93 with a 90% confidence level using the original dataset of its key com-
ponents provided in the literature [31]. 

The overall reliability of an IES depends on three key components: the electronic circuit, 
the rotating device, and the infrared detector. During operation, a failure of any component 
will lead to the failure of the whole system. Accordingly, the reliability assessment model of 
the IES can be expressed as a series model of the electronic circuit, the rotating device, and 
the infrared detector. The system reliability block diagram is shown in Figure 5. 

 

Figure 5. Reliability block diagram of IES. 

The reliability mathematical model of the IES is 

ies ec rd idR R R R= × ×  (27)

where ecR , rdR , and idR  are the reliabilities of the electronic circuit, rotating device, and 

infrared detector, respectively. iesR  is the reliability of the IES. 

5.1. Preliminary Assessment of the IES Reliability 

During the design and development stage, the IES lacks test and operational data of 
the whole system and must rely on the life data of its key components to assess system 
reliability. Historical life data are available for electronic circuits and rotating devices. The 
91 electronic circuits have accumulated a total flight time of approximately 1T = 395.10 
years with no failures. Similarly, the past service life data of the 74 rotating devices, pre-
sented in Table 2, also show no failures. 

Table 2. Historical flight data for rotating devices (no failures). 

No. Sample 
Size 

Flight Time 
(Years) 

No. Sample 
Size  

Flight Time 
(Years)  

No. Sample 
Size 

Flight Time 
(Years) 

1 2 8.2 9 6 5.2 17 4 3.1 
2 2 8.1 10 2 4.8 18 1 2.7 
3 2 7.8 11 4 4.7 19 2 2.6 
4 4 6.8 12 4 3.9 20 9 2.5 
5 2 6.7 13 2 3.8 21 2 2.1 
6 4 6.5 14 2 3.6 22 8 1.8 
7 2 5.6 15 2 3.5 23 2 1.3 
8 2 5.5 16 2 3.4    

Given that the infrared detector is a newly designed product without available his-
torical data, a constant stress accelerated life test was performed. Temperature served as 
the accelerating stress, and the noise factor was used as the performance index. A total of 
127 specimens were tested across four selected temperature stress levels, with specimens 

Figure 5. Reliability block diagram of IES.

The reliability mathematical model of the IES is

Ries = Rec × Rrd × Rid (27)

where Rec, Rrd, and Rid are the reliabilities of the electronic circuit, rotating device, and
infrared detector, respectively. Ries is the reliability of the IES.

5.1. Preliminary Assessment of the IES Reliability

During the design and development stage, the IES lacks test and operational data of
the whole system and must rely on the life data of its key components to assess system
reliability. Historical life data are available for electronic circuits and rotating devices. The
91 electronic circuits have accumulated a total flight time of approximately T1 = 395.10 years
with no failures. Similarly, the past service life data of the 74 rotating devices, presented in
Table 2, also show no failures.



Appl. Sci. 2025, 15, 2869 11 of 17

Table 2. Historical flight data for rotating devices (no failures).

No. Sample
Size

Flight Time
(Years) No. Sample

Size
Flight Time

(Years) No. Sample
Size

Flight Time
(Years)

1 2 8.2 9 6 5.2 17 4 3.1
2 2 8.1 10 2 4.8 18 1 2.7
3 2 7.8 11 4 4.7 19 2 2.6
4 4 6.8 12 4 3.9 20 9 2.5
5 2 6.7 13 2 3.8 21 2 2.1
6 4 6.5 14 2 3.6 22 8 1.8
7 2 5.6 15 2 3.5 23 2 1.3
8 2 5.5 16 2 3.4

Given that the infrared detector is a newly designed product without available his-
torical data, a constant stress accelerated life test was performed. Temperature served as
the accelerating stress, and the noise factor was used as the performance index. A total of
127 specimens were tested across four selected temperature stress levels, with specimens
at each level tested for 143 days. At the end of the test, none of the specimens failed. The
test results are shown in Table 3, and the process of determining the acceleration factor is
illustrated in Figure 6.

Table 3. Field test data for infrared detectors (no failure).

Temp (◦C) Sample Size Censored
Time (Years)

Acceleration
Factor

Equivalent Test
Time * (Years)

45 59

143/365

16 369.84
50 38 39 580.62
55 17 91 606.08
60 13 208 1059.37

* Equivalent test time = sample size × censored time × acceleration factor.
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Based on the total flight time of the electronic circuits, and the zero-failure data for
the rotating device and infrared detector presented in Tables 2 and 3, the following is a
preliminary assessment for the LCL of the IES reliability at a confidence level of γ = 0.9.

First, it is necessary to determine the component lifetime distributions. Since failure
time data are unavailable, verifying the lifetime distribution models through goodness-of-
fit tests is difficult. Instead, the suitability of the modes must be analyzed in conjunction
with the failure pattern and the model characteristics. Electronic circuits are mainly prone
to random failures, and their life usually follows an exponential distribution. Rotating
devices are susceptible to wear-type failures, making the Weibull distribution appropriate
for modeling their life. Zhu [32] conducted an accelerated life test study of infrared
detectors based on the assumption that the life of optoelectronic products follows an
exponential distribution. On this basis, the shape parameter values corresponding to the
lifetime distributions are provided. Next, the GTT Ti (i = 1, 2, 3) of the three components
is calculated using Equation (5). The results of the above analyses and calculations are
summarized in Table 4.

Table 4. GTTs of the three components.

Component Lifetime Distribution Shape Parameter αi GTT Ti

Electronic circuit exponential 1.0 395.10
Rotating device Weibull 1.5 * 677.29

Infrared detector exponential 1.0 2615.91
* Considering historical data, product maturity, and engineering experience, the shape parameter of the rotating
device is set to 1.5.

The lifespan requirement for the IES is 8 years (i.e., t = 8 years). According to
Equation (7), it follows that

η(8) = min
(

T1

8
,

T2

81.5 ,
T3

8

)
=

T2

81.5 = 29.9 (28)

Using Equation (8), the LCL of the IES reliability at a confidence level of γ = 0.9 can be
obtained. For comparison, the LM method is also performed. The results are summarized
in Table 5.

Table 5. LCL of the IES reliability for preliminary assessment.

Required Indicator LM Method Proposed Method

0.93 0.9048 0.9260

The preliminary assessment of the two methods concluded that the IES does not satisfy
the reliability index requirement of 0.93. This is because, despite collecting a substantial
number of component life data samples, all available data are zero failures, providing
minimal informative content. Consequently, the precision of LCL for the system reliability,
derived at a high confidence level, is low and cannot accurately reflect the actual reliability
level of the IES. Given this situation, it is recommended to conduct additional life tests on
components with insufficient reliability information to fully verify the reliability index of
the IES and yield more accurate and credible assessment conclusions.

5.2. Reassessment of IES Reliability After Supplementary Life Testing

Analyzing Equation (28), it is evident that among the three components, the rotating
device provides the least life information, significantly impacting the LCL of the system’s
reliability. The historical data of the rotating device alone are insufficient to support a
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high-precision reliability assessment of the IES. To address this issue, eight rotating devices
were put into service for life testing: three samples underwent a 5-fold accelerated life
test, three samples underwent a 3-fold accelerated life test, and two samples underwent a
standard 1:1 life test. The test results are presented in Table 6.

Table 6. Supplementary test data for rotating devices (no failures).

No. Acceleration
Factor

Equivalent Test
Time (Years) No. Acceleration

Factor
Equivalent Test

Time (Years)

1 1 1.6 5 3 4.8
2 1 1.6 6 5 8.0
3 3 4.8 7 5 8.0
4 3 4.8 8 5 8.0

Combining the historical flight data in Table 2 with the supplementary life test data
in Table 6, the GTT for the rotating device is recalculated to T2 = 780.77, while the life
information of the other components remains unchanged. The LCL for the reliability of the
IES is then reassessed using both the LM and the proposed methods. Table 7 shows that after
supplemental life testing, the LCL of the IES reliability estimated by the LM method is only
0.9142, which falls short of the reliability index requirement of 0.93. Continuing with the
LM method would necessitate additional component data, making the engineering effort
unaffordable. In contrast, the proposed method demonstrates higher accuracy, confirming
that the IES meets the reliability index requirement of 0.93 at a confidence level of γ = 0.9.

Table 7. LCL of the IES reliability for reassessment.

Required Indicator LM Method Proposed Method

0.93 0.9142 0.9354

In summary, the proposed method exhibits a clear accuracy advantage over the LM
method, fulfilling the requirements of high-precision reliability assessment in engineering
while saving tests and resources. This conclusion aligns with the simulation results in
Section 4, further validating the accuracy and applicability of the new method.

5.3. Reliable Life Prediction and Real-Time Update of IES

According to Equation (20), the LCL of the reliable life for the IES can be obtained at a
given reliability of R = 0.93. For comparison, the calculation results using the LM method
are also presented. As shown in Table 8, the proposed method predicts a reliable life of
8.46 years, which is 23.5% higher than the 6.85 years estimated using the LM method. This
demonstrates the superior accuracy of the proposed approach.

Table 8. Comparison of reliable life prediction results.

LM Method Proposed Method Percentage Increase

6.85 years 8.46 years 23.5%

Assume that 10 IESs of the same type have been in orbit up to time t0 (t0 ≤ 8 years)
without any failures (if IESs are as reliable as claimed, it is not expected to fall in a reasonable
number of devices within their design life). For these system-level flight data, the system
reliability and reliable life derived from component life data can be updated, as outlined in
Section 3.2.

Figure 7 shows the reliable life update results of the IES with increasing in-orbit
flight time t0 at a confidence level of 0.9. As shown, the updated reliable life increases
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monotonically with t0 as long as the flight data remain zero failure. For example, if
10 IESs operate in orbit for 8 years without failure, the system’s reliable life is updated to
10.02 years. In comparison with the previously calculated reliable life of 8.46 years, the
updating method increases the reliable life by 1.56 years, resulting in an 18.4% improvement.
This significantly enhances the accuracy of the system’s reliable life prediction.
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5.4. Application Analysis in the Field of Aeronautical Engineering

The proposed methodology is not only applicable to long-life products in space
engineering but also provides a new theoretical tool for the reliability assessment of large-
scale aviation systems. Taking civil aircraft as an example, only one aircraft can typically
be allocated for a full-scale life test due to limitations in development cycles and test costs.
Moreover, the test results may not even show failure [33]. This very small sample size leads
to a significant underestimation of the aircraft’s safe life. Conversely, abundant component
test data—such as those for the fuselage, wings, and tail—have been accumulated during
aircraft development. With the new method, component life test data and aircraft life
test data can be fused, increasing the available information. Compared to the traditional
method of reliable life assessment based solely on aircraft life test data, the proposed
method significantly improves the accuracy of aircraft life prediction.

Regarding life extension, once an aircraft reaches its reliable life, the traditional method
often selects one aircraft for a life extension test. However, because of the small number of
test samples and limited information, the precision of life extension is not high [34]. As this
type of aircraft is put into service, a large amount of service life data will be accumulated.
The proposed method can exploit these system-level data for updating life assessment
results, enabling low-cost life extension.

6. Conclusions
With the continuous improvement of product integration and reliability, the problem

of reliability assessment for zero-failure models has become an important challenge in
reliability engineering. This paper proposes a reliability assessment method for series
systems with Weibull zero-failure data, addressing the low accuracy or inapplicability of
the traditional method in zero-failure scenarios. The main research results are summarized
as follows:
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(1) Based on the minimum lifetime distribution theory, a reliability assessment method for
series systems is established when the component life follows the Weibull distribution.
Closed-form expressions for the LCLs of system reliability and reliable life are derived
from zero-failure data of different components. The special case of a series system
containing several identical components is also discussed, and the equivalent zero-
failure time conversion formula is provided.

(2) A reliability updating procedure for series systems is proposed, using the system-level
operation data to update the system reliability assessment results initially derived
from component life data. This method further improves the accuracy of system
reliability assessment.

(3) Monte Carlo simulations demonstrate that the LCLs of system reliability obtained by
this paper’s method are very close to the real value and have higher accuracy than
those obtained by the LM method. This improvement is due to the new method’s
ability to fully exploit the life information in the component zero-failure data, thereby
effectively improving the analysis accuracy.

(4) Through an engineering application in the reliability assessment of an IES, the ef-
fectiveness of the new method in integrating zero-failure life data from multiple
levels (components and system) and multiple sources (field test and actual operation)
is verified.

In this study, component life is assumed to follow a Weibull distribution. Future
research should aim to explore more efficient strategies to address other reliability models,
such as lognormal and gamma distributions. The current update method assumes that the
system operates without failures, but the probability of failure rises with increased time in
service. Therefore, developing updated models that can integrate system-level failure time
data is necessary. In addition, existing case studies mainly focus on aerospace products. In
the future, there remains a need to scientifically validate the applicability of this method
in other engineering fields (e.g., weaponry and nuclear power equipment). In conclusion,
the robustness and applicability of the model are expected to be further improved by
relaxing component distribution restrictions, incorporating system-level failure time data,
and diversifying the engineering domains.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronym
LCL Lower confidence limit MML Modified maximum likelihood
MCS Monte Carlo simulation GTT Generalized total test time
LM Lindstrom–Madden IES Infrared Earth sensor
Notation
αi Weibull shape parameter of component i tRL,γ LCL of tR at the required γ

βi Weibull characteristic life of component i m∗ Number of identical
components

t Mission time T∗
0

GTT of the equivalent new
component

m Number of components R∗(t)
Reliability of the equivalent
new component

Ri(t) Reliability of component i at time t (given) R∗
L,γ(t) LCL of R∗(t) at the required γ

R(t) Reliability of series system at time t (given) n Sample size of the system

tR Reliable life of series system tj
j-th zero-failure data of
series system

ni Sample size of component i T′
i

GTT of component i
after fusion

tij j-th zero-failure data of component i R′
L,γ(t) LCL of R(t) after updating

Ti GTT of component i t′RL,γ LCL of tR after updating

γ Confidence level Rec
Reliability of the electronic
circuit

RLi,γ(t) LCL of Ri(t) at the required γ Rrd
Reliability of the rotating
device

η(t) Minimum life distribution parameter Rid
Reliability of the infrared
detector

RL,γ(t) LCL of R(t) at the required γ Ries Reliability of the IES
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