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Abstract: This paper presents a robust and adaptable framework for predictive–reactive
rescheduling in identical parallel-machine environments. The proposed Multi-Purpose
Intelligent Utility (MIU) methodology utilizes heuristic methods to efficiently address the
computational challenges associated with NP-hard scheduling problems. By incorporating
13 diverse dispatching rules, the MIU framework provides a flexible and adaptive approach
to balancing critical production objectives. It effectively minimizes total weighted tardiness
and the number of tardy jobs while maintaining key performance metrics like stability,
robustness, and nervousness. In dynamic manufacturing environments, schedule conges-
tion and unforeseen disruptions often lead to inefficiencies and delays. Unlike traditional
event-driven approaches, MIU adopts a periodic rescheduling strategy, enabling proac-
tive adaptation to evolving production conditions. Comprehensive rescheduling ensures
system-wide adjustments to disruptions, such as stochastic changes in processing times
and rework requirements, without sacrificing overall performance. Empirical evaluations
show that MIU significantly outperforms conventional methods, reducing total weighted
tardiness by 50% and the number of tardy jobs by 27% on average across various scenarios.
Furthermore, this study introduces novel quantifications for nervousness, expanding the
scope of stability and robustness evaluations in scheduling research. This work contributes
to the ongoing discourse on scheduling methodologies by bridging theoretical research
with practical industrial applications, particularly in high-stakes production settings. By
addressing the trade-offs between improving the objective function or improving the
rescheduling performance, MIU provides a comprehensive solution framework that en-
hances operational performance and adaptability in complex manufacturing environments.

Keywords: dispatching rules; identical parallel machines; initial scheduling; MIU;
predictive–reactive rescheduling

1. Introduction
In the realm of manufacturing and production, the scheduling of tasks across identical

parallel machines constitutes a fundamental aspect of operational efficiency and resource
utilization. The dynamic nature of production environments, characterized by uncertainties,
disruptions, and varying priorities, necessitates agile scheduling strategies capable of
adapting to evolving conditions in real time. Pinedo [1] emphasizes the importance of such
adaptive strategies, noting that effective scheduling must account for both the inherent
uncertainties and the need for timely adjustments to maintain system efficiency. In this
context, predictive–reactive rescheduling emerges as a crucial paradigm, offering the
promise of enhanced adaptability and responsiveness to changing production dynamics.
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Driven by the complexities of space sector production and dynamic scheduling chal-
lenges, this paper introduces a comprehensive framework for predictive–reactive reschedul-
ing in identical parallel-machine environments. Our methodology is grounded in real-
world data and scenarios, reflecting the intricacies of production dynamics and the influence
of managerial decisions.

The data presented in this paper have been adapted from real-world scenarios to
ensure confidentiality and protect company information. While the specific data cannot be
shared for security reasons, they have been altered in a manner that preserves their rele-
vance to practical industry settings, and the methodologies used ensure the applicability of
the findings. All calculations and results are based on these adapted data sets, maintaining
the integrity of the analysis.

In contrast to traditional optimization-based approaches, our methodology adopts
a heuristic-driven strategy to overcome the computational complexities associated with
NP-hard problems, ensuring timely and efficient solution generation.

A distinguishing feature of our approach lies in the integration of 13 distinct dispatch-
ing rules to cater to diverse production objectives and constraints. Our approach integrates
13 dispatching rules to address various production objectives and constraints. This broad
selection of rules offers flexibility in scheduling solutions, allowing decision-makers to
improve production outcomes while reducing computational overhead.

Crucially, our approach emphasizes periodic rescheduling over event-driven ap-
proaches, enabling proactive adaptation to changing production conditions and minimizing
the impact of disruptions on schedule performance. Through complete rescheduling, we
ensure comprehensive adjustments across schedules, mitigating the risk of cascading
disruptions and optimizing resource utilization in dynamic manufacturing environments.

Central to our methodology is the consideration of stochastic processing time devi-
ations and job rework occurrences, acknowledging the inherent uncertainties inherent
in real-world production processes. By incorporating these factors into our reschedul-
ing framework, we enhance the adaptability and robustness of our scheduling solutions,
enabling an effective response to dynamic production conditions and uncertainties.

Drawing from the rich body of literature on predictive–reactive rescheduling, identi-
cal parallel-machine scheduling, and dispatching rules, our study contributes empirical
insights and practical methodologies to inform scheduling practices in dynamic manufac-
turing environments. By synthesizing theoretical foundations with practical considerations,
we aim to bridge the gap between research and industry practice, facilitating the adop-
tion of predictive–reactive rescheduling strategies to enhance operational efficiency and
competitiveness in modern manufacturing settings.

Instead of commonly utilized objective functions such as makespan or cost minimiza-
tion [2–4], this study adopts total weighted tardiness minimization and tardy job number
minimization as its primary goals. To the best of our knowledge, this study uniquely em-
ploys the simultaneous application of periodic and complete rescheduling while evaluating
performance through innovative metrics for stability [5], robustness [6], and nervousness [7].
The comprehensive literature review, particularly the in-depth analysis of dispatching rules,
is anticipated to serve as a valuable resource for researchers. Moreover, the unique problem
structure of the production line addressed in this study is expected to provide significant
insights and foster innovative perspectives within the field.

In scheduling identical parallel machines, disruptions, stochastic processing times,
and job rework introduce significant inefficiencies. Existing approaches often rely on
optimization-based methods that are computationally impractical for large-scale, dynamic
environments. Additionally, periodic and complete rescheduling strategies are rarely
combined, and total weighted tardiness (TWT) and number of tardy jobs (NTJ) are not
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commonly used as the primary performance objectives in predictive–reactive rescheduling
studies. This paper aims to bridge these gaps by introducing a heuristic-driven predictive–
reactive rescheduling framework that integrates 13 dispatching rules and evaluates perfor-
mance using innovative stability, robustness, and nervousness metrics.

In the subsequent sections of this paper, we delineate the theoretical underpinnings
of our predictive–reactive rescheduling framework, describe the implementation details
of our methodology using Python code, and present empirical findings and case studies
to demonstrate the efficacy and practical applicability of our approach. Through this
comprehensive analysis, we aim to provide valuable insights and practical guidelines for
the development and implementation of predictive–reactive rescheduling strategies in
identical parallel-machine environments.

This paper is organized as follows. Section 2 provides a detailed literature review,
emphasizing the novelty of the MIU approach. Section 3 defines the problem formally
and presents the underlying assumptions. Section 4 explains the MIU approach, detailing
its methodology and implementation. Section 5 presents computational experiments and
results, comparing MIU with traditional methods. Finally, Section 6 concludes with findings
and future research directions.

2. Literature Review
This section provides a comprehensive review of the literature and summarizes dy-

namic scheduling, parallel-machine scheduling, and rescheduling. The novelty of the
Multi-Purpose Intelligent Utility (MIU) framework is emphasized through comparisons
with previous studies, focusing on its ability to address real-world scheduling challenges.

2.1. Dynamic Scheduling in Production Systems

Scheduling in production systems ensures the coordination of activities to increase ef-
ficiency and reduce operational costs. In stochastic and dynamic production environments,
traditional scheduling solutions based on classic objectives like makespan may not suffice.
Additional criteria capable of addressing stochastic disruptions need to be considered due
to the random disturbances that may occur in the system. Often, rescheduling is employed
to enhance system performance and counteract the effects of random disruptions.

In many real-world environments, scheduling is an ongoing reactive process due
to the presence of various unforeseen interruptions, making continuous the reevaluation
of predetermined schedules necessary. Solutions developed to address static scheduling
problems are often impractical in real-world environments, as schedules optimized based
on predicted data may become invalid when deployed in the workshop. Most production
systems operate in dynamic environments where unforeseeable real-time events can lead to
changes in scheduled tasks, rendering a pre-implemented schedule unfeasible upon presen-
tation to the workshop. Examples of such real-time events include machine breakdowns,
the arrival of urgent tasks, changes in delivery deadlines, and more.

Dynamic scheduling strategies aim to adapt to changing conditions and uncertainties
in manufacturing environments. Cowling and Johansson [8] emphasized the utilization
of real-time information for effective dynamic scheduling, highlighting the importance of
timely adjustments to changing conditions. Ouelhadj and Petrovic [9] provided a com-
prehensive survey of dynamic scheduling in manufacturing systems, outlining various
approaches and challenges in dynamic scheduling environments. They laid the ground-
work for understanding the complexities and requirements of dynamic scheduling systems.

As can be seen in Figure 1, dynamic scheduling, crucial for the successful imple-
mentation of scheduling systems in real-world scenarios, is categorized under three main
types [7,10–13]: completely reactive scheduling, predictive–reactive scheduling, and robust
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proactive scheduling. The possible machine environments are also demonstrated in Figure 1
according to Pinedo’s classification [1].
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2.1.1. Completely Reactive Rescheduling

In completely reactive scheduling, a predefined schedule is not created in advance,
and decisions are made in real time locally. Dispatching rules are often utilized in this type
of scheduling due to their ability to provide quick results and ease of implementation.

Notable studies on completely reactive scheduling include the following:
Ning Liu et al. [14] proposed a method that combines completely reactive scheduling

with real-time decision-making, suggesting a more flexible and stable approach compared
to traditional dispatching rules.

Kexin Li et al. [15] demonstrated that their method for workshop scheduling problems
outperformed widely used completely reactive scheduling methods.

Bożek and Wysocki [16] presented a comprehensive case study on developing produc-
tion planning solutions, including various scheduling modes and models, utilizing both
offline planning and reactive scheduling.

2.1.2. Robust Proactive Rescheduling

Proactive and/or robust scheduling focuses on developing a foundational schedule
that incorporates a degree of variability during project execution. The idea is to include
resilience in the initial schedule.

Key studies in this area include the following:
Penz et al. [17] conducted research on sensitivity analysis for problems with maximum

and total completion time objectives.
Yang and Yu [18] aimed to minimize the impact of disruptions on critical performance

measures in their robust scheduling study.
Hall and Posner [19] provided a comprehensive discussion on sensitivity analysis in

scheduling problems, offering connections to classical optimization and algorithms for
rescheduling in response to online disruptions.
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For a detailed literature review on Proactive Reactive Scheduling, the article by Rah-
mani and Heydari [5] can be consulted.

The difference between predictive–reactive approaches and proactive–reactive ap-
proaches is mainly due to the fact that in proactive–reactive approaches rescheduling is
not conducted online; instead, one of several previously estimated schedule solutions is
selected. These proactive–reactive analysis methods make it possible to create a set of static
programs that facilitate the transition from one to another in case of risk.

2.1.3. Predictive–Reactive Rescheduling

Predictive–reactive scheduling, the most common dynamic scheduling approach
in manufacturing systems, involves revising schedules in response to real-time events.
Predictive–reactive scheduling approaches often emphasize simple adjustments to enhance
workshop efficiency. While these methods are beneficial, more robust schedules can reduce
the impact of disruptions and improve overall performance.

The literature on predictive–reactive scheduling has extensively considered various
real-time events and their effects, covering different manufacturing systems such as single-
machine systems, parallel-machine systems, flow shops, job shops, and flexible manufac-
turing systems.

Studies often evaluate predictive–reactive scheduling based on metrics like makespan,
stability, and robustness, aiming to optimize system efficiency while maintaining stability
and resilience in the face of disruptions [20–22].

Production System Types

Pinedo [1] defines system types as follows:
Single Machine: The simplest machine environment and a special case of more complex

systems [13,18,22,23].
Identical Machines in Parallel: m identical machines process jobs, either on any

machine or a specific subset [24–26].
Machines in Parallel with Different Speeds: m machines operate at different speeds,

affecting processing times [1].
Unrelated Machines in Parallel: Each machine has a different speed for each job,

leading to varying processing times [27].
Flow Shop: m machines in series, where all jobs follow the same sequence, typically

under FIFO discipline [5,28].
Flexible Flow Shop: A generalized flow shop with multiple parallel machines at each

stage [29].
Job Shop: Jobs follow distinct routes, possibly visiting the same machine multiple

times [14,20,30,31].
Flexible Job Shop: A hybrid of job-shop and parallel machines, with multiple machines

at each work center [15,29,32,33].
Open Shop: Jobs must be processed on all machines, but their processing sequence is

flexible [1].

Mathematical Approaches

According to Zhang et al. [31], workshop scheduling algorithms can be examined
under two main headings: Exact optimization methods include effective rule approaches,
mathematical programming approaches, branch-and-bound methods, etc. Approximate
methods include constructive methods, artificial intelligence, local search, and meta-
heuristic algorithms. Mathematical programming and operation research are applied
to reach the global optimal solution or the deterministic optimal solution.
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The mathematical programming approach is an exact optimization approach that is
frequently used to solve predictive–reactive scheduling problems [32,34,35]. In addition
to approximate methods such as the Simulated Annealing Algorithm [2], Hybrid Parallel
Genetic Algorithm [27,29], Biased Randomized Iterated Greedy Algorithm [6], Tabu Search
Algorithm [36,37], Directed Backjumping Algorithm, and Hybrid Multi-Objective Immune
Algorithm [30], the most commonly used approximate method is the use of dispatch-
ing rules [24,38]. Constructive methods are preferred methods because they shorten the
solution time.

Examples of dispatching rules that provide quick solutions include: Least Flexible
Job First [24,39], longest processing time [38,40,41], Earliest Due Date [20,38,41], shortest
processing time [38,40–42], First in First Out [40,41], random [40,41], and Last in First
Out [41].

Uncertain and Stochastic Scenarios

Real-world manufacturing environments involve numerous states of uncertainty and
stochasticity of events. Some situations are machine failure, change in delivery date, and
uncertainty of the processing time of a job on a machine. An appropriate scheduling
model should take into account all uncertainty conditions to approximate real-world
problems [43].

Stating that stochastic scheduling has attracted great attention from both industry
and academia, Xin Liu et al. [44] stated that existing jobs generally focus on random
processing times, but the uncertainty in the release time when the job can start greatly
affects the performance.

The first study in the field of stochastic scheduling problems was conducted by
Cheng [45] in a single-machine environment. He developed his article in 1991, and in
this research a common deadline was defined for all works. In the study, each job has a
stochastic processing time with a certain mean and variance.

In predictive–reactive scheduling problems, entering the new job into the sys-
tem [6,23,24,46,47] and machine failure [4,30,39,48] are the most common uncertain situations.

In addition to these two basic uncertainties, other uncertainties such as material
shortage [37,49–51], changes in production time or uncertainty [40,41,52,53], job cancella-
tions [28], and priority changes [38] have also been addressed in the literature.

Rescheduling Timing

Three policies regarding the timing of rescheduling have been proposed in the litera-
ture [7,54]: periodic, event-based, and hybrid.

Periodic policy is to create a schedule at regular intervals after collecting all the
available information in the workshop. The dynamic scheduling problem is decomposed
into a set of static problems that can be solved using classical scheduling algorithms.
Scheduling is then conducted and existing information is not collected and revised until
the next period begins.

Periodic policy provides greater schedule stability and less schedule tension. Follow-
ing a set schedule in the face of significant changes in the shop can compromise perfor-
mance as unwanted products or intermediate products may be produced. Determining the
rescheduling period is also an important research topic.

In an event-driven policy, rescheduling is triggered in response to an unexpected
event that changes the current system state. Most approaches to dynamic scheduling use
this policy.
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The hybrid policy reschedules the system periodically and also when an exception
occurs. Events usually taken into account are machine failures, urgent jobs arriving, job
cancellations, or job priority changes.

Periodic policy [34,35,40,41] and hybrid [37,46] policies have not been preferred much
in the problems in the literature; usually Event-Oriented Policies [24,30,39,53] were applied
when rescheduling.

Rescheduling Solution Methods

Regarding the question of which strategies to use for rescheduling, the literature offers
two main rescheduling strategies [7,8,54]: schedule repair and complete rescheduling.

Repairing the schedule refers to editing parts of the existing schedule and may be
preferable because it potentially saves CPU time and preserves the stability of the system.

Complete rescheduling creates a new schedule from scratch. Complete reschedul-
ing may in principle be better at maintaining optimal solutions, but these solutions are
rarely achievable in practice and require too much computation time. Moreover, complete
rescheduling can cause instability and lack of continuity in detailed plant schedules, leading
to additional production costs attributable to the so-called shop floor perturbation.

Schedule repair has been implemented in two ways in the literature [4,36,48]: Right
Shift Algorithm and Partial Repair. The method that finds more space in the literature is
the complete rescheduling [16,30,53,55] method.

Evaluation of Rescheduling

Rahmani and Heydari defined a new objective function called “MSR” based on
Makespan (Efficiency), Stability, and Robustness. These components are explained as
follows [5]:

Scheduling efficiency: This metric indicates the degree of optimization for a schedule.
In Rahmani and Heydari’s study, this criterion is measured by the classic target “makespan”.
It is stated that the actual completion times of the affected works may change due to
disruptions in the system. In the studies examined, effectiveness was expressed in the same
way as the objective function.

Robustness: This criterion is defined as the deviation in the performance of the actual
schedule from the initial schedule. This measure indicates the closeness of the actual
schedule’s performance to the initial schedule. In fact, robustness is associated with the
changes produced in the objective function following perturbations. If the performance
of a schedule is not too poor and lacking when dealing with interruptions, it is called a
robust schedule.

Stability: This criterion is the difference between the completion times of the jobs in
the initial schedule and the actual schedule. When a disruption occurs in the system, the
actual order may change, resulting in the cost of reallocating tools and equipment, the cost
of re-ordering raw materials, etc. However, when the actual order is closer to the initial
order, these costs are reduced and stability increases. Therefore, the stability criterion is
about the difference between the initial schedule and the actual schedule, not about their
performance. If a sequence does not change much compared to the first when faced with
failures or disruptions, it is called a stable schedule.

The objective function or effectiveness was evaluated in six ways in the reviewed
articles. These are cost [2,3,33,34], makespan [6,16,38,56], Total Weighted Delay and/or
earliness [29,30,32,46], Total Weighted Waiting Time [26,32], Average Stability [41], Mate-
rial/Machine Usage [51,57].

Stability has been examined in three basic ways. Deviation in the start time of each
job [30,36,48,58], deviation in the Total Weighted Completion Time [55], and deviation in
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the completion time of each job [4,33,39]. These are the evaluation criteria that find their
place in the literature.

Robustness did not find much space in the articles examined. There are studies that
evaluate the completion time difference between the first and the last schedule [6,52],
performance loss [30], and the combination of efficiency and stability [36] as robustness.

The concept of “nervousness” is mentioned as a definition in the literature [7] but
as far as we know has not been expressed numerically. Scheduling nervousness was
first defined as “significant changes in MRP (material requirements planning) plans” or
“instability”. Nervousness is the opposite of schedule stability because there is constant
change in the schedule (frequent rescheduling). A “nervous system” offers little predictabil-
ity. A rescheduling policy that provides fewer revisions increases schedule stability (and
reduces schedule nervousness).

In this study, we considered the change in the start time of the jobs as the stability
criterion. As a robustness criterion, unlike other studies in the literature, we examined the
changes in delay times. Since it is certain that the work will be delayed in our problem, our
performance criterion should be the completion of the work with the least delay difference.
We calculated robustness, robustness2, and robustness3 as the largest difference in the
change in the amount of delay, the difference in the total amount of delay, and the difference
in the total weighted amount of delay. As for nervousness, although it is mentioned verbally
in the literature, as far as we know, there is no numerical example. One of the things that
will increase the tension the most in a production line is production on a different machine
than the planned machine. If the machine job match is changed by rescheduling while all
preparations have been made according to plan, the tension of the production line increases.
These preparations can be exemplified as meetings of designers, technicians, and other
stakeholders; machine preparations; and consumable planning. In other words, the tension
would increase if a different machine than the one determined during the initial scheduling
conducted the planned work. For this reason, the differences between the initially planned
and the actual machine-job assignments are referred to as scheduling nervousness.

In our article, the predictive reactive scheduling problem on parallel machines will be
discussed. The similarities and differences compared to similar studies in the literature are
shown in Table 1.

As can be seen in Table 1, the problem we examined in our study differs from other
studies in terms of objective function, random issues, reactive scheduling timing, and
stability. Additionally, as far as we know, the first calculations regarding robustness on
parallel machines and nervousness in whole job shops will be made in this paper.
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Table 1. The similarities and differences between the literature and proposed approach.

Objective Function & Efficiency
Resolution

Method
Stochastic

Issues

When
Rescheduling How Rescheduling

Stability Robustness Nervousness
Paper CM MM TWWTM TWTM TJNM Event-

driven Periodical
Complete
Reschedul-

ing

Partial
Repair

Tighazoui et al.
[55] ✓ LMM ANJ ✓ ✓ TWCTD ND ND

Tighazoui et al.
[26] ✓ MIP ANJ ✓ ✓ TWCTD ND ND

Turkcan et al.
[4] ✓ ✓ LPR & TIM MD ✓ ✓ ✓ DCEJ ND ND

Li et al. [3] ✓ ✓ MIP ANJ, MD ✓ ✓ ND ND ND
Ghaleb and

Taghipour [2] ✓ ✓ SAA MD ✓ ✓ DCEJ ND ND

Duenas and
Petrovic [24] ✓ DR ANJ, MD ✓ ✓ ✓ ND ND ND

Petrovic and
Duenas [39] ✓ DR MD ✓ ✓ ✓ DCEJ ND ND

Proposed
Approach ✓ ✓ DR PTC, RN ✓ ✓ DSTEJ MTD, TWTD,

TTD NMC

CM: Cost Minimization, MM: Makespan Minimization, TWWTM: Total Weighted Waiting Times Minimization, TWTM: Total Weighted Tardiness Minimization, TJNM: Tardy Job
Number Minimization, LMM: Linear Mathematical Model, MIP: Mixed Integer Programming, LPR: LP-Relaxation Based Two-Stage Algortihm, TIM:Time Indexed LpModel, SAA:
Simulated Annealing Algorithm, DR: Dispatching Rules, ANJ: Arrivals of New Jobs, MD: Manufacturer Disruptions, PTC: Production Time Changes, RN: Rework Needs, TWCTD: Total
Weighted Completion Time Deviation, DCEJ: Deviation of Completion time of each job, DSTEJ: Deviation of Starting Time Of Each Job, MTD: Maximum Tardiness Deviation, TWTD:
Total Weighted Tardiness Deviation, TTD: Total Tardiness Deviation, ND: Not Discussed, NMC: Number of Machine Changes.
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3. Problem Definition and Solution Method
This section provides a comprehensive explanation of the system under examination,

defines the core problem, and presents the methodology to be employed in addressing the
identified challenges. The methodology is explained in detail, highlighting the specific
approach to be followed in solving the problem and ensuring an effective resolution of the
production scheduling issues.

3.1. Current Status of the System

Our problem addresses an issue frequently encountered by a company operating
in the space sector within its production line. Production in the space sector is carried
out in “clean rooms” with highly sensitive equipment and qualified personnel. Projects
in this sector are consistently impacted by schedule congestion, and any malfunction or
production flaw leads to substantial delays in the overall timeline.

Figure 2 defines the production process, showing the sequential workflow from order
initiation to final approval. The process begins when orders are received from designers,
followed by scheduling to allocate resources and define timelines. The technicians conduct
production activities as per the work sequence. Once production is completed, the output
moves to the quality and functionality control phase. If defects are found, the order is
rescheduled for rework, ensuring corrections before final approval. If the product meets
quality standards, the order is closed, marking the successful completion of the process.
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Figure 3 represents the information flow within the production system, detailing
how various roles exchange data to ensure a well-coordinated manufacturing process. The
Production Planner serves as the central node, receiving information from management and
designers while coordinating work with technicians and the Quality Manager and Designer.

Management provides the Order Strategy (total weighted tardiness—TWT, number
of tardy jobs—NTJ) and project schedule to the Production Planner for execution. Once
production is underway, the Production Planner reports back to management with esti-
mated completion times and performance metrics, allowing for oversight and performance
evaluation. Designers supply the Bill of Materials (BOM), specifying the type and quantity
of required components, which is directed to the Production Planner to facilitate resource
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planning. The Production Planner, after processing inputs from management and designers,
generates the work sequence for each machine and forwards it to the technicians, who
carry out the production activities.
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Once production tasks are completed, technicians report the completion time of the
works to the Production Planner, signaling that the manufacturing phase is finished. The
Quality Manager and Designer then take over by conducting quality and functionality
controls based on the completed work. They determine whether production is successful
or unsuccessful and provide this information to the Production Planner for rescheduling or
finalizing the order.

Although the production is precise, in practice no work is perfect or error-free. Mis-
takes are inevitable in every job where people are involved. For this reason, after the
production of the produced electronic boards (Printed Circuit Board–PCB) is completed,
they are first subjected to quality control and then to a series of functional tests by the
designers. When a problem is encountered in both quality control and functional tests,
the PCB returns to the production line and the production plan is shifted. While making
this change, no optimization or heuristic method is used, and priority is given to the
returned card.

PCBs are the fundamental components in production. The parameters taken into
consideration are the release date and production time. The release date represents the
earliest time components can be assorted, depending on supply availability and design
readiness. The production time varies based on the type and quantity of the components
on the PCB.

The release date is considered deterministic. The production time varies depending
on the number of components, and the production time/number of components ratio has a
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distribution function that can be obtained based on historical data. The production time is
considered stochastic.

No other work can be conducted on the same machine before the production of a card
is finished. Technicians (machinery) in production have equal skills and conduct the same
job in the same time. It is known that the hand tools used by technicians do not make
a distinctive difference to the process. This shows that technicians can be considered as
identical parallel machines. Each machine (technician) can only do one job at a time.

A faulty manufactured card discovered during quality control or functional testing
is returned to the production line and must be reprocessed. This process is called “Re-
work”. Errors that occur during production due to technician error, material, or equipment
problems are noticed during quality control or functional tests after production, and this
time increases in direct proportion to the number of components. This information is
important as it directly affects the date of return of the card to the system. The release
time parameter of the job to be reworked is the sum of the end date of the main job and
the quality and testing time of that job. This period can be considered as two units for the
number of components between 50 and 100, three units for the number of components
between 101 and 150, and four units for the number of components between 151 and
200. The production time of the Rework Card also varies depending on the number of
components to be reprocessed. Reprocessing has a distribution function whose production
time/number of components ratio can be obtained from historical data.

Table 2 (part a) shows the number of components the cards have, the estimated
production time based on historical data, and the release date of each card. Table 2 (part b)
shows the actual production time of each production and the parameters of the productions
that need rework.

Table 2. (a) Parameters in the beginning; (b) realized parameters.

(a) (b)

Parameters Realized Parameters

PCB No
Component

Amount
Release

Date

Expected
Processing

Time
PCB No

Realized
Processing

Time

Rework
Need?

Rework
Need

Component
Amount

Expected
Rework

Time

Realized
Rework

Time

P01 93 0 9 P01 8

P02 87 30 8 P02 9

P03 64 40 6 P03 5 Yes 8 3 4

P04 116 60 11 P04 12

P05 68 0 6 P05 6

P06 121 60 11 P06 12

P07 168 0 15 P07 15

P08 194 20 18 P08 19

P09 103 0 9 P09 10 Yes 15 5 5

P10 54 30 5 P10 5

P11 102 60 9 P11 9

P12 82 10 8 P12 8 Yes 18 6 6

P13 157 30 14 P13 12

P14 124 20 11 P14 11

P15 120 30 11 P15 12

P16 109 60 10 P16 11 Yes 18 6 7

P17 128 20 12 P17 11

P18 165 90 15 P18 17
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Table 2. Cont.

(a) (b)

Parameters Realized Parameters

PCB No
Component

Amount
Release

Date

Expected
Processing

Time
PCB No

Realized
Processing

Time

Rework
Need?

Rework
Need

Component
Amount

Expected
Rework

Time

Realized
Rework

Time

P19 154 20 14 P19 13

P20 89 30 8 P20 9

P21 173 10 16 P21 14

P22 96 0 9 P22 10 Yes 25 7 6

P23 190 60 17 P23 15

P24 176 20 16 P24 18

As can be seen in Table 2 (parts a,b), the sometimes realized processing times differ
the from expected processing times, and reworks also make important disturbance for the
system as a completely new job.

Initial scheduling is conducted before production starts. The main purpose of schedul-
ing is to maximize capacity utilization and minimize makespan. For this purpose, the
longest processing time first (LPT) rule is used, which is among the most frequently
used distribution rules for makespan minimization in the literature [1,59]. In cases where
rescheduling is required, fluctuations in production times are not taken into account, and
in cases where rework is required, priority is given to reworks, so the Right Shift Algorithm
is applied.

3.2. Problem Definition

As mentioned in Section 3.1., when a PCB returns to the production line priority is
given to the returned card. This can be mathematically defined as increasing the weight
of that card. This is a valid approach; however, the priority of cards already in the system
may sometimes take precedence. This requires a comprehensive reassessment of all tasks
and the creation of a revised schedule.

In today’s environment, the growing intensity of project schedules and customer
pressure necessitate considering weight and due date parameters when prioritizing PCBs
for production. Weight should reflect the criticality of the card, while due date should be
determined by decision-makers based on project timelines.

When project schedules are less constrained, and delays or shifting priorities are not
critical, minimizing makespan can serve as a sufficient objective function. However, in cases
where project delays are inevitable, it becomes crucial to determine which tasks—and how
many—will be late. In such scenarios, objective functions such as total weighted tardiness
(TWT) minimization or number of tardy jobs (NTJ) minimization should be prioritized.

Minimizing makespan does not account for job weight or due dates. Similarly, the
longest processing time (LPT) algorithm disregards these parameters, often leading to
suboptimal results when optimizing for the TWT or NTJ. Therefore, more sophisticated
heuristics should be employed to effectively address these objectives.

When performing rescheduling, the Right Shift Algorithm increases stability and
reduces nervousness, but it is more useful to perform complete rescheduling and recon-
sider the entire system in order to improve the objective function. However, complete
rescheduling causes less stability and higher nervousness. At the same time, performing
rescheduling in every disruption will cause calculation and implementation difficulties.
The decision-maker needs to find a balance between improving the objective function or
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improving the rescheduling performance (stability, robustness, nervousness). In order to
achieve this balance, rescheduling should be performed at certain periods, not complete
rescheduling in every disruption.

3.3. Choosing a Reactive Scheduling Approach

Our problem requires basic scheduling at the beginning of the production schedule
and rescheduling as a result of disruptions caused by production errors or the incorrect
estimation of production time.

In our article, periodic and complete rescheduling methods will be studied using
the scheduling approach known as predictive–reactive scheduling in the literature. The
predictive reactive scheduling approach was preferred because it responds more flexibly to
real-time events and allows strategy transitions.

The completely reactive scheduling approach is not suitable for our problem because
the main purpose of our thesis is to provide the manager with a production plan and
estimated performance evaluations at time t0. In other words, it should include a result
prediction before production begins.

Again, robust proactive scheduling is also not suitable for our problem. The difference
between predictive–reactive approaches and robust–proactive approaches is mainly due to
the fact that in robust–proactive approaches rescheduling is not conducted online; instead,
one of several previously estimated schedule solutions is selected. The fact that there are
too many variables and random situations in our problem makes it impossible to make
robust scheduling for every possibility in advance.

3.4. Mathematical Model

The following mathematical model is suggested to find the solution the company is
looking for in periodic meetings. Here, two separate objective functions are given at once.
The company should look for the objective function solution it wants according to the
strategy it has determined.

Data sets and indices are as follows:

N: Work Set (1, 2, n);
K: Row Set (1, 2, n);
M: Machine Set (1, 2, m);
J: work index j = 1, 2, n;
K: row index k = 1, 2, n;
I: machine index i = 1, 2, m.

Parameters are as follows:

Wj = weight of job j;
Rj = release date of job j;
Pj = processing time of job j;
Dj = due date of job j.

Decision variables are as follows:

Xjki = {1: if job j is assigned to row k of machine i; 0: o.w.};
CTki: completion time of job in row k on machine i;
STki: starting time of job in row k on machine i;
Tj = max (CTj − dj; 0);

U = ∑n
k = 0 δ

(
TJ
)

δ(x) =

{
1, x > 0;
0, o.w

Objective Functions are as follows:

Min ∑n
j = 1 wJ T J : minimizing total weighted tardiness;
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Min U: minimizing the number of tardy jobs.

Constraints are as follows:

∑m
i = 1 ∑n

k = 1 xJki = 1 ∀j ∈ N (1)

∑n
k = 1 xJki ≤ 1 ∀k ∈ K ∀i ∈ M (2)

STki ≥ ∑n
j = 1 rJ xJki ∀k ∈ K ∀i ∈ M (3)

ST(k+1)i ≥ STki + ∑n
j = 1 pJ xJki ∀k = 1, . . . n − 1 ∀i ∈ M (4)

CT(k+1)i ≥ STki + ∑n
j = 1 pJ xJki ∀k ∈ K ∀i ∈ M (5)

xjki = {0, 1 } ∀k ∈ K ∀i ∈ M ∀j ∈ N (6)

STki, CTki ≥ 0 ∀k ∈ K ∀i ∈ M (7)

Assignment Constraint (1): Each job must be assigned to exactly one position in the
schedule. This ensures that all jobs are scheduled without duplication or omission.

Uniqueness Constraint (2): Each position can be occupied by at most one job. This
prevents multiple jobs from being assigned to the same position.

Release Time Constraint (3): A job cannot start before its predefined release time.
This ensures that production does not begin prematurely.

Sequencing Constraint (4): Ensures that when a job is scheduled in a sequence, the
next job can only start after the completion of the previous one. This maintains the order
of execution.

Completion Time Constraint (5): Defines the completion time of a job as the sum of
its start time and processing duration. This ensures that the model correctly accounts for
processing times.

Variable Definitions (6): xjki is a binary variable ensuring that job assignments follow
the given constraints.

Non-Negativity Constraints (7): STki and CTki are non-negative, ensuring a feasible
scheduling timeline.

3.5. Proposed Methodology

The problem has two stages. The first stage is to predict, and the second stage is to
decide what will happen after the failure. In the literature, there are studies that use the
same algorithm for both parts, as well as studies that apply different solution methods for
both stages.

In the first stage, an initial schedule is created, and in the second stage, rescheduling
activities are carried out after the failure. A schedule will be created for the first stage, and
periodic updates to the schedule will be allowed.

The mathematical model created can be used at the beginning of production, without
taking into account any fluctuations in processing times or rework, by using only the
expected processing times values when creating the initial scheduling. Even in this case,
our problem is NP-hard.

The minimizing total weighted tardiness (TWT) problem involves scheduling a set of
jobs, each with a given processing time, weight, and due date, such that the total weighted
tardiness is minimized. The tardiness of each job is defined as the difference between its
completion time and its due date, if the job is completed late. The Job-Shop Scheduling
Problem (JSSP), the well-known NP-hard problem of scheduling, can be reduced to TWT.
In the JSSP, a set of jobs must be scheduled on a set of machines, with each job having a
predefined sequence of operations. The objective in the JSSP is to minimize the makespan,
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the total time required to complete all jobs. To reduce the JSSP to TWT, one conducts
the following:

• Each operation in the JSSP corresponds to a job in TWT.
• The processing time of each operation in the JSSP is mapped directly to the processing

time of the corresponding job in TWT.
• The weight of all jobs in TWT is set to one (i.e., no job has a higher priority than another).
• The due date for each job in TWT is set to the completion time of the corresponding

operation in the JSSP.

By this reduction, solving the TWT problem minimizes the total weighted tardiness,
and the tardiness of a job in TWT corresponds to the delay in completing a job beyond its
due date, which is determined by the JSSP instance. Thus, an optimal solution to TWT also
provides an optimal schedule for the JSSP, proving that TWT is NP-hard.

Similarly, the minimizing number of tardy jobs (NTJ) problem involves scheduling
jobs so that the number of tardy jobs is minimized, which can also be reduced from the JSSP:

• Each operation in the JSSP corresponds to a job in the NTJ.
• The processing time of each operation in the JSSP is mapped to the corresponding

job’s processing time in the NTJ.
• The due date for each job in the NTJ is set to the completion time of the corresponding

operation in the JSSP.

The goal of the NTJ is to minimize the number of tardy jobs, which is equivalent
to minimizing the number of jobs whose completion time exceeds their due date. This
objective directly relates to minimizing the number of operations that are completed
after their due dates in the JSSP instance. Therefore, an optimal solution to the NTJ will
correspond to an optimal solution for the JSSP, proving that the NTJ is NP-hard.

When actual production times deviate from expected values or rework operations
become necessary, the continuous optimization model must be re-executed using updated
data. This adjustment is essential, as machine availability changes dynamically with each
completed job, requiring real-time recalibration of the schedule. This makes the structure
of the problem even more difficult. The fact that the structure of the problem is NP-hard
and the amount of disturbance is very high has caused the need for a new methodology
that is practical and gives good results.

The methodology we developed is called Multi-Purpose Intelligent Utility (MIU).
This methodology provides fast and good results to the targeted strategy based on a
large number of distribution rules. Each dispatching rule has its own advantages and
disadvantages. We calculate all of these rules at once and present the one that gives the
best results to the decision-maker. Dispatching rules are frequently used in the literature
because they have low computational complexity, are easily applicable and adaptable, and
can provide good answers to high-input problems [1,24,25,39,40].

The advantages and disadvantages of the dispatching rules to be used in MIU are given
in Table 3. These rules, along with others, have been extensively discussed in the following
studies: Panwalkar and Iskander (1977) conducted a comprehensive survey of scheduling
rules [60]. Rajendran and Holthaus (1999) provided a comparative analysis of dispatching
rules in dynamic flow shops and job shops [61]. Chiang and Fu (2007) examined the use of
dispatching rules for job-shop scheduling with due-date-based objectives [62].
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Table 3. 13 Dispatching rules used in MIU.

Dispatching Rule Definition Advantages Disadvantages

Apparent Tardiness
Cost (ATC)

Prioritizes jobs based on a
calculated cost of apparent
tardiness, which considers
the difference between the
job’s current completion

time and its due date.

Helps in minimizing
overall tardiness and
meeting due dates.

Requires accurate
estimation of apparent

tardiness costs and may
not consider other factors

such as job priorities or
processing times.

Earliest Due Date (EDD)

Prioritizes jobs based on
their due dates, with jobs
having earlier due dates

processed first.

Effective for minimizing
the maximum lateness

of jobs.

May lead to suboptimal
utilization of machines if
jobs with later due dates

could be processed earlier.

Shortest Processing
Time (SPT)

Prioritizes jobs based on
the shortest processing
time, with shorter jobs

processed first.

Reduces the average
completion time of jobs.

Can lead to starvation of
longer jobs, especially if

there are many short jobs.

Longest Processing
Time (LPT)

Prioritizes jobs based on
the longest processing time,

with longer jobs
processed first.

Useful in balancing the
load across machines when

job lengths
vary significantly.

May increase the average
completion time of jobs

and can delay short jobs.

Weighted Shortest
Processing Time (WSPT)

Prioritizes jobs based on
their weighted processing

time, calculated as
processing time divided by

job weight.

Minimizes the weighted
sum of completion times.

Requires accurate weights
for each job and can be

computationally intensive.

First Slack Time Last
Processed (FSTLP)

Prioritizes jobs based on
their slack time, calculated
as due date minus (current
time plus processing time).

Reduces the risk of job
lateness by prioritizing jobs

close to their due dates.

May deprioritize already
late jobs, making them

even later.

Minimum Slack (MS)

Prioritizes jobs based on
their slack time, calculated
as the maximum of zero or

due date minus (current
time plus processing time).

Ensures that late jobs are
still given priority,

reducing maximum
lateness.

Similar to FSTLP but may
not always optimize other

performance metrics.

Least Flexible Job
First (LFJF)

Prioritizes jobs based on
their flexibility, calculated

as due date minus
release date.

Effective in environments
where job due dates

are critical.

Jobs with more flexibility
may be unnecessarily

delayed.

First in, First out (FIFO)
Processes jobs in the order

they arrive, based on
release date.

Simple and fair, easy to
implement.

May not optimize any
specific performance

metric and can lead to
inefficiencies.

Last in, First out (LIFO) Processes the most recently
arrived job first.

Can be useful in specific
scenarios where recent jobs

are more urgent.

Rarely used due to
potential for high lateness

and job starvation.

Random Scheduling Jobs are processed in a
random order.

Simple to implement,
useful for testing.

Inefficient and may lead to
suboptimal scheduling

performance.
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Table 3. Cont.

Dispatching Rule Definition Advantages Disadvantages

Weighted Shortest
Processing Time with Due
Date (WSPTDD)

Prioritizes jobs based on a
combination of processing
time, weight, and due date,

calculated as processing
time multiplied by (due

date/weight).

Balances due dates and
processing times,

optimizing a
weighted objective.

Requires accurate weights
and due dates for each job,
computationally intensive.

Critical Ratio (CR)

Prioritizes jobs based on
the critical ratio, calculated

as time until due date
divided by processing

time.

Helps in managing jobs
close to their due dates and
balances processing times

and due dates.

May not prioritize jobs
effectively if processing

times and due dates
vary widely.

Each dispatching rule has its own trade-offs and is suited to different production
environments and objectives. Choosing the right rule depends on factors such as job
characteristics, machine capabilities, and production goals. Using multiple dispatching
rules at the same time will cover each other’s disadvantages and ensure that the most
advantageous one is selected.

In the literature, various resolution methods have been employed to address predictive–
reactive rescheduling problems in parallel-machine environments, including Linear Mathe-
matical Models [55], Mixed Integer Programming (MIP) [26], LP-Relaxation-Based Two-
Stage Algorithms, the Time-Indexed LP Model [4], and Simulated Annealing Algorithms [2].
While these approaches provide structured optimization techniques, they also present sig-
nificant limitations, particularly in large-scale and dynamic production environments.

Mathematical programming models, such as MIP and the Time-Indexed LP Model,
can theoretically provide optimal solutions but often become impractical for real-world
applications due to their excessive computational requirements. As problem size increases,
the solution time grows exponentially, making them unsuitable for large-scale industrial
scheduling. The LP-Relaxation-Based Two-Stage Algorithm attempts to mitigate this
issue by simplifying the problem space, but this comes at the cost of deviating from true
optimality. Simulated Annealing and other heuristic-based approaches, while effective
in certain conditions, may suffer from inconsistent performance and require extensive
parameter tuning to achieve satisfactory results.

In contrast, our approach employs Python-based dispatching rules, which offer signif-
icant advantages in terms of computational efficiency, adaptability, and scalability. Unlike
complex mathematical models that demand high processing power, dispatching rules pro-
vide fast, heuristic-based scheduling decisions. Python’s (version 3.11.5) robust ecosystem,
including libraries such as NumPy, Pandas, and SciPy, allows for efficient data handling and
rapid simulations, making it particularly well suited for large-scale scheduling problems.

One of the key strengths of our method lies in its computational speed. Dispatching
rules operate with minimal processing overhead, enabling real-time decision-making in
production environments where quick responsiveness is crucial. Additionally, our approach
implements 13 different dispatching rules, ensuring adaptability to various production
scenarios without requiring extensive modifications. Moreover, Python’s modular structure
allows for seamless integration with existing production planning systems, facilitating a
smooth transition from theoretical models to practical implementation.

Despite these advantages, our approach is not without limitations. This study does
not use the model to calculate LB-UB (lower and upper bounds), which could present
an opportunity for integration with researchers working on exact models. Despite the
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advantages of using dispatching rules, the absence of LB-UB calculations means that global
optimality cannot be guaranteed. Furthermore, handling complex constraints—such as
machine-specific priorities, maintenance schedules, and intricate sequencing requirements—
is more straightforward in mathematical programming approaches than in dispatching-
rule-based heuristics.

In conclusion, our Python-based dispatching rule approach offers significant advan-
tages in terms of speed, adaptability, and real-world applicability while avoiding the
computational burdens associated with traditional optimization models. However, to fur-
ther enhance its effectiveness, a hybrid approach that integrates heuristics with advanced
optimization techniques could be explored to address its limitations, particularly in terms
of optimality and complex constraint handling.

4. MIU Methodology and Its Computations
In this section, the proposed MIU approach is introduced as a heuristic framework

to address the scheduling problem. The methodology combines multiple dispatching
rules to improve scheduling efficiency and adaptability in dynamic environments. The
implementation details, including rule selection and their integration into the scheduling
algorithm, are explained in depth.

Computations were made by applying the steps in the flow chart given in Figure 4.
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Figure 4. Predictive–reactive rescheduling using MIU.

The flowchart represents a decision-making framework for scheduling and reschedul-
ing processes. It begins with selecting an initial strategy by management, followed by
creating an initial schedule using MIU (details given in Figure 5). The manufacturing
process runs for a set period, after which the system evaluates whether rework is required
for completed jobs. If rework is needed, the jobs are added to the unstarted job list.
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If there are still unstarted jobs, machine availability is assessed, and an objective
function target may be updated by management at this moment. Management may define
the objective function at the outset of the scheduling process and update it at the beginning
of each period if necessary. The unstarted job list is then rescheduled using MIU, and the
cycle repeats with another manufacturing period. This iterative process continues until all
jobs are completed, at which point the process concludes.

Figure 5 illustrates the procedure of MIU. The proposed scheduling approach begins
by reading the data set and generating a list of upcoming tasks. If the list is empty, the
process moves directly to performance evaluation. Otherwise, the algorithm determines
machine availability and sets the scheduling time T as the minimum available time among
all machines. At this point, a scheduling list is created, including all tasks with a release
time less than or equal to T. The selected dispatching rule is then applied to determine
the task order, and the first task in the ordered list is assigned to an available machine.
Once assigned, the machine’s availability is updated by adding the task’s processing time
to the current time. The task is then recorded in the job list with its relevant parameters,
including the dispatching rule name, task number, assigned machine number, starting
and finishing times, tardy time, and weighted tardy time. Afterward, the scheduled task
is removed from the upcoming task list, and the process continues iteratively until all
tasks are scheduled. Upon completing the scheduling process, the algorithm evaluates
performance by calculating the total weighted tardiness (TWT) and the number of tardy
jobs (NTJ). These metrics are stored for each dispatching rule, and if all 13 predefined
dispatching rules have not yet been tested, the algorithm switches to the next rule and
repeats the process. Once all dispatching rules have been evaluated, the results are sorted,
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and the best-performing rule—based on the lowest TWT value—is selected as the optimal
scheduling approach. Finally, the selected rule and its corresponding job sequence are
presented as the final output.

It is accepted that the periodic meeting is held once a month, each day is two units of
time, each week has 5 days, each month has 4 weeks. This calculation makes the period
length 40 units.

The machine availability time is calculated based on the expected values of the planned
jobs in the previous period. If only the rework process remains after the main transactions
are completed in the last period, this process is completed without waiting for the periodic
meeting. The rework process of the delayed job is considered late even if the main process is
completed on time. If rework is needed within a period, no complete or partial rescheduling
should be conducted without a periodic meeting and a decision should be waited after the
meeting. If only the rework process remains after the main transactions are completed in
the last period, this process is completed without waiting for the periodic meeting.

Initial scheduling was prepared for TWT and NTJ problems separately, and the Gantt
charts which are given below as Figures 6 and 7 were obtained.
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Figure 7. Initial scheduling for NTJ problem.

After a period of production based on the initial schedule, in accordance with the
workflow chart, rework jobs, if any, are included in the list of unfinished jobs and the lists are
updated for rescheduling. Rescheduling operations are carried out through two strategies
that can be selected in periodic meetings, and the results are given separately below.

4.1. Total Weighted Tardiness (TWT) Minimization

The Gantt chart and detailed result table obtained when the decision-maker determines
the strategy as TWT are given below as Figure 8 and Table 4.
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Table 4. TWT strategy results and output details.

T = 160; TWT = 858

PCB No
Release

Date Due Date Weight
Expected
Process-

ing Time

Realized
Process-

ing Time

Rework
Need?

Starting
Time

Finishing
Time Delay

Weighted
Tardiness

P01 0 30 3 9 8 0 8 0 0

P02 30 70 1 8 9 119 128 58 58

P03 40 70 2 6 5 Yes 54 59 0 0

P04 60 80 3 11 12 69 81 1 3

P05 0 50 1 6 6 71 77 27 27

P06 60 100 3 11 12 96 108 8 24

P07 0 30 1 15 15 10 25 0 0

P08 20 50 1 18 19 88 107 57 57

P09 0 30 3 9 10 Yes 0 10 0 0

P10 30 60 3 5 5 38 43 0 0

P11 60 80 3 9 9 60 69 0 0

P12 10 50 3 8 8 Yes 18 26 0 0

P13 30 60 3 14 12 59 71 11 33

P14 20 50 1 11 11 81 92 42 42

P15 30 50 1 11 12 107 119 69 69

P16 60 100 1 10 11 Yes 128 139 39 39

P17 20 50 2 12 11 77 88 38 76

P18 90 110 1 15 17 137 154 44 44

P19 20 40 3 14 13 25 38 0 0

P20 30 60 3 8 9 50 59 0 0

P21 10 50 1 16 14 123 137 87 87

P22 0 30 3 9 10 Yes 8 18 0 0

P23 60 90 3 17 15 108 123 33 99

P24 20 40 3 16 18 26 44 4 12

Rew03 62 70 2 3 4 92 96 26 52

Rew09 13 30 3 5 5 43 48 18 54

Rew12 28 50 3 6 6 48 54 4 12

Rew16 142 100 1 6 7 142 149 49 49

Rew22 20 30 3 7 6 44 50 20 60

4.2. Number of Tardy Job (NTJ) Minimization

The Gantt chart and detailed result table obtained when the decision-maker determines
the strategy as the NTJ are given below as Figure 9 and Table 5.
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Table 5. NTJ strategy results and output details.

T = 160; NTJ = 16

PCB No
Release

Date Due Date Weight
Expected
Process-

ing Time

Realized
Process-

ing Time

Rework
Need?

Starting
Time

Finishing
Time Delay

Weighted
Tardiness

P01 0 30 3 9 8 0 8 0 0

P02 30 70 1 8 9 32 41 0 0

P03 40 70 2 6 5 Yes 56 61 0 0

P04 60 80 3 11 12 70 82 2 6

P05 0 50 1 6 6 0 6 0 0

P06 60 100 3 11 12 73 85 0 0

P07 0 30 1 15 15 41 56 26 26

P08 20 50 1 18 19 122 141 91 91

P09 0 30 3 9 10 Yes 6 16 0 0

P10 30 60 3 5 5 35 40 0 0

P11 60 80 3 9 9 61 70 0 0

P12 10 50 3 8 8 Yes 16 24 0 0

P13 30 60 3 14 12 107 119 59 177

P14 20 50 1 11 11 24 35 0 0

P15 30 50 1 11 12 110 122 72 72

P16 60 100 1 10 11 Yes 62 73 0 0

P17 20 50 2 12 11 40 51 1 2

P18 90 110 1 15 17 141 158 48 48

P19 20 40 3 14 13 82 95 55 165

P20 30 60 3 8 9 101 110 50 150

P21 10 50 1 16 14 18 32 0 0

P22 0 30 3 9 10 Yes 8 18 0 0

P23 60 90 3 17 15 119 134 44 132

P24 20 40 3 16 18 85 103 63 189

Rew03 61 70 2 3 4 103 107 37 74

Rew09 13 30 3 5 5 51 56 26 78

Rew12 28 50 3 6 6 56 62 12 36

Rew16 142 100 1 6 7 134 141 41 41

Rew22 20 30 3 7 6 95 101 71 213

5. Evaluations and Comparisons with the Current Situation
This section presents the experimental setup, including test scenarios based on real-

world data, and evaluates the performance of the MIU approach. Results are compared
with traditional scheduling methods, highlighting improvements in minimizing tardiness
and optimizing resource utilization. Key performance metrics and visualizations, such as
Gantt charts, are provided to support the analysis.

In the current situation, the company performs makespan minimization by taking into
account the expected production times before the production process starts, and for this
purpose, it accepts the LPT rule results as an initial schedule. Jobs that cannot be produced
within the expected time are not updated subsequently. If rework is needed, these jobs are
given priority, and these jobs are conducted when the machines are first empty and the
remaining jobs are shifted so that their order is not disrupted. When the problem in our
article was solved with the company’s current method, it gave the result of LPT 142 for the
initial schedule that minimizes the makespan. When the company’s rescheduling method
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was implemented using the same errors and actual processing times as those of the initial
schedule based on the LPT rule, the resulting Gantt charts (Figures 10 and 11) and outcome
table (Table 6) were obtained.
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Table 6. Result table of company’s current rescheduling method.

T = 160; TWT = 1633, NTJ = 19

PCB No
Release

Date Due Date Weight
Expected
Process-

ing Time

Realized
Process-

ing Time

Rework
Need?

Starting
Time

Finishing
Time Delay

Weighted
Tardiness

P01 0 30 3 9 8 0 8 0 0

P02 30 70 1 8 9 126 135 65 65

P03 40 70 2 6 5 Yes 135 140 70 140

P04 60 80 3 11 12 87 99 19 57

P05 0 50 1 6 6 139 145 95 95

P06 60 100 3 11 12 93 105 5 15

P07 0 30 1 15 15 0 15 0 0

P08 20 50 1 18 19 39 58 8 8

P09 0 30 3 9 10 Yes 18 28 0 0

P10 30 60 3 5 5 149 154 94 282

P11 60 80 3 9 9 122 131 51 153

P12 10 50 3 8 8 Yes 131 139 89 267

P13 30 60 3 14 12 47 59 0 0

P14 20 50 1 11 11 82 93 43 43

P15 30 50 1 11 12 75 87 37 37

P16 60 100 1 10 11 Yes 99 110 10 10

P17 20 50 2 12 11 71 82 32 64

P18 90 110 1 15 17 105 122 12 12

P19 20 40 3 14 13 58 71 31 93

P20 30 60 3 8 9 110 119 59 177

P21 10 50 1 16 14 15 29 0 0

P22 0 30 3 9 10 Yes 8 18 0 0

P23 60 90 3 17 15 60 75 0 0

P24 20 40 3 16 18 29 47 7 21

Rew03 142 70 2 3 4 145 149 79 158
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Table 6. Cont.

T = 160; TWT = 1633, NTJ = 19

PCB No
Release

Date Due Date Weight
Expected
Process-

ing Time

Realized
Process-

ing Time

Rework
Need?

Starting
Time

Finishing
Time Delay

Weighted
Tardiness

Rew09 31 30 3 5 5 34 39 9 27

Rew12 141 50 3 6 6 140 146 96 288

Rew16 113 100 1 6 7 119 126 26 26

Rew22 20 30 3 7 6 28 34 4 12

The company’s current strategy and the results obtained by applying our MIU method
are given in Table 7 below.

Table 7. Comparison between current method and MIU approach performances.

Total Weighted Tardiness
Minimization

Number of Tardy Jobs
Minimization

Current Method 1633 19

MIU Approach 858 16

Improvement 47.46% 15.79%

The proposed method outperformed the company’s current approach for both objec-
tive functions. This improvement stems from the implementation of complete rescheduling
and a flexible scheduling method.

Apart from data which are given in Section 3 and Results and which are given above,
20 different data sets are worked on and results are given in Table 8 altogether. These
20 scenarios were evaluated by applying random rework requirements, ranging from 0 to 5,
derived from past company data. The analysis was conducted on 16, 20, and 24 job batches
used in company planning. Scenario generation continued until the results converged to a
stable average.

Table 8. 20 Different scenario improvement results.

Scenario
TWT NTJ

Current
Method

MIU
Approach Improvement

Current
Method

MIU
Approach Improvement

1 1633 858 47.46% 19 16 15.79%

2 1127 844 25.11% 17 13 23.53%

3 1019 540 47.01% 19 14 26.32%

4 1050 629 40.10% 18 12 33.33%

5 1319 806 38.89% 18 15 16.67%

6 624 292 53.21% 8 7 12.50%

7 478 115 75.94% 8 6 25.00%

8 676 213 68.49% 9 9 0.00%

9 767 563 26.60% 14 13 7.14%

10 552 295 46.56% 10 9 10.00%

11 686 354 48.40% 11 9 18.18%
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Table 8. Cont.

Scenario
TWT NTJ

Current
Method

MIU
Approach Improvement

Current
Method

MIU
Approach Improvement

12 235 16 93.19% 7 3 57.14%

13 322 164 49.07% 8 5 37.50%

14 263 37 85.93% 8 3 62.50%

15 360 193 46.39% 8 7 12.50%

16 446 337 24.44% 17 10 41.18%

17 457 245 46.39% 15 8 46.67%

18 576 378 34.38% 18 10 44.44%

19 695 502 27.77% 16 12 25.00%

20 692 426 38.44% 15 11 26.67%

Average 48.19% 27.10%

To ensure transparency and reproducibility, the complete data set, including input
parameters and corresponding results for all 20 scenarios, has been made publicly available
at https://github.com/miulucak/Dynamic-Scheduling-in-Identical-Parallel-Machines-
Environments (accessed on 21 December 2024). Readers can access the data set through
this repository for further analysis and verification.

As can be seen in the table, an average improvement of approximately 50 percent in
TWT and 27 percent in the NTJ was observed. The main reason for this improvement is that
the weight and due date parameters are specifically taken into account in the dispatching
rules we use in the MIU approach. After objective function assessment, performance criteria
which are given in Section 2 have been calculated. In this study, the change in the start
times of jobs is considered as the stability criterion. Robustness is assessed through three
metrics: the largest difference in the amount of delay as robustness1, the difference in the
total amount of delay as robustness2, and the difference in the total weighted amount of
delay as robustness3. Lastly, nervousness is defined as the difference between the initially
planned and resulting machine job assignments. According to our definitions, lower values
for stability, robustness, and nervousness indicate a positive characteristic. In Table 9, the
company’s current strategy and MIU approach results in terms of stability, robustness, and
nervousness are given.

Table 9. Comparison between current method and MIU approach in terms of evaluation criteria.

Current Method

MIU Approach

Total Weighted
Tardiness

Minimization

Total Tardy Jobs
Minimization

stability 158 227 454

robustness 18 27 81

robustness2 133 149 127

robustness3 276 261 318

nervousness 1 8 7

https://github.com/miulucak/Dynamic-Scheduling-in-Identical-Parallel-Machines-Environments
https://github.com/miulucak/Dynamic-Scheduling-in-Identical-Parallel-Machines-Environments
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It is important to note that the numerical values in Table 9 present a comparative
result rather than absolute quantities. For instance, doubling the stability value does not
imply that the solution is twice as bad but rather indicates reduced stability. The illustrative
nature of these figures is crucial in this context. These numbers could vary significantly
depending on the characteristics of the data set; however, the underlying meaning of the
metrics remains consistent.

In the current production system, disruptions are addressed by promptly performing
partial rescheduling rather than complete rescheduling, ensuring minimal changes to the
remaining orders. This approach leads to better stability and nervousness values compared
to the MIU approach.

By definition and methodology, complete rescheduling typically results in greater
changes in job ordering and machine assignments. Therefore, it is natural for stability and
nervousness values to deteriorate. However, no significant differences were observed in
robustness values. This is because the MIU approach directly considers delay amounts and
the number of delayed jobs as objective functions, ensuring that the parameters within the
robustness criteria (e.g., changes in tardiness) remain controlled to prevent deterioration in
the objective function values with each rescheduling.

With the MIU approach, the deterioration of stability and nervousness values is
deemed acceptable because the primary goal is to minimize the number of delayed jobs
and the overall delay amount. Decision-makers must weigh the trade-offs between these
approaches when selecting a strategy. The classical method provides an agile and sta-
ble solution without focusing on outcomes, while the MIU approach offers a planned,
result-oriented framework that prioritizes outcomes over stability and robustness by em-
bracing changes.

6. Conclusions and Future Works
In our study, a scheduling problem frequently encountered by a company manufac-

turing in the space sector is discussed. With a process and method that we developed, we
tried to solve the need for rescheduling caused by the difference between expected and
actual values in the production period and the return of finished work to the system due to
production errors. There are two strategies that company management can choose. These
are minimization of the total weighted tardiness time and minimization of the number of
delayed jobs. For these strategies, visible improvements have been achieved compared
to the current system. Through rigorous analysis and comparison with traditional meth-
ods, MIU emerges as a powerful tool for optimizing scheduling strategies and enhancing
overall efficiency.

A key strength of MIU lies in its dynamic approach to scheduling, offering tailored
solutions for each strategy while seamlessly adapting to evolving production scenarios. This
flexibility empowers decision-makers to navigate uncertainties and optimize scheduling
outcomes in real time, a stark departure from the rigid solutions of the past.

Our process gives management the opportunity to assess strategy in periodic meetings
and allows rework operations to be completely rescheduled along with all remaining work.
Since the problems were NP-hard, there was a need to develop a heuristic procedure.
The MIU Approach we developed is structured to give good results very quickly and is
designed to use the advantages and avoid the disadvantages of dispatching rules for each
situation by using 13 different rules.

In our study, the stability, robustness, and nervousness value changes between the
results obtained by the current application of the workplace and the results given by the
developed algorithm are also shown. The trade-off between the improvement in objective
function values and the worsening of the evaluation criteria was mentioned. In addition,
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expressing numerically the inverse proportion of the nervousness value to stability in the
literature is another important contribution of our study.

As we chart the course forward, we may also analyze the impact of varying period
durations across diverse scenarios to further validate the robustness of the methodology.
Additionally, investigations into scenarios involving variable technician speeds could
offer deeper insights into real-world production dynamics. In future work, it is planned
to conduct additional analyses to further validate the improvements introduced by the
MIU approach. This will include statistical tests and significance analysis to quantify
enhancements compared to existing methods, providing a more robust evaluation of
the results.
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