Shape Effect and Accuracy Analysis of Rock Tensile Strength Test
<p>Split test disc specimen (<b>left</b>) and split result (<b>right</b>).</p> "> Figure 2
<p>Splitting load–displacement curve.</p> "> Figure 3
<p>Loading method.</p> "> Figure 4
<p>Relationship between tensile strength and disc diameter.</p> "> Figure 5
<p>Numerical simulation test specimen. (<b>a</b>) Direct tensile standard specimen; (<b>b</b>) Dumbbell-shaped specimen with curved-transition surface; (<b>c</b>) Dumbbell specimen with linear-transition surface; (<b>d</b>) Brazilian disc specimen.</p> "> Figure 6
<p>Disc stress distribution contour map.</p> "> Figure 7
<p>The relationship between splitting tensile strength and diameter.</p> "> Figure 8
<p>Stress distribution diagram of curved dumbbell specimen. Panels (<b>a</b>–<b>d</b>) show the stress distribution contour changes at different time points, while (<b>e</b>) shows the final fracture result.</p> "> Figure 9
<p>Stress distribution diagram of straight dumbbell specimen. Panels (<b>a</b>–<b>d</b>) show the stress distribution contour changes at different time points, while (<b>e</b>) shows the final fracture result.</p> "> Figure 10
<p>The relationship between the direct tensile strength and diameter of dumbbell specimens.</p> "> Figure 11
<p>The relationship between split tensile strength and diameter after correction.</p> "> Figure 12
<p>Comparison of measured tensile strength of different specimens.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Analysis of Shape Effects in Splitting Tests
2.1. Similitude Simulation Test
2.2. Splitting Test Results
2.3. Numerical Simulation Validation
2.4. Experimental Analysis
3. Comparison and Analysis of the Accuracy Between Direct Tension and Brazilian Splitting Tests
3.1. Test Scheme
3.1.1. Numerical Simulation Test Specimen
3.1.2. Parameter Selection
3.2. Test Results and Analysis
4. Accuracy Analysis of Diameter Correction Factor and Test Method
4.1. Diameter Correction Factor
4.2. Analysis of the Accuracy of the Test Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diederichs, M.; Kaiser, P. Tensile strength and abutment relaxation as failure control mechanisms in underground excavations. Int. J. Rock Mech. Min. Sci. 1999, 36, 69–96. [Google Scholar] [CrossRef]
- Perras, M.A.; Diederichs, M.S. A Review of the Tensile Strength of Rock: Concepts and Testing. Geotech. Geol. Eng. 2014, 32, 525–546. [Google Scholar] [CrossRef]
- Gao, W.; Chen, X.; Hu, C.; Zhou, C.; Cui, S. New damage evolution model of rock material. Appl. Math. Model. 2020, 86, 207–224. [Google Scholar] [CrossRef]
- Bahaaddini, M.; Serati, M.; Masoumi, H.; Rahimi, E. Numerical assessment of rupture mechanisms in Brazilian test of brittle materials. Int. J. Solids Struct. 2019, 180–181, 1–12. [Google Scholar] [CrossRef]
- Pandey, P.; Singh, D.P. Deformation of a rock in different tensile tests. Eng. Geol. 1986, 22, 281–292. [Google Scholar] [CrossRef]
- Liu, J.; Lyu, C.; Lu, G.; Shi, X.; Li, H.; Liang, C.; Deng, C. Evaluating a new method for direct testing of rock tensile strength. Int. J. Rock Mech. Min. Sci. 2022, 160, 105258. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Wu, Z.; Liu, J.; Zhao, Y.; Xu, H.; Wei, J.; Zhong, W. A universal direct tensile testing method for measuring the tensile strength of rocks. Int. J. Min. Sci. Technol. 2024, 34, 1443–1451. [Google Scholar] [CrossRef]
- Liao, Z.Y.; Zhu, J.B.; Tang, B.C.A. Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests. Int. J. Rock Mech. Min. Sci. 2019, 115, 21–32. [Google Scholar] [CrossRef]
- Komurlu, E.; Demir, S. Determination of Direct Tensile Strength Values of Rock Materials by a New Test Method of Drilled Disc Tension. Period. Polytech.-Civ. Eng. 2020, 64, 33–41. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Ebneabbasi, P.; Karimi, H.r.; Nikbakht, E. A novel test device for the direct measurement of tensile strength of rock using ring shape sample. Int. J. Rock Mech. Min. Sci. 2021, 139, 104649. [Google Scholar] [CrossRef]
- Perras, M.A.; Diederichs, M.S. Predicting excavation damage zone depths in brittle rocks. J. Rock Mech. Geotech. Eng. 2016, 8, 60–74. [Google Scholar] [CrossRef]
- Vogler, D.; Walsh, S.D.C.; Dombrovski, E.; Perras, M.A. A comparison of tensile failure in 3D-printed and natural sandstone. Eng. Geol. 2017, 226, 221–235. [Google Scholar] [CrossRef]
- Komurlu, E.; Kesimal, A.; Demir, A.D. Dog bone shaped specimen testing method to evaluate tensile strength of rock materials. Geomech. Eng. 2017, 12, 883–898. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Chen, J.; Zhang, J. Theoretical analysis of rock tensile strength determined by Brazilian splitting test of platform. Rock Soil Mech. 2015, 36, 739–748. [Google Scholar] [CrossRef]
- You, M.; Su, C. Experimental study on split test with flattened disk and tensile strength of rock. Chin. J. Rock Mech. Eng. 2004, 18, 3106–3112. (In Chinese) [Google Scholar]
- You, M.; Su, C. Theory and experiment of platform disc splitting. Chin. J. Rock Mech. Eng. 2004, 01, 170–174. (In Chinese) [Google Scholar]
- Guo, T.; Wang, H.; Si, X.; Pu, C.; Liu, Z.; Zhang, Q.; Liu, W. Fracture Characteristics and Tensile Strength Prediction of Rock–Concrete Composite Discs Under Radial Compression. Mathematics 2024, 12, 3510. [Google Scholar] [CrossRef]
- GB/T 50266-2013; Standard for Test Methods for Engineering Rock Mass. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Chengdu, China, 2023. (In Chinese)
- Dou, F.; Hou, P.; Jia, Z.; Wang, C.; Zhao, H.; Wang, Y. Effect of clay minerals on tensile failure characteristics of shale. ACS Omega 2022, 7, 24219–24230. [Google Scholar] [CrossRef]
- ASTM D3967-16; Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. ASTM: West Conshohocken, PA, USA, 2016. (In Chinese)
- ISRM. Suggested Methods for Determining Tensile Strength of Rock Materials. Int. J. Rock Mech. Min. Sci. 1978, 15, 99–103. [Google Scholar] [CrossRef]
- Komurlu, E.; Kesimal, A.; Demir, S. Experimental and numerical study on determination of indirect (splitting) tensile strength of rocks under various load apparatus. Can. Geotech. J. 2015, 53, 360–372. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, W.; Xia, K. Numerical study on tensile failures of heterogeneous rocks. J. Rock Mech. Geotech. Eng. 2020, 12, 50–58. [Google Scholar] [CrossRef]
- DL/T 5368-2007; Regulations for Rock Tests of Hydropower and Water Conservancy Projects. Ministry of Water Resources of the People’s Republic of China: Chengdu, China, 2007. (In Chinese)
- Komurlu, E. Loading rate conditions and specimen size effect on strength and deformability of rock materials under uniaxial compression. Int. J. Geo-Eng. 2018, 9, 17. [Google Scholar] [CrossRef]
- Briševac, Z.; Kujundžić, T.; Čajić, S. Current Cognition of Rock Tensile Strength Testing By Brazilian Test. Min.-Geol.-Pet. Eng. Bull. 2015, 30, 101–114. [Google Scholar] [CrossRef]
- Demirdag, S.; Tufekci, K.; Sengun, N.; Efe, T.; Altindag, R. Determination of the Direct Tensile Strength of Granite Rock by Using a New Dumbbell Shape and its Relationship with Brazilian Tensile Strength. IOP Conf. Ser.-Earth Environ. Sci. 2018, 221, 012094. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Y.B. Experimental and numerical investigation on the dumbbell-shaped specimen of concrete-like materials under tension. Lat. Am. J. Solids Struct. 2018, 15, e93. [Google Scholar] [CrossRef]
- Lin, H.; Xiong, W.; Yan, Q. Three-Dimensional Effect of Tensile Strength in the Standard Brazilian Test Considering Contact Length. Geotech. Test. J. 2016, 39, 137–143. [Google Scholar] [CrossRef]
- Li, D.; Wong, L.N.Y. The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights. Rock Mech. Rock Eng. 2013, 46, 269–287. [Google Scholar] [CrossRef]
- Kourkoulis, S.; Markides, C.F.; Chatzistergos, P. The standardized Brazilian disc test as a contact problem. Int. J. Rock Mech. Min. Sci. 2013, 57, 132–141. [Google Scholar] [CrossRef]
- Markides, C.F.; Kourkoulis, S. The stress field in a standardized Brazilian disc: The influence of the loading type acting on the actual contact length. Rock Mech. Rock Eng. 2012, 45, 145–158. [Google Scholar] [CrossRef]
- Japaridze, L. Stress-deformed state of cylindrical specimens during indirect tensile strength testing. J. Rock Mech. Geotech. Eng. 2015, 7, 509–518. [Google Scholar] [CrossRef]
- Tang, H.; He, J.; Gan, Z.; Li, J.; Hua, W.; Dong, S. Tensile strength and elastic modulus determined in the Brazilian test: Theory and experiment. Meccanica 2022, 57, 2533–2552. [Google Scholar] [CrossRef]
- Feng, L.A.; Jasiuk, I. Effect of specimen geometry on tensile strength of cortical bone. J. Biomed. Mater. Res. Part A 2010, 95A, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xia, Y. Three-dimensional Analysis of Bar-Bar Tensile Impact Testing Apparatus with a Flat Specimen by Elastoplastic FEM. Chin. J. Appl. Mech. 2000, 17, 121–126. (In Chinese) [Google Scholar]
- Wang, C.; Xia, Y. Two Dimensional Axisymmetric Analysis of Bar Bar Tensile Impact Testing Apparatus by Elastoplastic FEM. Chin. J. Appl. Mech. 1999, 16, 65–73. (In Chinese) [Google Scholar]
- Wang, C.; Wan, H.; Xia, Y. A Two-Dimensional Axisymmetric Numerical Analysis of a Bar–Bar Tensile Impact Apparatus by Elastoplastic Fem. J. Sound Vib. 1999, 220, 787–806. [Google Scholar] [CrossRef]
- Mellor, M.; Hawkes, I. Measurement of tensile strength by diametral compression of discs and annuli. Eng. Geol. 1971, 5, 173–225. [Google Scholar] [CrossRef]
- Fairhurst, C. On the validity of the ‘Brazilian’ test for brittle materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1964, 1, 535–546. [Google Scholar] [CrossRef]
Density (g·cm−3) | Porosity (%) | P-Wave Velocity (m·s−1) | Elastic Modulus (GPa) | Cohesion (MPa) | Internal Friction Angle (°) | Poisson’s Ratio | Uniaxial Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|
2.3 | 20 | 3800 | 25 | 2 | 30 | 0.2 | 30 |
Diameter (mm) | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | Test 8 | Standard Deviation | Average Value |
---|---|---|---|---|---|---|---|---|---|---|
30 | 0.87 | Failed | Failed | Failed | 0.90 | 1.07 | 1.08 | 1.03 | 0.08 9 | 0.99 |
40 | 0.79 | 0.85 | 0.85 | 0.76 | 0.84 | 0.83 | 0.70 | 0.95 | 0.06 7 | 0.82 |
50 | 0.88 | 0.63 | Failed | 0.83 | Failed | 0.66 | 0.74 | 0.59 | 0.10 4 | 0.72 |
70 | 0.67 | 0.72 | 0.70 | 0.75 | 0.67 | Failed | 0.58 | Failed | 0.05 4 | 0.68 |
90 | 0.49 | 0.48 | 0.56 | 0.50 | Failed | Failed | 0.64 | 0.60 | 0.05 8 | 0.55 |
110 | 0.55 | Failed | 0.41 | Failed | 0.52 | 0.54 | 0.41 | 0.43 | 0.06 0 | 0.48 |
Density ρ (g·cm−3) | Fracture Toughness KIC (MPa·m0.5) | Crack Friction Factor k | Crack Cohesion cf (MPa) | Porosity n (%) | Damage Evolution Parameter | Mohr–Coulomb Friction Parameter |
---|---|---|---|---|---|---|
2.3 | 0.8 | 0.4 | 2 | 20 | 1 | 0.6 |
Specimen Shape | Diameter Range/mm |
---|---|
Dumbbell-shaped specimen with curved-transition surface | 45~55 |
Dumbbell specimen with linear-transition surface | 45~55 |
Specimen Shape | Deviation/% |
---|---|
Standard cylinder | 0 |
disc | 8.90 |
Curved-transition plane dumbbell shape | 23.40 |
Straight-transition plane dumbbell shape | 49.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, J.; Zhao, J.; Niu, S. Shape Effect and Accuracy Analysis of Rock Tensile Strength Test. Appl. Sci. 2025, 15, 2477. https://doi.org/10.3390/app15052477
Pei J, Zhao J, Niu S. Shape Effect and Accuracy Analysis of Rock Tensile Strength Test. Applied Sciences. 2025; 15(5):2477. https://doi.org/10.3390/app15052477
Chicago/Turabian StylePei, Junjie, Jinchang Zhao, and Shaoqing Niu. 2025. "Shape Effect and Accuracy Analysis of Rock Tensile Strength Test" Applied Sciences 15, no. 5: 2477. https://doi.org/10.3390/app15052477
APA StylePei, J., Zhao, J., & Niu, S. (2025). Shape Effect and Accuracy Analysis of Rock Tensile Strength Test. Applied Sciences, 15(5), 2477. https://doi.org/10.3390/app15052477