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Dvoršak, J.; Klančar, G.; Žužek, T.

Bio-Inspired Traffic Pattern Generation

for Multi-AMR Systems. Appl. Sci.

2025, 15, 2849. https://doi.org/

10.3390/app15052849

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Bio-Inspired Traffic Pattern Generation for Multi-AMR Systems
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Featured Application: This work addresses the challenge of improving AMR traffic
flow in industrial settings by automatically generating optimized movement constraints,
offering a scalable solution for modern warehouses and smart factories seeking to
improve their intralogistics efficiency.

Abstract: In intralogistics, autonomous mobile robots (AMRs) operate without predefined
paths, leading to complex traffic patterns and potential conflicts that impact system
efficiency. This paper proposes a bio-inspired optimization method for autonomously
generating spatial movement constraints for autonomous mobile robots (AMRs). Unlike
traditional multi-agent pathfinding (MAPF) approaches, which focus on temporal
coordination, our approach proactively reduces conflicts by adapting a weighted directed
grid graph to improve traffic flow. This is achieved through four mechanisms inspired by
ant colony systems: (1) a movement reward that decreases the weight of traversed edges,
similar to pheromone deposition, (2) a delay penalty that increases edge weights along
delayed paths, (3) a collision penalty that increases weights at conflict locations, and
(4) an evaporation mechanism that prevents premature convergence to suboptimal
solutions. Compared to the existing approaches, the proposed approach addresses
the entire intralogistic problem, including plant layout, task distribution, release and
dispatching algorithms, and fleet size. Its autonomous movement rule generation and
low computational complexity make it well suited for dynamic intralogistic environments.
Validated through physics-based simulations in Gazebo across three scenarios, a standard
MAPF benchmark, and two industrial environments, the movement constraints generated
using the proposed method improved the system throughput by up to 10% compared
to unconstrained navigation and up to 4% compared to expert-designed solutions while
reducing the need for conflict-resolution interventions.

Keywords: autonomous mobile robots; ant colony optimization; movement strategy;
logistic performance

1. Introduction
Setting up efficient multi-robot systems in industrial environments presents a

complex challenge. In industrial settings, this requires careful consideration of numerous
interconnected parameters, such as plant layout, task distribution, dispatching, and
pathfinding algorithms [1]. These parameters form a web of dependencies where
adjustments to one aspect often necessitate changes in others to maintain the overall system
efficiency and performance [2,3]. The specific characteristics of each intralogistic problem
demand strategically developed movement constraints to prevent collisions, deadlocks,
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and congestion—common challenges that impact system performance in warehouse and
manufacturing environments [4,5].

While various terms are used in the literature to describe movement rules for mobile
robots, this paper focuses on movement constraints and spatial rules that influence robot
navigation decisions, implemented through costmaps in the form of weighted directed grid
graphs. This implementation provides more flexibility than traditional roadmaps (physical
or virtual predefined paths) while maintaining structured traffic patterns.

Traditionally, intralogistic automation has relied on Autonomous Guided Vehicles
(AGVs), which require predefined paths marked by magnetic tapes or similar guidance
systems. These roadmaps must be carefully designed by human experts with a deep
understanding of system operations [6]. While effective, this manual design process can be
extremely time-consuming, leading to increased research interest in automated approaches
that can accelerate the process and improve the solution quality [7–10].

In recent years, autonomous mobile robots (AMRs) have emerged as a flexible
alternative to AGVs, offering the ability to navigate anywhere within the workspace [11].
However, this increased flexibility does not automatically translate to higher efficiency.
In narrow corridors or aisles, unrestricted AMR movement can lead to congestion and
reduced throughput [12]. Similarly, in high-density storage areas, the lack of structured
movement can result in inefficient navigation and increased collision risks [13]. Thus, while
AMRs do not require physical guidance infrastructure, they still benefit from structured
movement patterns that help to prevent or resolve conflicts efficiently.

To address these challenges while maintaining AMRs’ inherent flexibility, we propose
an approach based on ant colony optimization (ACO) for the automated generation of
movement constraints. The method utilizes a weighted, directed grid graph where the
edge weights are dynamically adjusted according to real-time performance metrics. The
approach combines offline costmap generation through simulation-based optimization
with subsequent integration into path planning systems. During simulation, the algorithm
explores the workspace under various operational conditions, utilizing digital pheromones
to represent traversal costs, congestion levels, and collision risks. These pheromone
distributions are aggregated into precomputed costmaps that provide a foundation
for global path planning. The resulting costmaps can be integrated with established
planning algorithms such as A*, effectively guiding robots toward more efficient collective
movement patterns.

The optimization algorithm implements four mechanisms derived from ant colony
systems. These include movement rewards that reinforce successful paths, delay
penalties that modify weights based on task completion times, collision penalties
that adjust weights in conflict areas, and an evaporation mechanism that prevents
convergence to suboptimal solutions. In contrast to existing approaches that consider
only the physical layout, our method incorporates key intralogistic system parameters
including fleet size, task distribution patterns, dispatching algorithms, and operational
constraints. This systematic approach enables the generation of movement constraints
optimized for specific applications, thereby reducing robot conflicts and improving
system performance.

To validate and demonstrate the effectiveness of this approach, we present a
comprehensive study organized as follows. Section 2 presents the related work, focusing on
the movement constraint generation method. Section 3 describes the proposed bio-inspired
optimization method, including the discrete-time grid graph simulation and the detailed
mechanisms of the optimization algorithm. The implementation of these movement
constraints in the ROS2 Nav2 navigation stack is also presented. In Section 4, we validate
our approach on three distinct scenarios: a standard multi-agent pathfinding (MAPF)
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benchmark layout and two real industrial environments using both event-based and
physics-based simulations. The solutions are evaluated based on collision reduction
and system throughput. Section 5 concludes the paper with the key findings and future
research directions.

2. Related Work
Movement constraints (roadmaps and costmaps) that guide path planning algorithms

can fundamentally shape traffic patterns and multi-robot system performance. This is
achieved by proactively reducing collisions, i.e., adapting the environment’s movement
constraints to prevent collisions before they occur (e.g., introducing one-way traffic and
roundabouts). This section examines approaches for generating and optimizing such
movement constraints, focusing on cost-based coordination methods and bio-inspired
optimization strategies.

The optimization of movement strategies for large robot fleets has undergone
significant developments in recent years. Kleiner et al. [14] introduced the Adaptive Road
Map Optimization (ARMO) approach, which uses linear programming to optimize
roadmaps in response to environmental changes and varying transportation demands.
While ARMO is computationally efficient and adapts well to dynamic environments, it
fails to provide a backup solution when the required throughput exceeds the network
capacity. Building on this work, Digani et al. [7] and later Beinschob et al. [8] developed
semi-automated approaches for industrial AGV systems that maximize coverage,
connectivity, and redundancy through medial axis transformation and intelligent road
direction assignment. These methods excel in corridor identification and intersection
creation but require significant manual tuning. Stenzel et al. [6,10] also focused on
redundancy and robustness measures of roadmaps, proposing an automated roadmap
creation approach that is able to utilize as much space as possible. The main disadvantage
of redundancy-focused approaches is that they create many unnecessary paths, leading
to low road utilization. Additionally, these approaches tend to have high computational
costs [9], making them less suitable for constantly changing environments.

Further advances in roadmap generation came through the Optimized Directed
Roadmap Graph (ODRM) approach by Henkel and Toussaint [15]. Their method
leverages the inherent collision-avoidance properties of directed graphs for point agents,
using stochastic gradient descent to optimize both vertex positions and edge directions.
This optimization leads to emergent properties such as edges parallel to walls and
patterns resembling two-lane streets or roundabouts. A complementary approach by
Uttendorf et al. [9] combines mathematical pathfinding with human expertise through
fuzzy logic. Their expert system, based on modified Bellman–Ford and A* algorithms,
incorporates domain knowledge about path crossings, merging, obstacle avoidance, and
directional preferences through a fuzzy inference system. While this approach benefits
from human expertise, significant setup effort is required, including formatting inputs
and defining constraints, making it economically viable only for complex scenarios. Its
solutions are also influenced by the order of connections in the transport matrix, which
can introduce biases unless multiple iterations are tested, increasing computational costs.
While expert knowledge can be incorporated through fuzzy rules, modifying or extending
them requires expertise in fuzzy logic and direct code adjustments, making the approach
less accessible to non-experts.

Another promising approach to global path planning and generation of roadmaps
is reinforcement learning (RL). Kozjek et al. [16] proposed an RL approach for the
precomputation of routes for large AMR fleets, while Kim and Kim [17] combined
multi-agent RL with a graph neural network. Recent work by Choi et al. [18] demonstrated
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RL’s potential for holistic optimization of factory layouts and AGV paths, achieving
improvements in throughput, logistics movement distance, and fleet size reduction through
a multilayered approach. Several researchers have extended RL approaches to address
specific challenges in AGV coordination. Chen et al. [19] combined ACO with deep
RL to handle multi-objective optimization and improve robustness against uncertainties,
and Zhang et al. [20] developed an improved Q-learning approach for load balancing
and traffic flow optimization using macroscopic fundamental diagrams. Furthermore,
Hu et al. [21] proposed a multi-agent deep deterministic policy gradient method for
conflict-free path planning in container terminals, incorporating both centralized learning
and distributed execution to coordinate multiple AGVs. However, these RL approaches
face significant challenges in real-world deployment: they require extensive training
data and computational resources, scale poorly with increasing fleet sizes, and primarily
focus on individual path planning rather than generating system-wide movement rules.
When optimizing for multiple objectives like throughput, energy efficiency, and collision
avoidance, these methods often require prohibitively long training times and struggle to
generalize across different environmental configurations.

Because of their ability to handle complex dynamic environments and lower
computational complexity, bio-inspired optimization strategies, such as Particle Swarm
Optimization (PSO), Genetic Algorithms (GAs), and ACO, have gained a great deal of
interest in robotic navigation. Even though the optimal solution is not guaranteed, these
approaches are able to find sufficiently good solutions in a reasonable amount of time [22].
PSO approaches are inspired by the behavior of flocks of birds and have previously shown
promise in tackling path planning [23–25] and task allocation [26]. GA approaches are
based on the principles of natural selection, crossover, and mutation and have also been
used for path planning problems for decades [22]. They have been used to generate optimal
paths for robots in both static [27] and dynamic environments [28].

For generating efficient movement strategies, ACO algorithms, inspired by the
foraging behavior of ants, have shown particular promise through their evolution of
weighted path structures. A simple ACO algorithm for traffic flow improvement was
demonstrated in [29], where directed weighted edges in a gridmap are iteratively optimized.
The basic ACO approach was enhanced through various techniques to improve its
performance. Tao et al. [30] combined ACO with fuzzy control to address convergence
speed issues, using critical obstacle influence factors and dynamic parameter adjustment to
optimize single-robot path planning. Kulatunga et al. [31] applied ACO to simultaneous
task allocation and path planning for AGVs, demonstrating its effectiveness in dynamic
environments. Garcia et al. [32] and Purian et al. [33] explored pheromone-based weight
adaptation to balance path length with other constraints, such as safety and energy
efficiency. Similarly, Gan et al. [34] enhanced traditional ACO through time-varying
pheromone distribution and optimized update strategies, although primarily focusing
on single-robot applications. In traffic management applications, Bedi et al. [35] showed
how ACO principles can dynamically adjust path costs to avoid congestion. Jansen and
Sturtevant [36] introduced the idea of direction maps, which provide information about
previous movements of agents and lead to implicit cooperation during movement and
planning. This approach proved to be cheaper and more robust compared to explicit
planning approaches.

Despite these advances, several key limitations persist across the existing approaches.
Traditional optimization methods like ARMO and expert systems require significant
manual tuning and struggle with dynamic environments. While RL approaches
show promise for holistic optimization, they face fundamental challenges in sample
efficiency and computational scalability when dealing with large fleet sizes and multiple
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competing objectives. Bio-inspired methods, although computationally efficient, have
primarily focused on single-agent path planning rather than generating system-wide
movement constraints. Table 1 classifies the reviewed approaches for costmap/roadmap
optimization in multi-robot systems, highlighting the key features of each method.
The classification shows that, while several approaches address specific aspects of
roadmap generation and optimization, few methods address all the desired features
simultaneously. In particular, most approaches either focus on AGVs rather than AMRs,
neglect weighted graph representations that are critical for traffic balancing, or lack the
computational efficiency needed for practical deployment. Furthermore, many methods
do not consider the entire system holistically, focusing only on the graph structure
without accounting for the task distribution, fleet size, and actual movement patterns.
Our proposed approach aims to address these limitations by combining the strengths
of bio-inspired optimization with a holistic consideration of the complete AMR-based
intralogistic system.

Table 1. Classification of approaches for costmap/roadmap optimization in multi-robot systems.
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[6,10] AGV ✓
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[14] AGV ✓ ✓ ✓ ✓ ✓

[15] AMR ✓ ✓ ✓

[9] AGV ✓ ✓ ✓ ✓

R
L Multi-agent

[16] ✓

[17] ✓ ✓

[18] AGV ✓

[20,21] AGV ✓ ✓
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PSO [23–26] ✓

GA [27,28] ✓

ACO

[19] AGV ✓ ✓

[30,32–34] ✓ ✓

[31,35] AGV ✓ ✓

[36] ✓ ✓

[37] AGV ✓ ✓ ✓ ✓

Our approach AMR ✓ ✓ ✓ ✓ ✓

✓: Feature is present.
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In our previous work [37], we developed an ACO-inspired algorithm that autonomously
generates roadmaps for AGVs by considering the full set of problem characteristics.
Combined with Safe Interval Path Planning (SIPP), the method proved to be highly effective:
the generated roadmaps achieved up to 15% higher throughput compared to the solutions
presented in the literature. This paper significantly upgrades the previously proposed ACO
algorithm and extends these concepts to multi-AMR systems, focusing on spatial movement
constraints that proactively reduce conflicts without requiring temporal coordination.

3. Methodology
Our approach extends the ACO framework to address the specific challenges of multi-

robot transport systems. The core innovation lies in adapting ACO’s pheromone-based
pathfinding to handle collision avoidance and delay minimization in dynamic environments.
The algorithm continuously modifies edge weights in a grid graph based on robot
movements, collisions, and task performance, effectively creating an emergent coordination
system for multiple AMRs.

3.1. Environment Representation and Problem Formulation

The environment is represented as a weighted grid graph G = (V, E, w), where
vertices V correspond to traversable locations and directed edges E ⊆ V × V connect
adjacent vertices. The weight function w : E → [ϵ, 1 − ϵ] assigns positive real values
to edges, representing the cost of moving along that edge, where ϵ is a small positive
constant that prevents numerical issues at the boundaries. The weights correspond to the
concentration of pheromones on the edges in the ACO framework, influencing the path
planning decisions of the AMRs, with lower weights indicating more favorable paths. Tasks
are defined as tuples T = (ppickup, pdropoff, tdue) specifying a pickup location, a dropoff
location, and a due time. New tasks are generated as existing ones are completed and are
assigned to the nearest available AMR.

The optimization objective is to determine the optimal weight configuration
w∗ = {w∗

e }e∈E that maximizes system throughput Θ, defined as the number of tasks
completed per unit time:

arg max
w

Θ(w); we ∈ [ϵ, 1 − ϵ] ∀e ∈ E (1)

In this framework, system throughput Θ(w) is a composite metric reflecting the
effectiveness of AMR operations under the edge weight configuration w. While individual
weights influence the immediate routing decisions of AMRs, their collective configuration
shapes the emergent behavior of the entire system. The optimization problem presents a
substantial search space due to the continuous nature of the weights and the combinatorial
nature of weight configurations. Furthermore, the emergent nature of the optimization
metric necessitates an optimization approach capable of refining complex behaviors
over time.

Given the complexity of the search space, traditional optimization methods such as
gradient descent or linear programming are not well suited for the problem. In contrast,
the proposed bio-inspired approach offers several advantages, including scalability in
terms of layout size and number of vehicles, adaptability to continuous task execution, and
computational efficiency through parallelism.

3.2. Bio-Inspired Coordination Mechanisms

In our framework, each AMR acts as an “ant” executing transport tasks. Paths are
planned using a modified A* algorithm that favors straight-line movements by adding small
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penalties for direction changes. The costmap guiding AMR navigation evolves through the
following four bio-inspired mechanisms that continuously update edge weights:

Movement rewards (pheromone deposition): Similar to pheromone trails in natural
ant colonies, successful movements reinforce paths by reducing their costs:

∆we = −rm (2)

where rm is the movement reward factor. The mechanism encourages the reuse of paths.
Collision handling: When AMRs encounter conflicts, the system applies both

temporal delays and spatial penalties:

tcollision = tp · ncon f lict (3)

where tp is the base penalty duration and ncon f lict is the number of AMRs involved. In
addition, the edges that lead to the collision are penalized to prevent the AMRs from taking
these paths in the future:

∆we = pc ·

1 if regular collision

αs if side collision
(4)

where pc is the collision penalty factor and αs ∈ [0, 1] is the side collision multiplier, which
can be adjusted to reduce the penalty for side collisions. This reflects that merging into the
existing traffic flow is less disruptive than head-on collisions.

Delay feedback: The third mechanism takes into account the delay by reducing costs
when the task is completed on time and increasing costs when collisions and resulting
delays occur. When a task is completed, all edges in its path are updated based on the delay:

∆we = αd · (tcompletion − tdue) (5)

where αd is the delay factor and (tcompletion − tdue) is the task’s delay. This mechanism
reinforces paths without delays and helps to avoid future conflicts by discouraging AMRs
from using recently contested paths.

Pheromone evaporation: The evaporation mechanism is designed to prevent the
system from over-relying on recently adjusted edge weights that may have been affected
by temporary conditions such as transient congestion or short-lived obstacles. By gradually
resetting the value of each weight to its initial value winit, the system ensures that the
influence of past events diminishes over time. The edge weights gradually return to their
initial value winit through

∆we = −λ(we − winit) (6)

where λ is the evaporation rate. This prevents the system from becoming trapped in
suboptimal patterns.

Weight update implementation: The effectiveness of the bio-inspired mechanisms
depends critically on how weight modifications are implemented. A key challenge is
maintaining edge weights within meaningful bounds ([ϵ, 1−ϵ]) while ensuring that
repeated modifications do not lead to saturation or numerical instability. To address
this, we employ a log-ratio transformation for all weight updates:

wnew =
eln(wold/(1−wold))+∆w

1 + eln(wold/(1−wold))+∆w
(7)
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where wnew is the updated edge weight, wold is the current edge weight, and ∆w represents
the weight modification determined by the various mechanisms. This transformation
naturally bounds weights between 0 and 1 while preserving relative differences in
magnitudes of the modifications. It enables smooth, continuous updates without abrupt
changes. All previously described mechanisms (movement rewards, collision penalties,
delay feedback, and evaporation) express their modifications as ∆w values, which are then
applied through this transformation. This unified approach to weight updates ensures
that the different mechanisms work harmoniously, creating a robust and stable adaptation
system that maintains its responsiveness throughout extended operation periods.

Figure 1 illustrates the coordination process with three AMRs executing assigned
tasks simultaneously. Figure 1a displays their movement paths, highlighting a collision
between two robots near the end of their routes. The subsequent figures demonstrate
the sequential application of our bio-inspired mechanisms: initial movements decrease
path costs (Figure 1b), collision locations are assigned higher costs (Figure 1c), paths are
then reinforced or penalized based on the resulting delays (due to the collisions, shown in
Figure 1d), and, finally, evaporation gradually returns costs toward the neutral value of
0.5 (Figure 1e). For clarity, neutral costs are omitted from the figure.

Legend Free space

Costs
Cell types

ε 1 − ε

Pick-up / Drop-off Location of collision

(a) (b) (c) (d) (e)

Figure 1. Illustration of the bio-inspired mechanisms. (a) AMR movements and the corresponding
weights after applying (b) movement rewards (pheromone deposition), (c) collision handling,
(d) delay feedback, and (e) pheromone evaporation.

Algorithm implementation: Building on these weight modification mechanisms,
the complete algorithm, presented in Algorithm 1, operates continuously during system
runtime. For each AMR, it combines path planning with real-time adaptation of the
environment representation. The algorithm processes new tasks as they arrive, plans and
executes movements for each AMR, and updates edge weights based on system feedback.
This continuous adaptation creates emergent behavior where the system learns to avoid
congestion and minimize delays while maintaining efficient paths.

The algorithm maintains a balance between exploitation of known good paths (through
movement rewards) and exploration of alternatives (through evaporation). This core
ACO-inspired behavior is enhanced with mechanisms specifically designed for multi-robot
coordination. Immediate collision avoidance is achieved through dynamic weight penalties
that redistribute traffic away from congested areas, while the delay feedback mechanism
serves a dual purpose: it both optimizes task execution times and reinforces the avoidance
of potentially problematic paths where delays might occur due to congestion or frequent
conflicts. Together, these mechanisms create an adaptive system that learns to anticipate
and prevent delays by steering AMRs towards efficient conflict-free paths.
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Algorithm 1 Bio-inspired cost optimization

1: Initialize grid graph G = (V, E, w) with neutral weights
2: while simulation running do
3: Handle new task arrivals and assignments
4: for each AMR a ∈ A do
5: Plan path using modified A* on G
6: Move according to plan
7: if movement successful then
8: Apply movement reward to traversed edge
9: else if collision occurred then

10: Apply collision penalty
11: Delay involved AMRs
12: end if
13: if task completed then
14: Apply delay-based penalties/rewards
15: end if
16: end for
17: Apply evaporation to all edge weights
18: end while

3.3. Implementation and Parameters

A discrete-event simulator was developed to evaluate and optimize the proposed
approach. The simulator handles all key events, including the arrival of the tasks,
assignments, robot movements, and collision detection. Event processing is optimized for
performance to enable fast evaluation over many iterations, which facilitates parameter
tuning and algorithmic refinements. The simulation tracks the state of all AMRs, active
tasks, and edge weights, updating them according to the mechanisms described above
when events occur.

The optimization process operates through three sequential phases, each emphasizing
different aspects of the movement strategy. All edge weights are bounded between 0
and 1 and represent normalized movement costs that directly influence A* path planning.
The weights are initialized at 0.5 to allow both positive preferences (weights below 0.5)
and avoidance patterns (weights above 0.5) to develop. To ensure a stable and gradual
evolution of the weights, the modification factors (rm, pc, αs, αd, and λ) are set several
orders of magnitude smaller than the weights themselves, typically around 10−3. This
allows the system to accumulate meaningful patterns over many iterations without sudden
destabilizing changes.

The parameters for each phase are shown in Table 2.

Table 2. Optimization parameters by phase.

Parameter Phase 1 Phase 2 Phase 3

Movement reward (rm) 0.001 0 0.002
Collision penalty (pc) 0.007 0.003 0
Side collision factor (αs) 0.7 0.7 -
Delay factor (αd) 0 0.002 0
Evaporation rate (λ) 0.015 0.010 0.020
Duration (iterations) 100,000 50,000 50,000

In Phase 1, the focus is on collision avoidance and the formation of basic traffic
patterns with aggressive collision penalties. Phase 2 focuses on optimizing the timing of
tasks by introducing delay penalties while reducing collision sensitivity. In the final phase,
movement patterns are refined through increased movement rewards and evaporation,
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allowing for smoother traffic flow. The effectiveness of the optimization depends on the
balance between these mechanisms. Strong collision penalties in the early phases establish
basic safety patterns, while the emphasis on movement rewards and evaporation in the
later phases allows these patterns to adapt to changing conditions. The delay factor helps to
maintain efficient task completion without compromising the emergent traffic patterns. An
analysis of the optimization parameters as well as stability and convergence is presented
next through an illustrative example.

3.4. Illustrative Example

To illustrate the key mechanisms of the optimization process, we present a simplified
4 × 4 test scenario, shown in Figure 2. The environment contains four AMRs with pickup
and dropoff stations positioned in the corners.

For each generated task T, the due time tdue is set to d + 3, where d is the minimum
path length for the AMR to complete the task. This buffer of 3 time units provides some
flexibility in conflict resolution while maintaining pressure on the system to optimize routes.
The collision penalty parameter tp is set to 6 units, which creates a significant incentive for
the optimization process to develop conflict-avoiding movement patterns.

The optimization process results in two symmetrical solutions, shown in Figure 2a,b,
demonstrating how different movement patterns can evolve under the same optimization
parameters due to the stochastic nature of the process. Both solutions generate inner and
outer rings, preferring movements in opposite directions.

Legend preferred direction Traffic flow

(a) (b)

Figure 2. Solutions to the test problem: (a) first solution and (b) second solution.

The temporal evolution of movement patterns during the optimization process can be
observed through successive snapshots taken every 20,000 iterations, as shown in Figure 3.
For clarity, only costs lower than the neutral value of 0.5 are displayed. During the first
100,000 iterations, an inner roundabout pattern emerges through the combined effect of
the movement reward mechanism and the collision penalty. The latter is particularly
important in penalizing the initial shortest routes along the outer edges of the environment,
where head-on collisions are most likely to occur. This naturally leads to the formation
of a central circular pattern that provides conflict-free paths between stations. Between
iterations 100,000 and 150,000, the delay penalty becomes the dominant factor, driving the
propagation of costs outward from the established inner ring. In this phase, the organized
movement pattern is effectively extended to the outer regions of the environment. In
the final phase of optimization (iterations 150,000 to 200,000), the established movement
patterns are reinforced through continued application of the movement reward mechanism,
while the evaporation mechanism evaporates the rest.
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Legend costs
ε 0.5 − ε

preferred direction

Figure 3. The emergence of the resulting movement patterns.

Further experiments with modified parameters reveal how different conditions
influence the emerging movement patterns. When only a single AMR operates in the
environment, the optimization generates bidirectional paths that directly connect pickup
and dropoff stations, as shown in Figure 4a. Without the need to avoid conflicts, the
system naturally converges to these shortest paths between stations. The importance of
the collision penalty mechanism becomes evident when it is disabled, as illustrated in
Figure 4b, which shows the optimization results using 4 AMRs. In this case, the movement
reward mechanism alone leads to the formation of a single-direction outer ring, where the
direction (clockwise or counterclockwise) is randomly determined in the early stages of
optimization and subsequently reinforced through positive feedback. If, instead, additional
tasks are introduced between the top two stations, creating higher traffic demand along
the top row, a distinct hybrid pattern emerges (Figure 4c). A bidirectional path is formed
between these frequently connected stations, demonstrating the algorithm’s ability to adapt
to non-uniform task distribution patterns.

Legend preferred direction

(a) (b) (c)
Figure 4. Additional test scenarios demonstrating the impact of different parameters on the emerging
movement patterns: (a) solution with a single AMR, (b) solution without collision penalty, and
(c) solution with additional tasks.

A sensitivity analysis was performed by varying key parameters, specifically the
collision penalty pc in Phase 1 and the delay factor αd in Phase 2. As illustrated in Figure 5,
alternative parameter values can sometimes achieve similar performance levels. However,
the default parameter configuration converges more reliably to the optimal solution.
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Figure 5. Sensitivity analysis of key parameters by phase.

Figure 6 compares the performance of the default algorithm with a variant where
Phase 1 is omitted (i.e., without the initial 100,000 optimization iterations). Without Phase 1,
the algorithm primarily relies on Phase 2 to determine the movement directions, followed
by Phase 3, which reinforces them. The results show that both system performance (e.g.,
throughput) and stability, as measured by the standard deviation of performance metrics,
decrease significantly without Phase 1. This shows how important the initial phase is
for establishing basic collision avoidance strategies before throughput is optimized in
subsequent phases.
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Figure 6. Comparison of algorithm performance when Phase 1 is removed, means and standard deviations.

This simple yet illustrative example demonstrates several important strengths of the
proposed optimization approach. From the test scenarios, we can clearly observe how
the algorithm consistently generates coherent movement patterns that adapt to different
operating conditions and system parameters. The emergence of roundabouts, bidirectional
corridors, and hybrid solutions shows that the method can discover suitable movement
constraints without requiring explicit programming of these patterns.
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The results are particularly notable in their consistency. While the stochastic nature of
the process can lead to different specific solutions, as shown in the original two variants,
the generated patterns invariably reflect the underlying system requirements. For example,
when traffic is concentrated between specific stations, the algorithm reliably develops
more direct routes between these points while maintaining efficient circulation patterns
for the remaining traffic. Similarly, the degradation to simple bidirectional paths in the
single-AMR case and the emergence of unidirectional flow when collision avoidance is
not prioritized demonstrate that the optimization process responds logically to changes in
system parameters.

3.5. ROS2 Implementation

ROS, recently upgraded to ROS2, is a set of software libraries and tools for the
development of robotic applications [38]. One of the key systems within ROS2 is Nav2,
a comprehensive modular and easily reconfigurable navigation stack that facilitates the
seamless integration of diverse sensors, planners, and controllers. The top-level component
of Nav2 is the Behavior Tree Navigator, which activates and tracks the progress of the three
task-specific asynchronous servers, i.e., the Recovery Server, the Controller Server, and
the Planner Server [39]. Each of these task-specific servers operates as an ROS2 node that
provides algorithm plugins in the form of dynamically loaded libraries at runtime.

Global path planning is usually formulated as a graph search problem to find the
shortest path from the starting point to the goal destination [40]. Computing the global
path for a robot is a task of the planner server, more precisely the global planner. It
seeks to find the optimal sequences of valid configurations to determine a route through
an environment [41]. The algorithms for global path planning are usually extensions of
Dijkstra’s algorithm that try to find the path with minimum cost. Since the A* algorithm
was used for generation of bio-inspired grid graphs, we tested our approach by comparing
A* that works on non-optimized cost maps to A* that calculates the least cost path based
on the obtained optimized costmaps. For this purpose, a new Nav2 global planner plugin
was developed. For local planning and conflict resolution in a dynamic environment, the
Model Predictive Path Integral (MPPI) controller [42], a successor of Timed Elastic Band
(TEB) and pure path tracking MPC controllers, was used.

To simulate the robots and test the developed plugin, Gazebo [43], a 3D rigid body
simulator, was used. It provides the necessary interfaces for physics-based simulations in
realistic environments. The robot used for the simulations was the Turtlebot3 Waffle,
a two-wheeled robot equipped with a 360 Laser Distance Sensor LDS-01. For this
robot, a physical model and interface packages are already provided by ROS2. We
chose Turtlebots 3 for our Gazebo simulations because they provide a standardized,
well-documented platform that captures the essential kinematic and motion planning
challenges of differential-drive robots, commonly employed in warehouse logistics. Their
widespread use in robotics research also allows for better reproducibility and comparison
with other approaches.

4. Case Studies
To validate our approach, we tested the optimization algorithm on three distinct

environments: a standard MAPF benchmark layout featuring connected rooms and two
real industrial scenarios from manufacturing facilities. For the industrial scenarios, we
compared our results with solutions from human experts to evaluate their performance
against traditional manual design approaches. These cases were chosen to demonstrate the
effectiveness of the method across different scales and levels of complexity, from academic
benchmarks to real-world applications.
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Given the unique nature of our approach, which focuses on spatial optimization
through movement constraints rather than temporal coordination as in traditional MAPF, a
direct comparison with the existing benchmarks is challenging. While MAPF benchmarks
typically evaluate collision avoidance and temporal efficiency, our method addresses the
spatial distribution of robot traffic and the associated costs. Therefore, we evaluated our
approach in two ways: first by comparing it to human expert solutions in real industrial
scenarios and second by measuring the improvement over standard A* pathfinding
without directional constraints. This evaluation methodology enables demonstrating
both the practical value in real-world settings and the quantitative benefits of our spatial
optimization approach.

The expert solutions were designed by industry practitioners who were provided the
layout, number of robots, and task descriptions, including frequencies and pickup/delivery
locations. The experts manually drew their preferred directions on paper, which were then
translated into low directed costs for comparison with our automated approach. While
expert-designed solutions benefit from human intuition and experience, they face several
inherent limitations. Experts typically rely on simple rules and visual heuristics, making it
difficult to optimize for complex interactions between multiple robots. They tend to favor
symmetric patterns that are easier to conceptualize but may not be optimal. Additionally, it
is difficult for experts to take into account the specifics of an intralogistic problem such as
specific task frequencies between stations.

The evaluation process included both quick assessments and comprehensive validations
to ensure the robustness of our optimization algorithm. First, we used the optimization
algorithm to generate movement constraints for each environment using the event-based
simulator. The solutions were then evaluated within the same environment. We then
performed a thorough validation of the optimized movement constraints using physics-
based simulations in Gazebo. In this stage, the constraints were implemented through
our custom Nav2 global planner plugin, which enabled a detailed examination of the
algorithm’s performance in a more realistic simulation environment.

All the optimizations were performed with the same parameter settings as described
in Section 3, with the only variation being the number of AMRs, which was adjusted
according to the specific requirements of each environment. This consistency helps to
demonstrate the robustness of the method across different scenarios while also illustrating
how the resulting movement patterns naturally adapt to the unique characteristics
of each layout.

4.1. MAPF Benchmark: Rooms’ Layout

The rooms’ layout represents a standard benchmark from the MAPF literature [44],
consisting of multiple connected rooms separated by narrow corridors. This layout is
particularly challenging due to its bottlenecks and potential for deadlocks in the doorways.
The environment contains sixteen rooms connected by narrow corridors, five pickup and
five dropoff stations distributed across the rooms, and corridors wide enough for only
one AMR at a time. The optimization process for five AMRs resulted in several notable
movement patterns, namely one-way traffic flows through certain corridors as shown in
Figure 7.
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Figure 7. The solution to the rooms’ layout, obtained through the presented algorithm.

4.2. Industrial Scenario A

The first industrial scenario represents a real manufacturing facility designed for
two automated forklifts. The layout features input buffers (pickup stations) in the bottom
left area and dropoff stations in the top right, with several intermediate buffer locations
distributed throughout the space. Figure 8 shows two solutions, one designed by an
expert and another generated algorithmically. The most notable difference is in the bottom
left area, where the expert chose two-way traffic along the sides of the layout, while the
algorithmic solution features two downwards paths and an upwards one through the center.
Another notable difference is that the experts could only provide preferred directions for
each cell; therefore, the costs are either low (green arrow) or neutral (everywhere else).

Legend Pick-upWall Free space Drop-off
Costs
Cell types

ε 0.5 − ε

Intermediate buffer
Main pick-up area

Lo

Main drop-off area

(a) (b)
Figure 8. The (a) expert and (b) algorithmic solutions for industrial scenario A. Pickups in light,
intermediate buffers in medium, and dropoffs in dark blue.

4.3. Industrial Scenario B

The second industrial scenario depicts another manufacturing facility designed for five
automated forklifts. The layout is characterized by a vertical material flow, with pickups at
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the top, processing units on the right—each with their own pickups and dropoffs—and
final dropoffs in the bottom left, along with scattered intermediate buffers. Figure 9 shows
the expert and algorithmic solutions. The algorithmic solution features significantly more
one-way movement patterns.

Legend Pick-upWall Free space Drop-off
Costs
Cell types

ε 0.5 − ε

Intermediate buffer

Main pick-up area
Lo

Main drop-off area
Lo

Processing area

(a) (b)
Figure 9. The (a) expert and (b) algorithmic solutions for industrial scenario B.

4.4. Evaluation in the Event-Based Simulator

Although the event-based simulator was primarily used for optimization, its
computational efficiency also makes it valuable for rapid evaluation of different movement
strategies. We leveraged this capability to perform detailed performance comparisons
across multiple metrics. For each scenario, key operational aspects were evaluated through
simulations running for 10,000 iterations (ticks of simulated time) with 10 repetitions to
ensure statistical significance. The evaluation tracked the number of conflicts (collisions
requiring recovery), tasks completed, percentage of tasks completed within their due time,
average delay per task, and total path length traveled by all the AMRs.

In the rooms scenario (Table 3), our approach performed significantly better across all
the metrics compared to unweighted pathfinding. Conflicts decreased by 41.9% (7.50 vs.
12.90), whereas task completion improved by 10.7% (9.12 vs. 8.24). On-time task completion
increased substantially from 63.4% to 85.0%. The average delay per task dropped by 68.9%
(2.34 vs. 7.52), with only a minimal increase in path length (90.98 vs. 88.44).

Table 3. Rooms’ results.

Metric Unweighted Ours

Conflicts (per AMR/1000 iter.) 12.90 ± 0.48 7.50 ± 0.44
Tasks Completed (per AMR/1000 iter.) 8.24 ± 0.18 9.12 ± 0.20
Tasks in Time (%) 63.39 ± 2.33 84.99 ± 2.38
Delay (per task) 7.52 ± 0.69 2.34 ± 0.35
Path Length (per task) 88.44 ± 0.90 90.98 ± 0.98
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In industrial scenario A (Table 4), our method showed statistically significant
improvements over both the unweighted and expert approaches. Conflicts were significantly
reduced to 3.55 ± 0.25 compared to the unweighted (6.85 ± 0.35, p < 0.05) and expert
(3.85 ± 0.40, p < 0.05) solutions. The task completion rate was highest at 22.70 ± 0.25,
significantly higher than the expert (20.05 ± 0.35) and unweighted (22.05 ± 0.35) solutions.
On-time task completion reached 76.6%, with the lowest average delay being 0.47 units.
This was achieved with only a modest increase in path length compared to unweighted
routing (39.62 vs. 37.84).

Table 4. Scenario A results.

Metric Unweighted Expert Ours

Conflicts (per AMR/1000 iter.) 6.85 ± 0.35 3.85 ± 0.40 3.55 ± 0.25
Tasks Completed (per AMR/1000 iter.) 22.05 ± 0.35 20.05 ± 0.35 22.70 ± 0.25
Tasks in Time (%) 65.40 ± 3.04 73.99 ± 2.06 76.64 ± 2.44
Delay (per task) 1.37 ± 0.14 0.59 ± 0.11 0.47 ± 0.09
Path Length (per task) 37.84 ± 0.34 44.72 ± 0.42 39.62 ± 0.27

The more complex industrial scenario B (Table 5) demonstrated statistically significant
improvements across the key metrics. Conflicts decreased significantly by 20.3% compared
to the expert solution (14.64 ± 0.40 vs. 18.38 ± 0.96) and by 30.8% compared to unweighted
(21.16 ± 0.60). Task completion showed significant improvement to 14.36 ± 0.22 tasks
versus the expert (12.98 ± 0.44) and unweighted (12.42 ± 0.28) solutions. On-time delivery
reached 85.72%, significantly higher than the expert (77.15%) and unweighted (68.39%)
solutions. Average delay was reduced to 2.54 units while maintaining path lengths
comparable to the expert solution.

Table 5. Scenario B results.

Metric Unweighted Expert Ours

Conflicts (per AMR/1000 iter.) 21.16 ± 0.60 18.38 ± 0.96 14.64 ± 0.40
Tasks Completed (per AMR/1000 iter.) 12.42 ± 0.28 12.98 ± 0.44 14.36 ± 0.22
Tasks in Time (%) 68.39 ± 2.43 77.15 ± 3.28 85.72 ± 1.34
Delay (per task) 6.17 ± 0.37 4.37 ± 0.55 2.54 ± 0.29
Path Length (per task) 45.69 ± 0.90 47.69 ± 1.37 47.52 ± 0.53

Across all the evaluated scenarios, our bio-inspired optimization approach consistently
demonstrated substantial reductions in conflicts and delays while enhancing task
completion rates and punctuality. As shown in Figure 10, the system achieves a steady
improvement in punctuality—a critical metric for industrial applications—throughout the
200,000 iteration optimization process. The minimal increases in path lengths indicate that
the algorithm effectively balances the trade-offs between minimizing traversal distances
and enhancing overall system performance.
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Figure 10. Analysis of punctuality for industrial scenarios: (a) scenario A and (b) scenario B.

4.5. Gazebo Simulations

We validated our approach using physics-based simulations in Gazebo. The simulations
were executed in the simulator (Figure 11a,b), using the environments built based on the
three example maps (obstacles represented as walls), and visualized using RViz (Figure 11c).

(a) (b) (c)
Figure 11. Simulation in ROS2/Gazebo: (a) 3D view of the rooms’ layout, (b) top-down view, and
(c) RViZ view.

The duration of the simulation was 1 h of simulated time. We compared the throughput
of A* that works on non-optimized costmaps with A* that works on costmaps generated
by the proposed bio-inspired algorithm. This comparison is motivated by several factors.
Firstly, A* is widely regarded as a benchmark algorithm in path planning due to its
efficiency and optimality guarantees. Secondly, since our bio-inspired method uses A*
as its underlying pathfinding algorithm, A* serves as the most appropriate baseline for
comparison. This allows us to isolate and evaluate the specific improvements introduced
by our bio-inspired weight optimization. Additionally, A* is widely used in many robotic
navigation systems, including the ROS2 Nav2 stack, making it a practical and relevant
comparison point for real-world applications.

4.6. Results

We evaluated our bio-inspired movement constraints against unweighted map
and expert-designed solutions by measuring the total number of completed tasks and
distinguishing between tasks completed with and without recovery actions due to conflicts
such as near-collisions during one-hour simulations. The results are shown in Figure 12.
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Figure 12. Performance comparison across scenarios. Bars show tasks completed with and without
recovery actions; whiskers indicate the standard deviation of total task completions.

In the rooms scenario, our algorithmic solution improved the efficiency as fewer
recovery actions were needed (18.7 ± 2.21 vs. 20.9 ± 2.02 for the unweighted map) while
more tasks were completed overall (45.6 ± 3.72 vs. 41.4 ± 4.03). The higher proportion
of tasks without recovery actions (26.9 ± 4.12 vs. 20.5 ± 4.50) indicates more effective
traffic management.

For industrial scenario A, our approach showed a significant improvement, with more
tasks completed (123.4 ± 5.72) than both the unweighted map (113.6 ± 8.95) and expert
solutions (119.0 ± 6.32). Notably, fewer recovery interventions were required (10.1 ± 2.96
vs. 14.2 ± 2.94 for the unweighted map and 10.4 ± 2.50 for the expert solution), indicating
more efficient movement patterns.

In the more complex industrial scenario B, which involves five AMRs, our solution
achieved higher throughput (73.5 ± 5.15 tasks) compared to the unweighted map
(68.4 ± 4.45) and expert solutions (72.4 ± 4.99). The recovery interventions were
comparable across all the approaches (21.7 ± 2.95 for our algorithmic solution, 20.7 ± 2.95
for the unweighted map, and 22.3 ± 2.50 for the expert solution), suggesting that some
baseline level of conflict resolution may be unavoidable in complex environments.

These results show that our bio-inspired constraints consistently improve system
performance, particularly in scenarios with clear traffic patterns. The method effectively
reduces the number of recovery actions while maintaining or improving throughput across
different environmental complexities.

5. Conclusions
This study presents a bio-inspired approach for the autonomous generation of

movement constraints in multi-AMR systems, demonstrating how an optimization
mechanism based on four basic principles—movement rewards, collision penalties, delay
feedback, and evaporation—can effectively improve system performance. It was shown
that spatial constraints can proactively reduce the number of conflict situations without
temporal coordination.

The efficiency of the proposed method was validated through both event-based
and physics-based simulations. The solutions obtained with our method consistently
outperformed both unconstrained navigation and expert-designed solutions. Significant
improvements in system performance were observed in several test scenarios, including
standard MAPF benchmarks and real industrial environments.

Compared to other existing approaches, our method offers several advantages. First,
the method integrates complete system characteristics, including layout, fleet size, task
distribution, and dispatching algorithms, into the optimization process and tailors the
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solution to the specific intralogistics problem. The existing approaches usually only take
into account the layout. Second, the method can successfully handle complex spatial
constraints (e.g., narrow corridors), which reduces the need for recovery actions while
ensuring high throughput. Third, solution generation is very fast and typically requires
only a few minutes, even for complex layouts. If the system parameters change (increased
demand, different material flow, fleet size, etc.), the movement constraints can be adapted
quickly and without manual redesign.

The adaptability and low computational complexity of the proposed approach provide
flexibility that traditional design approaches lack, making it particularly practical for
dynamic real-world applications. The successful integration with the ROS2 Nav2 stack
through a custom global planner plugin also demonstrates the practical applicability of the
approach in standard robotics frameworks.

However, there are some limitations of the proposed method that should be considered.
We have shown that conflict situations with other vehicles can be proactively reduced
through spatial constraints, but the performance advantages diminish in extremely
dense traffic situations, where temporal coordination becomes essential. For real-world
deployment, our approach could be integrated with state-of-the-art scheduling algorithms
to jointly address spatial and temporal coordination. This can lead to additional
improvements in system efficiency.

Another limitation of the proposed method is that it assumes static obstacles, while
the resolution of conflicts with dynamic obstacles is left to the local planner. It also does not
incorporate real-time adaptability mechanisms to adjust movement constraints dynamically
based on observed traffic fluctuations.

To enhance real-world applicability, several future directions should be explored.
First, the optimization algorithm should be extended to incorporate dynamic parameter
adjustment, enabling more effective adaptation to varying traffic densities and patterns.
Second, integrating reinforcement learning techniques could further enhance the adaptability
of movement constraints in response to real-time operational conditions. A hybrid approach
combining bio-inspired heuristics with learning-based methods may offer a robust solution
for balancing proactive spatial constraint generation with real-time adaptability. Finally,
additional validation in real industrial settings would help to verify the effectiveness of
the method under actual operating conditions. This includes evaluating how the approach
scales with larger fleets, interacts with dynamic obstacles such as human workers, and
integrates with industrial fleet management systems. Addressing these aspects would help
to bridge the gap between theoretical performance gains and real-world deployment.
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Roadmap Design in Multi-AGV Systems. IEEE Trans. Autom. Sci. Eng. 2023, early access. [CrossRef]

38. Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the
wild. Sci. Robot. 2022, 7, eabm6074. [CrossRef] [PubMed]

39. Macenski, S.; Martin, F.; White, R.; Clavero, J.G. The Marathon 2: A Navigation System. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020.

40. Diéguez, A.; Sanz, R.; Fernández, J. A global motion planner that learns from experience for autonomous mobile robots.
Robot.-Comput.-Integr. Manuf. 2007, 23, 544–552. [CrossRef]

41. Macenski, S.; Moore, T.; Lu, D.; Merzlyakov, A.; Ferguson, M. From the Desks of ROS Maintainers: A Survey of Modern &
Capable Mobile Robotics Algorithms in the Robot Operating System 2. Robot. Auton. Syst. 2023, 168, 104493.

42. MPPI. Available online: https://navigation.ros.org/configuration/packages/configuring-mppic.html (accessed on 25 July 2024).
43. Gazebo. Available online: https://classic.gazebosim.org/ (accessed on 25 July 2024).
44. Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.; Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al. Multi-Agent

Pathfinding: Definitions, Variants, and Benchmark. In Proceedings of the Twelfth Annual Symposium on Combinatorial Search
(SoCS 2019), Napa, CA, USA, 16–17 July 2019; pp. 151–158.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2024.3457957
http://dx.doi.org/10.1109/LRA.2020.2972894
http://dx.doi.org/10.1016/j.procs.2018.01.113
http://dx.doi.org/10.1016/j.compeleceng.2012.06.016
http://dx.doi.org/10.3390/app11083605
http://dx.doi.org/10.1016/j.asoc.2009.02.014
http://dx.doi.org/10.1109/TASE.2023.3323099
http://dx.doi.org/10.1126/scirobotics.abm6074
http://www.ncbi.nlm.nih.gov/pubmed/35544605
http://dx.doi.org/10.1016/j.rcim.2006.07.001
https://navigation.ros.org/configuration/packages/configuring-mppic.html
https://classic.gazebosim.org/

	Introduction
	Related Work
	Methodology
	Environment Representation and Problem Formulation
	Bio-Inspired Coordination Mechanisms
	Implementation and Parameters
	Illustrative Example
	ROS2 Implementation

	Case Studies
	MAPF Benchmark: Rooms' Layout
	Industrial Scenario A
	Industrial Scenario B
	Evaluation in the Event-Based Simulator
	Gazebo Simulations
	Results

	Conclusions
	References

