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Abstract: Path planning for intelligent semi-trailers encounters numerous challenges in
complex traffic conditions. Serious consequences, such as vehicle rollover, may occur
when the traffic conditions change. Therefore, it is vital to consider both the surrounding
dynamic traffic conditions and the vehicle’s roll stability during the lane-changing process
of intelligent semi-trailers. We propose an innovative path-planning method tailored for
intelligent semi-trailers. This path-planning method is designed for semi-trailers on straight-
road alignments. Firstly, we employ a fuzzy inference system to process information
about surrounding traffic, make lane-changing decisions, and determine the starting point.
Secondly, the lane-changing path is generated using a B-spline curve. Subsequently, we
apply a particle swarm optimization algorithm to enhance the B-spline curve. Thirdly,
we utilize a Transformer model to analyze the nonlinear relationships among information
about surrounding traffic, vehicle information, and the roll stability of the intelligent
semi-trailer. We establish the roll stability boundary for the vehicle. Finally, we design a
multi-objective cost function to select the optimal path. The simulation results demonstrate
that the proposed method dynamically adapts the planned path to variations in driving
parameters, ensuring trackability while reducing the steering angle, lateral acceleration,
and yaw rate. This approach meets the roll stability requirements of intelligent semi-trailers,
significantly enhances their stability during lane changing, and provides robust support
for safe and efficient operation.

Keywords: intelligent semi-trailer; path planning; roll stability; fuzzy inference system;
B-spline curve; particle swarm optimization; Transformer; adaptability to traffic conditions

1. Introduction
Autonomous driving technology has advanced rapidly in recent years and has expand-

ing applications in commercial vehicles. Among them, intelligent semi-trailers have become
the focus of academia and industry because of their broad development prospects [1]. How-
ever, path planning for these articulated vehicles remains a significant challenge in dynamic
environments. Unlike passenger vehicles, semi-trailers exhibit complex kinematic behav-
iors and heightened susceptibility to rollover during lane changes. The risk is exacerbated
by variable road conditions (e.g., adhesion coefficients), load distributions, and interactions
with surrounding traffic [2]. Academic research on path planning has been conducted for
a long time. At present, the common path-planning methods in the industry comprise
the artificial potential field method (APF), algorithms based on curve interpolation, algo-
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rithms based on sampling, algorithms based on graph searching, and algorithms based on
intelligent optimization [3].

The goal of APF is to plan a collision-free path from the starting point to the target
point for autonomous vehicles in the environment. It abstracts the movement of vehicles
as the movement in a virtual potential field, which is superimposed by a gravitational
field and a repulsive field. The gravitational field prompts the vehicle to move toward
the target point, and the repulsive field makes the vehicle avoid obstacles. The resultant
force received by the vehicle in the potential field determines its movement direction. By
continuously calculating the resultant force and updating the vehicle position, a movement
path is constructed [4]. There are two main problems with the APF. One is that it is prone
to getting trapped at a local minimum, and the other is that it has insufficient adaptability
to dynamic traffic conditions. Liu et al. successfully enhanced traditional APF to facilitate
collision avoidance for both static and moving obstacles, providing a novel strategy for
ensuring the safe operation of autonomous vehicles in complicated environments [5]. Chen
et al. implemented a strategy involving the discretization of obstacle boundaries to improve
safety during obstacle avoidance. Additionally, a stochastic escape force was integrated to
inhibit the vehicle from becoming trapped in local minima [6]. Combining the APF with
the model predictive control (MPC) also has a good effect on path planning [7,8]. However,
the application of the APF approach comes with distinct drawbacks. It performs poorly
in dealing with the kinematic constraints of vehicles and environmental dynamics, which
reduces the driving safety of vehicles to some extent [9].

Algorithms based on curve interpolation can consider the kinematic and dynamic
features of the vehicle, which are more common path-planning methods. Asrofudin et al.
used the Sigmoid function to generate the lane-changing path to achieve efficient obstacle
avoidance and stable path tracking for tractor-trailers [10]. Yue et al. introduced a robust
tube model predictive control method based on fifth-degree polynomial trajectories for
solving the automatic lane-changing problem of tractor-trailers [11]. Spline curves, such as
B-spline curves and Bézier curves, have the advantages of good smoothness and continuous
curvature changes, and they are also quite common in path planning [12–14]. Additionally,
the simple curve interpolation method often fails to meet the requirements of vehicles
for variable paths. Consequently, in the current stage, the curve interpolation method is
customarily integrated with other optimization techniques [15,16] However, the methods
commonly exhibit the problem of elevated computational complexity and demonstrate
relative inefficacy when confronted with dynamic obstacles.

Algorithms based on sampling include the rapid search random tree algorithm (RRT),
the probabilistic roadmap algorithm (PRM), and their improved algorithms (such as R2-
RRT*, APG-RRT, etc.) [17–19]. However, such methods are primarily applied in robotic path
planning. When adapted to intelligent semi-trailers, the quality of the resultant planned
paths leaves much to be desired, and their practical applicability is notably restricted.

Algorithms based on graph searching include the Dijkstra algorithm, A* algorithm, D*
algorithm, and their fusion and improved algorithms [20–23]. However, the limitations of
such algorithms are rather prominent when the vehicle velocity is high and in dynamic
traffic conditions. They are mainly applicable to the determination of the shortest variable
paths in static traffic conditions.

Algorithms based on intelligent optimization are methods that use intelligent opti-
mization algorithms to solve path-planning problems. These algorithms usually simulate
biological group behaviors, evolutionary processes, or physical phenomena in nature to
find the optimal solution or approximate optimal solution to problems. Common intelli-
gent optimization algorithms include genetic algorithms [24], ant colony algorithms [25],
particle swarm optimization algorithms [26], etc. Through continuous iteration and evolu-
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tion, they search in the solution space and can effectively handle complex problems that
are difficult to solve by traditional optimization algorithms. Relevant research has made
improvements targeting the deficiencies of traditional optimization algorithms [27–29].
However, such methods generally have the drawbacks of slow convergence speed and low
computational efficiency.

At present, there are relatively few studies specifically focusing on the trajectory
planning of intelligent semi-trailers. Hou and Xu designed an Active Trailer Steering
(ATS) controller to address the high-speed driving safety issues of semi-trailers. Through
theoretical analysis and simulation verification, the lateral stability of semi-trailers and
the trajectory tracking performance have been effectively improved [30]. Manav et al.
proposed an adaptive path-following control framework for the automatic docking of semi-
trailers, effectively solving the path-following problem of semi-trailers during the docking
process [31]. Han et al. proposed a new type of lane-keeping path planner and steering
wheel angle controller for semi-trailers. Considering the unique dynamic characteristics of
semi-trailers, it effectively improves the lane-keeping performance of semi-trailers during
driving [32].

Existing path-planning methods face three critical limitations:

1. Roll stability neglect: Most of these methods focus on four-wheeled vehicles, and
there is less research on semi-trailers. In comparison, the path planning problem of
semi-trailers is more complicated. The intelligent semi-trailers have high requirements
for roll stability, which needs to be considered when carrying out path planning.

2. Traffic conditions adaptability: Changes in the surrounding traffic conditions, such as
the road surface adhesion coefficient, load capacity, and driving velocity, affect the
path planning of intelligent semi-trailers, but they are often ignored.

3. As commercial vehicles for bulk transportation, the impact of load capacity on lane-
changing paths cannot be underestimated.

Aiming at the above problems, we propose an intelligent semi-trailer path planning
method considering the surrounding traffic conditions and vehicle roll stability. The
primary contributions of this article can be outlined as follows:

1. A lane-changing method applicable to intelligent semi-trailers is proposed, which
accounts for variations in the surrounding traffic conditions and the characteristics
of intelligent semi-trailers, thereby maintaining their roll stability throughout the
lane-changing maneuver.

2. A multi-state fusion lane-changing decision-making system based on a fuzzy inference
system is constructed. This system comprehensively integrates multiple surrounding
traffic conditions, including the road adhesion coefficient, velocity, acceleration, and
the distance between the self-vehicle and the surrounding vehicles. Through a hierar-
chical fuzzy inference architecture, this system accurately makes decisions regarding
lane-changing behavior and precisely calculates the optimal starting position for
the maneuver.

3. A path generation and optimization scheme that integrates the B-spline curve with
a particle swarm optimization algorithm (PSO) is designed. The optimization capa-
bilities of PSO are employed to enhance the B-spline curve, effectively addressing
the inherent limitations of traditional path planning algorithms when managing the
complex kinematic constraints of intelligent semi-trailers.

4. A Transformer model is established to calculate the roll stability boundary of intelli-
gent semi-trailers. This model utilizes road information, surrounding traffic condition
data, and vehicle parameters as input variables to perform regression predictions on
the maximum lateral load transfer ratio (LTR) of the intelligent semi-trailer, thereby en-
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abling precise determination of the roll stability boundary and enhancing the vehicle’s
roll stability.

This approach not only enhances safety but also reduces steering effort by 15–25%
compared to conventional methods, as validated through MATLAB (2023b)/TruckSim
(2019) co-simulations (Section 6). By bridging theoretical advancements with practical
deployment ability, our method paves the way for safer and more efficient autonomous
freight transportation.

The rest of the article is arranged as follows: Section 2 introduces the multi-state lane-
changing decision-making system. Section 3 describes the path generation and optimization
scheme. Section 4 introduces the model for calculating the roll stability boundary. Section 5
introduces the optimal path selection module. Section 6 contains the experimental results.
Section 7 summarizes the conclusions.

2. Multi-State Lane-Changing Decision-Making System
Hierarchical Fuzzy Inference is an important method in the field of fuzzy inference [33].

It is constructed based on fuzzy logic theory and aims to handle reasoning patterns of
uncertain information with complex and multi-level structures. Hierarchical fuzzy infer-
ence divides the system into multiple levels and sets fuzzy rules and variables at different
levels to deal with complex situations. The method can better deal with systems with com-
plex structures and multiple variables. Therefore, it is feasible to use a hierarchical fuzzy
inference system to control the lane-changing decision-making process of an intelligent
semi-trailer.

We aim to study decision-making and planning in the automatic driving process. In
this study, the intelligent semi-trailer is equipped with the capability to sense and accurately
recognize the surrounding traffic condition information essential for its operation. When
conducting path planning, the main considerations are straight road sections, flat slopes,
and a standard lane width of 3.75 m. The vehicle determines its lane-change behavior by
considering various factors, including the coefficient of the road surface attachment, its
velocity and acceleration, the velocity and acceleration of a nearby vehicle, and the distance
between itself and the surrounding vehicle.

2.1. Design of Fuzzy Control System

The process of the method is illustrated in Figure 1, which depicts the framework
of the lane-changing decision-making system. In this system, the lane-changing decision
process is modeled as a function:

Esteer = f (µ, vsubj, vsur, asubj, asur, d) (1)

where Esteer quantifies the decision threshold, referred to as the lane-changing decision
factor, µ is the adhesion coefficient of the road surface, vsubj is the velocity of the self-vehicle,
vsur is the velocity of the surrounding vehicle, d is the distance between the self-vehicle
and the surrounding vehicle, asubj is the acceleration of the self-vehicle, and asur is the
acceleration of the surrounding vehicle. When the value of Esteer exceeds 0.5, the vehicle
will execute a lane change; otherwise, it will continue moving straight ahead.

In the first layer of fuzzy reasoning, the collision risk factor Er is obtained by analyzing
vsubj and µ. Er can be expressed as:

Er = FIS1(vsubj, µ) (2)

where Er is the risk factor. The inference surface of the first layer structure is shown in
Figure 2a.
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In the second layer of fuzzy reasoning, the risk avoidance factor Era can be calculated
by the velocity of the self-vehicle, the velocity of the surrounding vehicle, and the distance
between the self-vehicle and the surrounding vehicle. Then, Era and Er are input together
into the second layer of the system to obtain the lane-changing decision factor Esteer:

Esteer = FIS2(Er, Era) (3)

The inference surface of the second layer structure is shown in Figure 2b.

2.2. Establish Membership Function

The membership function is an important concept in fuzzy set theory. It is used to
describe the degree to which an element belongs to a fuzzy set. It maps explicit input values
to a membership degree value between 0 and 1. The closer the degree of membership is to
1, the more the input belongs to the set. Conversely, the closer it is to 0, the less it belongs to
the set [34]. In this study, the membership function is used to convert explicit variables such
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as vehicle state and environmental information into fuzzy variables for fuzzy reasoning. In
this system, the membership function composed of a triangular membership function and
an S-shaped membership function is adopted.

In the first layer fuzzy inference system (FIS1), the input variables are µ and vsubj, and
the output variable is Er. First, we standardize vsubj as follows:

ṽsubj =
vsubj − vmin

vmax − vmin
(4)

setting the minimum velocity vmin to 0 m/s and the maximum velocity vmax to 35 m/s.
In the first layer fuzzy inference system (FIS1), the explicit variables

∼
vsubj, µ, and Er are

converted to fuzzy variables through the membership functions. The membership functions
of

∼
vsubj, µ, and Er are shown in Figure 3a–c.
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In the second layer fuzzy inference system (FIS2), the variables for input are Er and
Era, the output variable is Esteer. Era is calculated from vsubj, vsur, and d:

Era =
Ds

d
×

vsubj − vsur

vsubj
(5)

where Ds is the safety distance and defined as:

Ds =
v2

subj

2asubj
− v2

sur
2asur

+ vsur × tx + D0 (6)

where asubj and asur are the maximum accelerations of the self-vehicle and surrounding
vehicle; asubj = 8 m/s2, asur = 8 m/s2. tx is the delay time of the vehicle control system,
which equals 0.2 m. D0 represents the minimum safe distance maintained between two
vehicles, established at 1 m [35].
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In the second layer fuzzy inference system (FIS2), the explicit variables Er, Era, and
Esteer are converted to fuzzy variables through the membership functions. The membership
functions of Er, Era, and Esteer are shown in Figure 3c.

2.3. Fuzzy Control Rules and Defuzzification

The control rules in this system mainly include the following two points: (1) As vsubj

and Era increase, the lane-changing maneuver should be initiated earlier, i.e., Esteer should
increase. Also, as µ decreases, the lane changes should be advanced, and Esteer should
increase. (2) When the input variable vsubj is large or µ is small, the output variable Esteer is
more sensitive to changes. Fuzzy control rules are the core component of the multi-state
lane-changing decision-making system. They provide a logical basis for the lane-changing
decision-making of intelligent semi-trailers based on the relationship between different
input variables. Through careful consideration of various influencing factors, these rules
can determine whether and when a vehicle should change lanes. The following is a detailed
introduction to the fuzzy control rules formulated according to different input variables.
These rules are summarized in Tables 1 and 2, respectively.

Table 1. Fuzzy inference rules for FIS1.

Er

~
vsubj

NB NS ZO PS PB

µ

NB ZO PS PS PB PB
NS NS ZO PS PB PB
ZO NS NS ZO PS PS
PS NB NS NS ZO ZO
PB NB NB NS NS ZO

Table 2. Fuzzy inference rules for FIS2.

Esteer
Era

NB NS ZO PS PB

Er

NB NB NB NS ZO ZO
NS NB NS ZO PS PS
ZO NS ZO ZO PS PS
PS ZO ZO PS PS PB
PB ZO PS PS PB PB

Where ZO represents zero, PS represents positive small, PB represents positive big, NS represents negative small,
and NB represents negative big.

Table 1 shows the fuzzy inference rules of the first-level fuzzy inference system (FIS1).
In it, rows represent different fuzzy sets of the vehicle’s own speed

∼
vsubj, and columns

represent different fuzzy sets of the road adhesion coefficient µ. The element Er in the table
is the fuzzy set of the collision risk factor inferred from µ and

∼
vsubj. For example, when µ is

NB (Negative Big) and
∼
vsubj is NB (Negative Big), Er is ZO (Zero). This indicates that, in

this case, the collision risk factor is at a relatively low level.
Table 2 shows the fuzzy inference rules of the second-level fuzzy inference system

(FIS2). In it, rows represent different fuzzy sets of risk avoidance factor Era, and columns
represent different fuzzy sets of risk factor Er. The element Esteer in the table is the fuzzy
set of the lane-changing decision factor inferred from Era and Er. For example, when Era

is PB (Positive Big) and Er is PS (Positive Small), Esteer is PB (Positive Big). At this time,
Esteer is much greater than 0.5, and the vehicle will be more inclined to change lanes to
avoid potential risks or obtain more favorable driving conditions. In this way, the fuzzy
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control rules achieve effective control over the lane-changing decision-making of intelligent
semi-trailers by comprehensively processing multiple input variables.

On the other hand, compared with other defuzzification methods, the center of gravity
method offers distinct advantages. It considers the entire distribution of the fuzzy set,
considering both the membership degrees of all elements within the set and their corre-
sponding output values. For example, in our lane-changing decision-making system, when
calculating the lane-changing decision coefficient Esteer, the center of gravity method does
not just focus on individual high-membership elements. Instead, it weighs all elements ac-
cording to their membership degrees and the values they contribute to the decision-making
process. This careful consideration of the overall distribution of the fuzzy set ensures that
the defuzing result is more representative of the entire fuzzy inference process. Moreover,
the center of gravity method has a full mathematical theoretical foundation [36], providing
a reliable and consistent approach for obtaining a crisp output from the fuzzy set. Therefore,
we choose the center of gravity method. Then, Esteer will be obtained. When Esteer is greater
than 0.5, the intelligent semi-trailer will make a lane change, and the following formula is
used to calculate the starting position where the lane change occurs:

Dsp = Esteer × Dsd + Ds (7)

where Dsp is the distance between the self-vehicle and the surrounding vehicle at the
beginning of the lane changing, and Ds is the distance of the lane-changing decision. Based
on experimental findings, an optimal value of Ds is determined to be 10 m. Figure 4
illustrates the lane-changing distance.
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3. Path Generation and Optimization Scheme
After obtaining the lane-changing position information, we perform path planning

starting from this position. Subsequently, we construct the solution space for paths utilizing
the B-spline curve. On this basis, a cost function that takes both the path length and the
average curvature into consideration is designed. Then, we employ PSO to optimize the
path and generate a set of optimal path candidates.

3.1. Creation of Lane Change Solution Space Based on B-Spline Curve

The B-spline curve offers several advantages suitable for vehicle lane-changing
paths [37]. Firstly, it has good smoothness, and the curvature of each point on the path
changes continuously. This property can satisfy the demands of the vehicle lane changes.
Secondly, in the case of the quasi-uniform B-spline curve, both the initial and final points
have a curvature of zero. In addition, the B-spline curve has a mature calculation algorithm
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and strict mathematical definition, which is more efficient in calculation and analysis. The
formula for calculating the B-spline curve is presented below:

P(u) =
n

∑
i=0

Pi · Ni,k(u) (8)

where P(u) represents the position of a point on the B-spline curve at the parameter u, and
u ∈ [0, 1] traverses the curve from start to end. Pi(i = 0, 1, . . . , n) are the control points that
define the shape and boundary of the curve. These points act as “magnets” to guide the
curve’s trajectory without necessarily lying on the curve itself. Ni,k(u) are the B-spline basis
functions of order k. These functions determine the influence of each control point Pi on
the curve at parameter u. k is the order of the B-spline, which defines its smoothness. u is a
parameter that varies along the curve. n + 1 represents the number of control points. For
the lane-changing paths of vehicles, the cubic B-spline curve can usually achieve a better
balance between smoothness and computational efficiency. Therefore, k is set as four. The
basic functions Ni,k(u) are computed recursively using the Cox-deBoor formula:

Ni, k(u) =


{

1, ui ≤ u < ui+1

0, otherwise
, k = 1

u−ui
ui+k−1−ui

Ni,k−1(u) +
ui+k−u

ui+k−ui+1
Ni+1,k−1(u), k ≥ 2

(9)

As illustrated in Figure 5, the B-spline curve is constructed with six control points (A,
B, C, D, E, and F). Point A marks the lane change initiation determined by the decision
system. More control points are not conducive to subsequent path optimization. To enhance
the efficiency and practicality of path generation, the following settings will be set for the
control points: (1) The line ABC and the line DEF are parallel to the road centerline. (2) Set
AB = BC = DE = DF and O as the midpoint of the path. Then, the degree of freedom of the
B-spline reduces to two. The distance between points A and C is denoted as k1 and the
distance between point C and point D is denoted as k2.
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The B-spline trajectory is designed to align with the center of the tractor’s rear axle
of the semi-trailer. This choice ensures that the planned path accounts for the vehicle’s
kinematic constraints and simplifies the tracking control logic. Specifically, each point
P(u) on the B-spline curve (Equation (8)) corresponds to the projected position of the rear
axle center during lane-changing maneuvers. This alignment allows the control system
to directly map the generated path to the vehicle’s steering dynamics while maintaining
roll stability.
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3.2. Path Optimization Using PSO

PSO is an optimization method inspired by the behavior patterns of biological pop-
ulations. It effectively identifies optimal solutions or approaches the desired goals by
mimicking the feeding strategies of birds [38]. PSO is characterized by its rapid conver-
gence and robust global optimization capabilities, making it well-suited for optimizing
local pathways.

To define a population within a two-dimensional space, the positional data and
boundary constraints of the i-th particle during the n-th iteration are described below:

Xi(n) = [k1,i(n), k2,i(n)]
0 < k1,i ≤ 20
0 < k2,i ≤ 50

(10)

The method for updating the speed and position of the particle is illustrated in Figure 6.
The speed update formula is as follows:

Vi(n + 1) = ωVi(n) + c1r1[pbest − Xi(n)] + c2r2[gbest − Xi(n)] (11)

Xi(n + 1) = Xi(n) + Vi(n+1) (12)

where pbest (personal best position) refers to the best solution a particle has achieved
individually during the optimization process, and gbest (global best position) represents
the best solution found by the entire particle swarm. These positions guide the particles
toward the optimal path by balancing individual exploration and swarm collaboration. c1

is the personal learning factor and fixed at 1.3, c2 is the global learning factor and fixed
at 1.7. They are utilized to modulate the step length of particle learning, concerning and
gbest. r1 and r2 are two stochastic numbers falling in the interval from 0 to 1. The inertia
weight denoted as ω, is essential for balancing the global and local search abilities within
the particles. To enhance optimization efficiency, ω ought to progressively diminish as the
iteration count rises. It is defined in the following way:

ω = ωstart − (ωstart − ωend)× (n/g)2 (13)

where ωstart represents the initial inertia weight, assigned a value of 0.9, whereas ωend

represents the final inertia weight, assigned a value of 0.4. n refers to the current iteration
count, and g denotes the upper limit on the number of iterations.
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The fitness function of the particles is presented below:

f = ω1 f1 + w2 f2 (14)

f1 = ∑
√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (15)

f2 =
∑ Ki

n
(16)

where f is the fitness function of the particles, f1 is the length of the generated path, f2 is
the mean curvature of the path, Ki is the curvature of points on the path, ω1 is the weight
of the path length, and set to 1, and ω2 is the weight of the mean curvature of the path
and set from 100 to 10,000. By changing the ratio of ω1 and ω2, the optimal path with
different weight ratios can be obtained. To handle the computational cost, we pre-calculate
the optimal paths corresponding to different ratios of ω1 and ω2. Subsequently, during
the actual application, we efficiently utilize pre-calculated optimal paths through offline
processing. By doing so, we can effectively bypass the computational cost that would
otherwise be incurred during real-time optimization. This approach ensures that the PSO-
based path optimization can be carried out efficiently without sacrificing the real-time
performance of the overall system.

4. Model for Calculating the Roll Stability Boundary
Transformer, introduced by Vaswani et al. in 2017, features a self-attention mechanism

originally designed to tackle challenges in natural language processing [39]. Due to its
advantages, such as powerful feature extraction ability, efficient parallel computing ability,
and the ability to process complex data with high dimensionality and nonlinearity, it also
has better performance in regression prediction. In the lane-changing path generation
module, we adjust the ratio of ω1 and ω2 to generate a series of unconstrained path clusters.
Additionally, changes in the road adhesion coefficient, vehicle velocity, load capacity, and
other driving conditions will also affect the stability boundary of the vehicle on the same
path. The roll stability boundary of the intelligent semi-trailer is determined based on the
maximum lateral load transfer ratio (LTR). LTR is a key index for evaluating the rollover
risk of a vehicle. We use the Transformer model to predict the maximum LTR under
different driving conditions. When the maximum LTR, denoted as LTRmax, is less than
0.9, the semi-trailer is considered to maintain a stable state and is within the roll stability
boundary. In other words, the value of 0.9 for LTRmax serves as a threshold to define the
roll stability boundary [40]. This relationship allows us to precisely determine whether a
planned path meets the roll stability requirements of the intelligent semi-trailer.

The solution method of roll stability boundary takes the road adhesion coefficient,
vehicle driving velocity, trailer load weight, and ratio of ω1 and ω2 as input features and
takes the LTRmax as the output feature to conduct regression prediction. After training, the
LTRmax under different driving conditions can be obtained, thus determining the stability
boundary. LTR is a widely used index for vehicle rollover risk assessment [41] and is
defined as:

LTR =
|FZ,L5 − FZ,R5|
FZ,L5 + FZ,R5

(17)

where FZ,L5 represents the load on the left wheels of the five-axle semi-trailer, FZ,R5 rep-
resents the load on the right wheels of the five-axle semi-trailer. This ratio reflects the
distribution of the vehicle’s load between the left and right sides. When a vehicle is in a
dynamic state, such as during lane-changing or cornering, the load distribution between
the left and right wheels changes. A higher LTR indicates a greater imbalance in the load
distribution, which increases the risk of the vehicle rolling over. For example, if the load on



Appl. Sci. 2025, 15, 2353 12 of 28

the right wheels is much larger than that on the left wheels, the LTR value will be closer to
1, and the vehicle is at a higher risk of rollover.

We selected the LTR as an index to evaluate the roll stability of intelligent semi-
trailers because it directly reflects the load-distribution situation related to vehicle rollover.
Compared with other potential indexes, LTR is a well-established and widely used metric
in the automotive industry for rollover risk assessment. It has a clear physical meaning and
can effectively quantify the rollover risk under different driving conditions. By using LTR,
we can accurately analyze the roll stability of the vehicle during the lane-changing process
and ensure that the planned path can maintain the vehicle’s stability, which is crucial for
the safe operation of intelligent semi-trailers.

4.1. Transformer Model Construction

The Transformer model has demonstrated powerful performance in many fields. Its
main architecture consists of two major components: the encoder and the decoder.

The encoder undertakes a crucial task. First, it performs position encoding on the
input data. Since the Transformer model adopts the self-attention mechanism, there is no
natural sequential relationship among data elements. Thus, position encoding becomes
particularly crucial. Through a specific position encoding method, each data element
is given unique position information, enabling the model to effectively distinguish data
at different positions. After completing the position encoding, the encoder starts the
feature recognition work. It extracts key features from the input data and integrates and
transforms these features through a series of complex operations and processing. In this
process, multiple components within the encoder work together. For example, the Multi-
Head Attention mechanism can focus on different parts of the input data from different
perspectives, thus more comprehensively capturing the relationships between data features.
The Feed-Forward Neural Network further performs non-linear transformations on the
features, enhancing the model’s ability to understand and represent data. After these
operations, the encoder converts the processed information into the hidden layer. As an
intermediate link of the model, the hidden layer stores and integrates the important feature
information extracted by the encoder. This information contains the deep-level features
and patterns of the data, providing crucial support for the subsequent decoding of work.

At the same time, the decoder plays an indispensable role. It receives data from the
hidden layer and, based on this encoded information, converts them into the final output
data through its own structure and operation logic. The decoder also contains multiple
functional modules. For example, the Masked Multi-Head Attention layer can prevent
the decoder from peeking into future information, ensuring that the output depends only
on the generated data. The Multi-Head Encoder-Decoder Attention layer can effectively
integrate the information of the encoder and the decoder, enabling the model to make
better use of the global information of the input data when generating the output. The
Feed-Forward Neural Network layer performs another non-linear transformation on the
processed features to further optimize the output result. Through the coordinated operation
of these components, the decoder finally outputs results that meet the requirements of
the task.

The framework of the Transformer is depicted in Figure 7. The specific operation and
calculation process of the Transformer will be introduced later in the text.
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4.1.1. Input Data Processing

We obtained the input dataset through MATLAB/TruckSim co-simulation. Each piece
of data contain five features: roadway adhesion coefficient, velocity of the self-vehicle, load,
ω1, and ω2, with LTRmax as the output. We import 1472 such data points into MATLAB to
obtain a 1472 × 6 matrix D. The matrix is processed as follows:

1. Data partitioning: D is divided into four matrices, which are the training set feature
matrix, training set output matrix, test set feature matrix, and test set output matrix.
And the ratio of training data to test data is 7:3.

2. Data normalization: To speed up training and improve training stability, we nor-
malized the input data and processed the input data matrix by mapping the row
maximum and minimum values to [0, 1]:

xnorm =
x − xmin

xmax − xmin
(18)

where xnorm is the normalized data, x is the original data, xmax indicates the maximum
value within the dataset, and xmin indicates the minimum value within the dataset.

3. Position encoding: The Transformer model utilizes a self-attention mechanism. Unlike
some traditional neural network architectures, the self-attention mechanism in the
Transformer does not inherently capture the order of elements in the input data. As a
result, the elements within the data lack an implicit order for the model to distinguish
them. Therefore, position coding is necessary. Position coding assigns unique position
information to each element in the input data sequence. This enables the Transformer
to differentiate between different elements, which is crucial for accurately processing
sequential data. The formula for calculating position coding is as follows:

PE(pos,2i) = sin

(
pos

10000
2i

dmodel

)

PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

) (19)

where PE(pos,2i) is the position encoding, pos is the position, i is the index of the
dimension, and dmodel is the dimension of the input and output vectors. The use
of sine and cosine functions in position encoding offers several advantages. First,
these functions can represent the position information continuously and periodically.



Appl. Sci. 2025, 15, 2353 14 of 28

The sine and cosine waves have unique periodicity properties, which can capture
the relative positions of elements in the sequence effectively. For example, as the
position increases, the values of sine and cosine functions change periodically, and
this periodic change can be used to distinguish different positions. Secondly, the
combination of sine and cosine functions allows the model to learn both the absolute
and relative positions of elements. The sine and cosine of the same position value
provide two different dimensions of information, which enriches the position-related
features available for the model. This is crucial for the Transformer to understand the
order of input data, especially in tasks like path planning for intelligent semi-trailers,
where the order of data related to different driving conditions and vehicle states is
significant. Thirdly, the use of these functions in position encoding is computationally
efficient. They can be easily integrated into the neural network architecture without
introducing excessive computational complexity, which is beneficial for the overall
performance of the Transformer model during training and prediction.

4.1.2. Encoder

The encoding component comprises four identical encoders arranged in a stack, with
each encoder consisting of two sub-layers known as the Multi-Head Attention layer and
the Feed-Forward Neural Network layer.

The process of the calculation is illustrated in Figure 8. The processed data first flow
into the self-attention mechanism layer, allowing the model to focus on other pertinent
information during the data processing. The pertinent information includes data that
are related to the currently processed elements in terms of time or space and is valuable
for determining the roll stability boundary of intelligent semi-trailers. Specifically, it
encompasses input features such as the road adhesion coefficient, vehicle driving speed,
load weight, and the variation of these features at different times or positions. This
information is of utmost importance for accurately assessing the vehicle’s driving state and
predicting the rollover risk.
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The self-attention mechanism layer dynamically assigns attention weights to input
features by computing pairwise dependencies. Specifically, given the input sequence, the
self-attention mechanism calculates query (Q), key (K), and value (V) matrices through
linear transformations: 

Q = XWQ

K = XWK

V = XWV

(20)

where WQ, WK, and WV are learnable weight matrices. The attention scores are then
computed as scaled dot-products between Q and K:

Attention(Q, K, V) = so f tmax
(

QKT
√

dK

)
V (21)

where dK represents the dimension of K, and the calculation of QKT measures the correla-
tion between each element in the query matrix Q and the key matrix K. Specifically, Q is
multiplied by KT in matrix operation, and each element in the resulting matrix represents



Appl. Sci. 2025, 15, 2353 15 of 28

the similarity between the query vector and the corresponding key vector.
√

dk is used
to scale the result. This is because when dk is large, the value of QKT may become very
large, causing the gradient of the softmax function to become extremely small, resulting in
the problem of gradient vanishing. By dividing by

√
dk, this situation can be effectively

avoided, making the model training more stable. The softmax function then transforms
the scaled result into a probability distribution. These probability values are the attention
scores, which represent the degree of attention the model pays to each other element when
processing the current element. The higher the attention score, the stronger the model
believes the correlation between the element and the currently processed element is, and
the greater the weight assigned to this element in subsequent calculations.

In semi-trailer path planning, this mechanism prioritizes interactions among dy-
namic parameters, such as road adhesion coefficient, vehicle velocity, and load mass.
For instance, when predicting roll stability boundaries, higher attention weights may be
assigned to velocity-load correlations under low-friction conditions, ensuring adaptive
path adjustments.

By connecting different headi, the multi-head attention can be obtained, and the
calculation process is illustrated in Figure 9. The formula for the calculation is presented
as follows:

MultiHead(Q, K, V) = Concat(head1, head2, . . . headn)WO (22)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (23)

where headi is the attention output of a single head, the Concat function represents concate-
nating all headi, and WO is the learnable weight matrix of the linear transformation.
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After being processed by the multi-head attention layer, the input data are fed into
the feedforward neural network. This network can make further non-linear changes to the
processed input data, aiding the model in understanding the relationships among the input
data across various dimensions. This step can be represented as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (24)

where max(0, xW1 + b1)W2 is a Rectified Linear Unit (ReLU), x is the input data, W1 and
W2 denote two matrices of weights, and b1 and b2 denote two vectors of bias.

4.1.3. Decoder

The structure of the decoder resembles that of the encoder and is composed of
three sublayers:

1. Masked Multi-Head Attention layer: This layer adds a mask relative to the multi-head
self-attention layer in the encoder, which makes it impossible for the decoder to peek
into future information, ensuring that the output of the current position depends only
on the generated information.



Appl. Sci. 2025, 15, 2353 16 of 28

2. Multi-Head Encoder-Decoder Attention layer: In this layer, the input data is de-
rived from two sources: the query matrix originating from the masked multi-head
self-attention layer and the key matrix alongside the value matrix taken from the
encoder’s output, which allows the model to learn and train the relevant information
more accurately.

3. Feedforward neural network layer: With the same structure as the feedforward neural
network in the encoder, the processed features are further non-linearly transformed,
which enhances the learning and training capabilities of the model.

4.1.4. Output

After the data are learned and trained by the encoder and decoder, it is then linearly
transformed and finally passed into the output layer, and the result of regression prediction
is obtained. The output layer is created using the regression Layer command in the
MATLAB software toolbox.

4.2. Analysis of Model Training Results

After setting up the training network, the parameters for training are configured as
follows: the upper limit for training epochs is 5000, the strategy for adjusting the learning
rate is piecewise, beginning with an initial learning rate of 0.01, a decay factor of 0.5, and a
decay interval of 80. The parameter settings were obtained through multiple experimental
comparisons. After training, the relationship between the predicted values and the actual
values is illustrated in Figure 10.
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To confirm the precision of the model, various metrics are used to assess its perfor-
mance, including the following:

4.2.1. Mean Squared Error (MSE):

MSE calculates the average sum of the squares of the differences between the predicted
values and the true values. It is highly sensitive to the magnitude of the errors. The larger
the errors, the larger the value of MSE will be. In this article, MSE is used to measure
the overall error degree between the predicted values and the actual values when the
Transformer model predicts the maximum LTR of intelligent semi-trailers. Its calculation
formula is as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (25)
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where n represents the number of data samples used to evaluate the Transformer model,
yi represents the actual value of the maximum LTR, and ŷi represents the maximum LTR
value predicted by the Transformer model for the corresponding sample. Their meanings
are the same in Equations (25)–(28).

4.2.2. Root Mean Square Error (RMSE):

RMSE is the square root of MSE. It is also used to measure the error between the
predicted values and the true values. Compared with MSE, RMSE is more sensitive to
the magnitude of the errors because it considers the square of the errors, amplifying the
impact of larger errors. When evaluating the Transformer model, RMSE can intuitively
reflect the average error magnitude between the model’s predicted values and the true
values. A smaller RMSE value indicates that the maximum LTR predicted by the model
is closer to the actual situation, the prediction accuracy of the model is higher, and it has
higher reliability in determining the vehicle roll-stability boundary. Its calculation formula
is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (26)

4.2.3. Mean Absolute Error (MAE):

MAE calculates the average of the absolute errors between the predicted values and
the true values. It can directly reflect the average degree of difference between the predicted
values and the true values without considering the direction of the errors. In the research
of intelligent semi-trailers, MAE can intuitively show the average deviation between the
maximum LTR predicted by the model and the actual value. Different from MSE and RMSE,
MAE is relatively less sensitive to outliers and can better reflect the average level of the
model’s prediction errors, helping researchers understand the overall prediction accuracy
of the model. Its calculation formula is as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (27)

4.2.4. Mean Absolute Percentage Error (MAPE):

MAPE measures the prediction error as the percentage of the absolute error to the true
value, which reflects the relative magnitude of the error between the predicted value and
the true value. The advantage of this indicator is that it is not affected by the dimension of
the data, allowing for comparisons between data of different magnitudes. When evaluating
the Transformer model, MAPE can clearly show the relative error of the maximum LTR
predicted by the model under different driving conditions. A lower MAPE value indicates
that the deviation between the predicted values and the true values of the model under
different driving conditions is relatively small, and the prediction results of the model
are relatively reliable in various working conditions, which can provide more accurate
information for vehicle stability analysis. Its calculation formula is as follows:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (28)

All evaluation indexes are presented in Table 3. These indicators show that the
Transformer can effectively predict the maximum LTR of intelligent semi-trailers under
different driving conditions, thus fulfilling the goal of determining the stability boundary
of the intelligent semi-trailers.
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Table 3. Evaluation indexes of Transformer.

Evaluation Index MSE RMSE MAE MAPE

Training set 0.00104 0.03225 0.02493 0.02827
Test set 0.00105 0.03246 0.02509 0.02848

5. Optimal Path Selection
After determining the stability boundary, the paths that do not meet the boundary

conditions can be eliminated to obtain the feasible path cluster. To choose the optimal
path from this viable cluster, the path evaluation cost functions should be designed. The
path evaluation cost functions include the comfort cost function, the velocity maintenance
function, the lateral offset cost function, and the lane-changing efficiency cost function.

5.1. Comfort Cost Function

During the lane-changing process of intelligent semi-trailers, a high jerk can reduce
driving comfort. We define the comfort cost function based on the lateral jerk and longitu-
dinal jerk during lane changes. The comfort cost function is defined as:

Jc = k1

∫ te

t0

...
y t(t)dt+k2

∫ te

t0

...
x t(t)dt (29)

where k1 and k2 are the weighting parameters, t0 represents the initiation time of the lane
change, and te represents the final time of the lane change.

5.2. Velocity Maintenance Function

During the process of changing lanes in intelligent semi-trailers, minimizing the
disparity between the real driving velocity and the intended velocity is essential. We regard
the deviation between the real velocity and the intended velocity as the cost function for
maintaining velocity. This cost function for velocity maintenance is defined as:

Je = k3

∫ te

t0

(
vr −

√
.
xt

2
(t) +

.
yt

2
(t)
)

dt (30)

where k3 is the weight parameter and vr is the intended velocity.

5.3. Lateral Offset Cost Function

During the lane-changing process of intelligent semi-trailers, it is advisable to be as
close to the centerline of the roadway as possible. We use the square of the lateral offset as
the offset cost function. The offset cost function is defined as:

Jr = k4

∫ te

t0

(yt(t)− yr(t))
2dt (31)

where k4 is the weight parameter and yr is the lateral coordinate of the centerline.

5.4. Lane-Changing Efficiency Cost Function

During the lane-changing process of intelligent semi-trailers, efforts should be made
to shorten the lane-changing time as much as possible to improve lane-changing efficiency.
We use the time difference between the initiation and completion of the lane change to
represent the lane-changing efficiency cost. The lane-changing efficiency cost function is
defined as:

Jt = k5(te − t0) (32)

where k5 is the weight parameter.
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Consequently, the overall cost function can be represented as:

J = Jc + Jr + Je + Jt (33)

Each path within the feasible path cluster is analyzed, and the path with the lowest
total cost function is chosen as the optimal option.

6. Simulation Validation
To assess how effective the proposed planning method is for intelligent semi-trailers

across various driving conditions, simulation experiments are carried out. Firstly, a sim-
ulation experiment platform should be built. Then, the experiment settings should be
made, and the experiments should be completed. Finally, the experimental results will be
described and analyzed.

6.1. Simulation Experiment Design
6.1.1. Simulation Experiment Platform

MATLAB/TruckSim is utilized to conduct co-simulation experiments. These simula-
tion experiments can establish real-time communication between the vehicle model and
the planning method, ensuring the reliability of the experimental results. Figure 11 shows
the illustration of the co-simulation experiments.
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6.1.2. Case Study Design

Four case studies are designed to assess the effectiveness of the planning method
under different common driving scenarios. In case study 1, µ is set to 0.6, the semi-trailer
load mass is set to 40 t, and vsubj is set to 100 km/h. In case study 2, µ is set to 0.9, the
semi-trailer load mass is set to 40 t, and vsubj is set to 100 km/h. In case study 3, µ is set to
0.9, the semi-trailer load mass is set to 40 t, and vsubj is set to 70 km/h. In case study 4, µ is
set to 0.6, the semi-trailer load mass is set to 0 t, and vsubj is set to 100 km/h. The parameter
settings for each case study are presented in Table 4.

Table 4. Simulation condition setting.

µ mass vsubj Result

Case study 1 0.6 40 100 Figure 12
Case study 2 0.9 40 100 Figure 13
Case study 3 0.9 40 70 Figure 14
Case study 4 0.6 0 100 Figure 15
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6.1.3. Comparative Verification

To demonstrate the benefits of our method, we will compare it with the optimization
method based on the Sigmoid function [10], which is also utilized for the path planning of
intelligent semi-trailers. Moreover, the planned paths will be tracked and verified by using
the tracking controller that comes with TruckSim.
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6.2. Experimental Results
6.2.1. Case Study 1

Figure 12 presents the results of case study 1. The case study is set with a road adhesion
coefficient µ of 0.6, a semi-trailer load of 40 t, and a vehicle speed of 100 km/h. This figure
compares the method in this paper with the Sigmoid function optimization method. In
terms of path tracking, the trajectory of the method in this paper is better; in terms of LTR,
the proposed method achieves a maximum LTR of 0.73249, significantly lower than the
1.0 threshold observed in the comparison method, indicating a lower rollover risk; the
average steering angle, average yaw rate, and average lateral acceleration are also smaller
than those of the comparison method, indicating that the method in this paper performs
better in driving comfort and lateral dynamic stability. The comparison of the data from
case study 1 can be found in Table 5.

Table 5. Comparison of case study 1 data.

Case Study 1 Our Method Sigmoid Method

Average curvature of the path 0.00179 0.01775
Maximum of LTR 0.73249 1

Average steering angle 9.76623 12.39901
Average yaw rate 1.09961 1.60889

Average lateral acceleration 0.04277 0.05407

6.2.2. Case Study 2

Figure 13 shows the data from case study 2. The conditions are µ = 0.9, semi-trailer
load of 40 t, and vehicle speed of 100 km/h. As shown in the figure, the method in this
paper has obvious advantages in path tracking; the maximum LTR value is 0.74934, which
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is less than 1 of the comparison method, and the rollover stability is better; the average
steering angle, average yaw rate, and average lateral acceleration are all smaller, providing
a more comfortable driving experience and better lateral stability of the vehicle. The
comparison of the data from case study 2 can be found in Table 6.

Table 6. Comparison of case study 2 data.

Case Study 2 Our Method Sigmoid Method

Average curvature of the path 0.00175 0.00402
Maximum of LTR 0.74934 1

Average steering angle 7.70237 9.05435
Average yaw rate 0.62028 0.88300

Average lateral acceleration 0.02438 0.03051

6.2.3. Case Study 3

Figure 14 presents the results of case study 3. During the case study, µ = 0.9, the
semi-trailer load is 40 t, and the vehicle speed is 70 km/h. Comparing the two methods,
the path tracking effect of the method in this paper is good; the maximum LTR value is
0.63285, which is lower than 0.98316 of the comparison method, and the rollover risk is
low; the average steering angle, average yaw rate, and average lateral acceleration are all
lower than those of the comparison method, and the driving comfort and lateral dynamic
stability are better. The comparison of the data from case study 3 can be found in Table 7.

Table 7. Comparison of case study 3 data.

Case Study 3 Our Method Sigmoid Method

Average curvature of the path 0.00351 0.00801
Maximum of LTR 0.63285 0.98316

Average steering angle 10.26115 12.53339
Average yaw rate 0.88337 1.20238

Average lateral acceleration 0.02678 0.03348

6.2.4. Case Study 4

Figure 15 shows the results of case study 4, where µ = 0.6, the semi-trailer is unloaded,
and the vehicle speed is 100 km/h. In terms of path tracking, the method proposed in this
paper performs remarkably. The maximum LTR value of 0.83893 is significantly lower than
the 1.0 threshold observed in the comparison method, indicating a certain advantage in
rollover stability. Moreover, the average steering angle, average yaw rate, and average
lateral acceleration are all smaller than those of the comparison method, suggesting better
driving comfort and lateral dynamic stability. Under the specific conditions of case study
4, the LTR index in Figure 15b shows sharp fluctuations between 160–190 m. From the
perspective of vehicle dynamics, when the load mass of the semi-trailer is 0 t, the position
of the vehicle’s center of gravity changes. Under high-speed (100 km/h) and low road
adhesion coefficient (µ = 0.6) conditions, the vehicle is more sensitive to steering operations.
A small path adjustment may cause a large LTR change. The abrupt change in LTR poses
significant risks to semi-trailer stability:

1. Increased lateral load transfer, leading to rollover propensity.
2. Sudden weight redistribution, compromising tire-road adhesion.
3. Dynamic instability during transient maneuvers due to coupled yaw-roll effects.

The comparison of the data from case study 4 can be found in Table 8.
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Table 8. Comparison of case study 4 data.

Case Study 4 Our Method Sigmoid Method

Average curvature of the path 0.00175 0.00395
Maximum of LTR 0.83893 1

Average steering angle 7.01638 16.21332
Average yaw rate 1.14704 2.80779

Average lateral acceleration 0.04652 0.08669

6.3. Analysis of Experimental Results

Figures 12–15 show the comparison results of the path planning method proposed in
this paper and the optimization method based on the Sigmoid function under different
experimental conditions. These figures intuitively present the performance of the two
methods in the lane-changing process of intelligent semi-trailers from multiple aspects,
such as path tracking, LTR, steering angle, yaw rate, and lateral acceleration, which is
helpful for in-depth analysis of the advantages and characteristics of this method and
the influence of different driving conditions on the path planning effect. We will analyze
the proposed path planning method in terms of the adaptability to traffic conditions, the
vehicle roll stability, the driving comfort, and the lateral dynamic stability.

6.3.1. Adaptability to Traffic Conditions

When facing different traffic conditions, the proposed planning method can be flexibly
adjusted according to changes in driving parameters, planning lane-changing paths that
meet the current traffic conditions.

6.3.2. Vehicle Roll Stability

As can be seen from the comparison chart of LTR, the proposed planning method
can make the planned path meet the roll stability requirements by setting the roll stability
boundary. Compared with the Sigmoid function optimization method, our method can
significantly reduce the LTR during the driving process of the intelligent semi-trailer and
ensure that it is below 0.9. This effectively supports the roll stability of the intelligent
semi-trailer throughout its operation.

6.3.3. Driving Comfort

As can be seen from the comparison chart of steering angles, compared with the
Sigmoid function optimization method, our planning method significantly reduces the
average steering angle and has better driving comfort.

6.3.4. Lateral Dynamic Stability

As can be seen from the comparison charts of yaw rate and lateral acceleration,
although the lane-changing distance of our planning method is longer than that of the
Sigmoid function optimization method, it substantially decreases the average curvature of
the path, thereby reducing the steering burden of the intelligent semi-trailer and improving
the tracking performance of the intelligent semi-trailer.

7. Conclusions and Future Work
In this study, we proposed a path-planning method for intelligent semi-trailers that

consider the surrounding traffic conditions and vehicle roll stability, aiming to address
the issue of potential rollover during lane-changing in complex traffic. The experimental
results comprehensively demonstrate the effectiveness of our proposed method across
multiple aspects.
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In terms of path tracking performance, as shown in the comparison with the Sigmoid
function-based optimization method in different case studies (case study 1–4), our method
exhibits a better-fitting trajectory. This indicates that our method can generate a smoother
path, facilitating more accurate vehicle control during lane-changing maneuvers.

Regarding vehicle roll stability, a crucial aspect for semi-trailers, our method has
achieved remarkable results. By setting the roll stability boundary based on the maximum
LTR, we ensure that the planned paths meet the roll stability requirements. In all case
studies, the maximum LTR values of our method are well below 0.9 (e.g., 0.73249 in case
study 1, 0.74934 in case study 2, 0.63285 in case study 3, and 0.83893 in case study 4), while
those of the comparison method are close to or reach 1. This significant reduction in LTR
effectively supports the roll stability of intelligent semi-trailers throughout the driving
process, greatly reducing the risk of rollover accidents.

Driving comfort is also improved by our path-planning method. The average steering
angle, which is an important indicator of driving comfort, is significantly reduced compared
to the Sigmoid-based method. A smaller steering angle not only reduces the driver’s
physical burden but also provides a more stable and comfortable driving experience for
passengers or cargo.

In addition, the lateral dynamic stability of the vehicle is enhanced. Although the
lane-changing distance of our method may be slightly longer in some cases, the substantial
decrease in the average curvature of the path reduces the steering burden of the intelligent
semi-trailer. As a result, the tracking performance of the vehicle is improved, as evidenced
by the lower average yaw rate and lateral acceleration values in all case studies. This
improvement in lateral dynamic stability is crucial for maintaining vehicle control and
safety during lane changing.

Our method also shows a good adaptability to different traffic conditions. It can
flexibly adjust the lane-changing paths according to various driving parameters such as the
road adhesion coefficient, vehicle velocity, and load capacity. This adaptability ensures that
the path-planning results are always suitable for the current traffic environment, further
enhancing the practicality and reliability of the method.

However, it should be noted that this study has certain limitations. Although the
current framework is mainly applicable to straight-road lane-changing scenarios with
constant vehicle speeds, real-world driving conditions are much more complex, including
curved roads, variable speeds, and dynamic interactions with other traffic participants.
Moreover, simulation experiments rely on predefined environmental parameters, which
may not fully reflect real-world unpredictability. Future work will extend the proposed
method to address more complex scenarios, such as:

1. Curved road adaptation: Incorporating path planning for curved roads and dynamic
speed adjustments.

2. Dynamic obstacle interaction: Enhancing the decision-making system to handle real-
time interactions with moving obstacles and multi-vehicle coordination.

3. Multi-objective optimization: Integrating additional stability metrics (e.g., pitch stabil-
ity) and energy efficiency considerations into the cost function.

4. Real-world validation: Conduct field tests with physical semi-trailers to validate the
method’s robustness under practical constraints.

In conclusion, this work lays a solid foundation for the lane-changing path planning
of intelligent semi-trailers. By continuously improving and expanding the research, we
can better meet the requirements of autonomous driving in commercial transportation and
contribute to the development of a safer and more efficient transportation system.
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