Integrated Geotechnical Analysis of Allophanic Volcanic Ash Soils: SDMT and Laboratory Perspectives
<p>Caupicho study area (coordinate system: Datum WGS 84—Projection UTM Zone 17 S) [<a href="#B16-applsci-15-01386" class="html-bibr">16</a>].</p> "> Figure 2
<p>(<b>a</b>) Repaired cracks in masonry; (<b>b</b>) unrepaired masonry cracks; (<b>c</b>) cracks between masonry and floor beam; (<b>d</b>) cracks in masonry and dampness in walls owing to capillarity; (<b>e</b>) crack in enclosure attached to a three-story house and capillary dampness; (<b>f</b>) crack in the enclosure and sidewalk.</p> "> Figure 2 Cont.
<p>(<b>a</b>) Repaired cracks in masonry; (<b>b</b>) unrepaired masonry cracks; (<b>c</b>) cracks between masonry and floor beam; (<b>d</b>) cracks in masonry and dampness in walls owing to capillarity; (<b>e</b>) crack in enclosure attached to a three-story house and capillary dampness; (<b>f</b>) crack in the enclosure and sidewalk.</p> "> Figure 3
<p>Atacazo–Ninahuilca geological map (coordinate system: Datum WGS 84–Projection UTM Zone 17 S) [<a href="#B7-applsci-15-01386" class="html-bibr">7</a>,<a href="#B8-applsci-15-01386" class="html-bibr">8</a>,<a href="#B9-applsci-15-01386" class="html-bibr">9</a>].</p> "> Figure 4
<p>Geotechnical parameters of Caupicho in relation to depth, using the Marchetti dilatometer, listed as: (<b>a</b>) material index (I<sub>D</sub>); (<b>b</b>) cohesion of unconsolidated undrained soil (Cu); (<b>c</b>) angle of internal friction (ɸ); (<b>d</b>) coefficient of lateral soil pressure (Ko); (<b>e</b>) relationship between preconsolidation pressure σc and the effective vertical pressure present σ’o (OCR); and (<b>f</b>) specific weight of soil (Ƴ).</p> "> Figure 4 Cont.
<p>Geotechnical parameters of Caupicho in relation to depth, using the Marchetti dilatometer, listed as: (<b>a</b>) material index (I<sub>D</sub>); (<b>b</b>) cohesion of unconsolidated undrained soil (Cu); (<b>c</b>) angle of internal friction (ɸ); (<b>d</b>) coefficient of lateral soil pressure (Ko); (<b>e</b>) relationship between preconsolidation pressure σc and the effective vertical pressure present σ’o (OCR); and (<b>f</b>) specific weight of soil (Ƴ).</p> "> Figure 5
<p>DMT results plotted on Marchetti’s nomogram [<a href="#B36-applsci-15-01386" class="html-bibr">36</a>].</p> "> Figure 6
<p>Materials and methods—seismic dilatometer: (<b>a</b>) DMT blade and seismic module; (<b>b</b>) schematic layout of the seismic dilatometer test; and (<b>c</b>) seismic dilatometer equipment [<a href="#B38-applsci-15-01386" class="html-bibr">38</a>].</p> "> Figure 7
<p>Results of three seismic wave velocity (Vs) tests for Caupicho1 [<a href="#B36-applsci-15-01386" class="html-bibr">36</a>].</p> "> Figure 8
<p>DMT-A dissipation test as a function of time.</p> "> Figure 9
<p>Microphotography of Caupicho soil. Department of Geology, Faculty of Geology and Petroleum, National Polytechnic School—Quito [<a href="#B24-applsci-15-01386" class="html-bibr">24</a>].</p> "> Figure 10
<p>Morphology image Caupicho 4.50–5.00 m, listed as; (<b>a</b>) twinned mineral crystal; (<b>b</b>) point 1: evaluation of chemical elements in mineral A; (<b>c</b>) point 1: evaluation of chemical elements in mineral B. Morphology image Caupicho 9.50–10.00 m: listed as: (<b>d</b>) point 1: evaluation in soil particle.</p> "> Figure 10 Cont.
<p>Morphology image Caupicho 4.50–5.00 m, listed as; (<b>a</b>) twinned mineral crystal; (<b>b</b>) point 1: evaluation of chemical elements in mineral A; (<b>c</b>) point 1: evaluation of chemical elements in mineral B. Morphology image Caupicho 9.50–10.00 m: listed as: (<b>d</b>) point 1: evaluation in soil particle.</p> "> Figure 11
<p>Morphology image Caupicho 4.50–5.00: (<b>a</b>) soil with diatoms; (<b>b</b>) set of diatoms with lengths of 5 to 10 μm; (<b>c</b>) soil, mineralization, and diatoms; (<b>d</b>) mineralization of approximate diameter 112 nm; (<b>e</b>) soil, allophane, and diatoms; and (<b>f</b>) allophane clusters < 89.3 nm.</p> "> Figure 11 Cont.
<p>Morphology image Caupicho 4.50–5.00: (<b>a</b>) soil with diatoms; (<b>b</b>) set of diatoms with lengths of 5 to 10 μm; (<b>c</b>) soil, mineralization, and diatoms; (<b>d</b>) mineralization of approximate diameter 112 nm; (<b>e</b>) soil, allophane, and diatoms; and (<b>f</b>) allophane clusters < 89.3 nm.</p> "> Figure 12
<p>Geotechnical physical characterization of Caupicho as a function of depth: (<b>a</b>) moisture content; (<b>b</b>) liquid limit; (<b>c</b>) plastic limit; (<b>d</b>) plasticity index vsliquid limit; (<b>e</b>) ash content; (<b>f</b>) organic content; (<b>g</b>) altered and unaltered granulometric curves at different depths; and (<b>h</b>) specific weight of solids [<a href="#B42-applsci-15-01386" class="html-bibr">42</a>].</p> "> Figure 12 Cont.
<p>Geotechnical physical characterization of Caupicho as a function of depth: (<b>a</b>) moisture content; (<b>b</b>) liquid limit; (<b>c</b>) plastic limit; (<b>d</b>) plasticity index vsliquid limit; (<b>e</b>) ash content; (<b>f</b>) organic content; (<b>g</b>) altered and unaltered granulometric curves at different depths; and (<b>h</b>) specific weight of solids [<a href="#B42-applsci-15-01386" class="html-bibr">42</a>].</p> "> Figure 13
<p>(<b>a</b>) Void index (e) as a function of the logarithm of the effective pressure (log σ’), showing loading and unloading; (<b>b</b>) void index (e) as a function of the logarithm of time (log t) in minutes.</p> "> Figure 14
<p>(<b>a</b>) Strain (mm) vs. root time (min) at different loads of 12.5, 25, 50, and 100 KPa for sample 1; (<b>b</b>) strain (mm) vs. root time (min) at different loads of 25, 50, 100, 200, 400, and 500 KPa for sample 2; (<b>c</b>) strain (mm) vs. root time (min) at different loads of 25, 50, 100, 200, 400, and 500 KPa for sample 3; (<b>d</b>) strain (mm) vs. root time (min) at different loads of 25, 50, 100, 200, 400, and 500 KPa for sample 4.</p> "> Figure 15
<p>Hydraulic conductivity (Kv) as a function of void index at different depths in Caupicho1.</p> "> Figure 16
<p>Relation of Caupicho geotechnical parameters using the Marchetti dilatometer vs. Quito seismic zoning project (P4-SQ, P5-SQ) and Mayanquer (S1, S2, S3, S4), listed as: (<b>a</b>) material index (I<sub>D</sub>)–depth; (<b>b</b>) cohesion of unconsolidated undrained soil (Cu)–depth; (<b>c</b>) angle of internal friction (ɸ) in degrees–depth; (<b>d</b>) coefficient of lateral soil pressure (Ko)–depth; (<b>e</b>) relationship between preconsolidation pressure σc and the present effective vertical pressure σ’o (OCR)–depth; and (<b>f</b>) specific weight of soil (Ƴ)–depth.</p> "> Figure 16 Cont.
<p>Relation of Caupicho geotechnical parameters using the Marchetti dilatometer vs. Quito seismic zoning project (P4-SQ, P5-SQ) and Mayanquer (S1, S2, S3, S4), listed as: (<b>a</b>) material index (I<sub>D</sub>)–depth; (<b>b</b>) cohesion of unconsolidated undrained soil (Cu)–depth; (<b>c</b>) angle of internal friction (ɸ) in degrees–depth; (<b>d</b>) coefficient of lateral soil pressure (Ko)–depth; (<b>e</b>) relationship between preconsolidation pressure σc and the present effective vertical pressure σ’o (OCR)–depth; and (<b>f</b>) specific weight of soil (Ƴ)–depth.</p> "> Figure 17
<p>Geographical position of seismic traces: T42, T44, and T46.</p> "> Figure 18
<p>Relations of Caupicho with other geotechnical studies carried out previously in Peñafiel, Albuja, and Mayanquer [<a href="#B2-applsci-15-01386" class="html-bibr">2</a>,<a href="#B3-applsci-15-01386" class="html-bibr">3</a>,<a href="#B4-applsci-15-01386" class="html-bibr">4</a>,<a href="#B5-applsci-15-01386" class="html-bibr">5</a>] (See <a href="#applsci-15-01386-f001" class="html-fig">Figure 1</a>), listed as: (<b>a</b>) humidity–depth; (<b>b</b>) liquid limit–depth; (<b>c</b>) plastic limit–depth; (<b>d</b>) comparative data set of liquid limit and plastic index; (<b>e</b>) ash content–depth; (<b>f</b>) organic content–depth; (<b>g</b>) granulometry curve limits by sieve and hydrometer; (<b>h</b>) granulometric curve limits by sieving; and (<b>i</b>) specific weight of solids (Gs)–depth [<a href="#B42-applsci-15-01386" class="html-bibr">42</a>].</p> "> Figure 18 Cont.
<p>Relations of Caupicho with other geotechnical studies carried out previously in Peñafiel, Albuja, and Mayanquer [<a href="#B2-applsci-15-01386" class="html-bibr">2</a>,<a href="#B3-applsci-15-01386" class="html-bibr">3</a>,<a href="#B4-applsci-15-01386" class="html-bibr">4</a>,<a href="#B5-applsci-15-01386" class="html-bibr">5</a>] (See <a href="#applsci-15-01386-f001" class="html-fig">Figure 1</a>), listed as: (<b>a</b>) humidity–depth; (<b>b</b>) liquid limit–depth; (<b>c</b>) plastic limit–depth; (<b>d</b>) comparative data set of liquid limit and plastic index; (<b>e</b>) ash content–depth; (<b>f</b>) organic content–depth; (<b>g</b>) granulometry curve limits by sieve and hydrometer; (<b>h</b>) granulometric curve limits by sieving; and (<b>i</b>) specific weight of solids (Gs)–depth [<a href="#B42-applsci-15-01386" class="html-bibr">42</a>].</p> "> Figure 19
<p>Comparison of soil classifications from different sources based on ash content [<a href="#B13-applsci-15-01386" class="html-bibr">13</a>,<a href="#B14-applsci-15-01386" class="html-bibr">14</a>].</p> "> Figure 20
<p>Relation of Caupicho with Fiavé peat, oedometric test [<a href="#B47-applsci-15-01386" class="html-bibr">47</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
- a.
- Climatology
- b.
- Geology
- c.
- Hydrology
2.2. In Situ Tests
2.3. Specimen Preparation
2.4. Laboratory Tests
2.4.1. Thin-Film Mineralogy
2.4.2. Rx Diffraction
2.4.3. Scanning Electron Microscope (SEM)
2.4.4. Physical–Geotechnical Characterization of Caupicho
2.4.5. Mechanical–Geotechnical Characterization of Caupicho
3. Results
3.1. In Situ Test Result
3.1.1. Dilatometer Result
SDMT
Dissipation Test DMT-A
3.2. Laboratory Test Result
3.2.1. Mineralogical Analysis
3.2.2. X-Ray Diffraction in Caupicho Soil
3.2.3. Scanning Electron Microscope (SEM)
3.2.4. Physical–Geotechnical Characterization
Sample | Depth (m) | Natural Humidity (%) | LL (%) | LP (%) | IP (%) | Gross Sand (%) | Medium Sand (%) | Fine Sand (%) | Silt (%) | Clay (%) | SUCS | Ash Content (%) | Organic Content (%) | Gs (Li, 2020) † | Gs (Skempton & Petley, 1970) ‡ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Altered | 1.00–1.50 | 110.06 | Insufficient sample | 2.9 | 16.0 | 60.1 | 20.9 | - | 90.4 | 9.6 | 2.6 | 2.6 | |||
2.00–2.50 | 217.77 | 225.0 | 181.4 | 43.6 | 0.3 | 1.8 | 19.5 | 78.4 | OH | 84.4 | 15.6 | 2.4 | 2.4 | ||
3.00–3.50 | 233.74 | 213.3 | 186.0 | 27.4 | 0.0 | 0.7 | 19.5 | 79.8 | OH | 84.0 | 16.0 | 2.4 | 2.4 | ||
4.00–4.50 | 302.95 | 226.8 | 181.5 | 45.1 | 0.0 | 1.4 | 19.5 | 78.8 | OH | 82.8 | 17.2 | 2.3 | 2.4 | ||
5.00–5.50 | 320.38 | 310.9 | 180.5 | 130.4 | 0.3 | 3.9 | 13.9 | 63.0 | 18.9 | OH | 80.8 | 19.2 | 2.3 | 2.4 | |
6.00–6.50 | 316.36 | 326.0 | 200.5 | 125.8 | 0.0 | 3.4 | 15.6 | 63.9 | 17.0 | OH | 80.9 | 19.1 | 2.3 | 2.4 | |
7.00–7.50 | 107.5 | 98.1 | 77.6 | 20.5 | 0.1 | 0.5 | 21.0 | 78.4 | OH | 91.9 | 8.1 | 2.6 | 2.6 | ||
8.00–8.50 | 200.41 | 165.5 | 105.9 | 59.6 | 0.0 | 0.8 | 20.8 | 69.5 | 8.9 | OH | 85.7 | 14.3 | 2.4 | 2.5 | |
Unaltered Shelby | 0.50–1.00 | 98.5 | 86.0 | 53.1 | 32.9 | 0.1 | 7.1 | 27.1 | 65.7 | OH | 92.8 | 7.2 | 2.6 | 2.6 | |
1.50–2.00 | 134.92 | 138.4 | 91.0 | 47.4 | 0.6 | 4.2 | 22.2 | 73.0 | OH | 95.1 | 4.9 | 2.6 | 2.7 | ||
2.50–3.00 | 263.78 | - | - | - | 0.5 | 0.5 | 18.4 | 81.1 | - | 85.1 | 14.9 | 2.4 | 2.4 | ||
3.50–4.00 | 238.99 | 225.3 | 159.6 | 65.7 | 0.1 | 0.5 | 16.2 | 73.2 | 10.0 | OH | 84.1 | 15.9 | 2.4 | 2.4 | |
4.50–5.00 | 320.7 | 317.0 | 186.7 | 130.4 | 0.0 | 0.8 | 15.0 | 67.2 | 17.0 | OH | 77.5 | 22.6 | 2.2 | 2.3 | |
5.50–6.00 | 341.9 | - | - | - | - | - | - | - | - | 78.4 | 21.6 | 2.3 | 2.3 | ||
6.50–7.00 | 332.9 | 268.0 | 157.0 | 110.9 | 0.3 | 2.5 | 15.7 | 81.5 | OH | 74.0 | 26.0 | 2.2 | 2.2 | ||
7.50–8.00 | 255.9 | 206.3 | 124.3 | 82.0 | 0.5 | 2.5 | 15.7 | 81.2 | OH | 89.2 | 10.8 | 2.5 | 2.5 | ||
8.50–9.00 | 263.2 | - | - | - | - | - | - | - | - | - | - | - | - | ||
9.50–10.00 | 353.5 | 145.9 | 104.5 | 41.4 | 0.7 | 7.8 | 21.9 | 51.7 | 18.0 | OH | 81.4 | 18.7 | 2.3 | 2.4 |
3.2.5. Mechanical–Geotechnical Characterization of Caupicho
- a.
- Soil consolidation tests in Caupicho
- b.
- Drained consolidated triaxial test in the Caupicho (CD)
4. Discussion
4.1. In Situ Test Result
- a.
- DMT Caupicho
- b.
- SDMT–Vs Caupicho
4.2. Laboratory Test
4.2.1. Mineralogical Analysis
4.2.2. Scanning Electron Microscope (SEM)
4.2.3. Geotechnical Physical Characterization
4.2.4. Mechanical–Geotechnical Characterization
- a.
- Soil consolidation test
- b.
- Drained consolidated triaxial
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarado, A. Néotectonique et Cinématique de la Déformation Continentale en Equateur. Doctoral Dissertation, Université de Grenoble, Grenoble, Francia, 2012. [Google Scholar]
- Mayanquer, J.; Anaguano-Marcillo, M.; Játiva, N.; Albuja-Sánchez, J. New Correlations for the Determination of Undrained Shear, Elastic Modulus, and Bulk Density Based on Dilatometer Tests (DMT) for Organic Soils in the South of Quito, Ecuador. Appl. Sci. 2023, 13, 8570. [Google Scholar] [CrossRef]
- Albuja, J. Determination of the undrained shear strength of organic soils using the cone penetration test and Marchetti’s flat dilatometer test. In Proceedings of the 6th International Conference on Geotechnical and Geophysical Site Characterization, Budapest, Hungary, 26–30 September 2021. [Google Scholar]
- Albuja-Sanchez, J. Mechanical Properties of Peats. Master’s Thesis, Imperial College London, London, UK, 2016. [Google Scholar]
- Peñafiel, B.; Reascos, A. Caracterización Física, Geomecánica y Determinación de la Relación Entre el Índice de Plasticidad y el Coeficiente de Compresibilidad del Subsuelo del Sector “El Garrochal” Parroquia Turubamba. Master’s Thesis, Pontificia Universidad Católica del Ecuador, Quito, Ecuador, 2021. [Google Scholar]
- Albuja, J. Local Site Seismic Response in an Andean Valley: Geotechnical Characterization and Seismic Amplification Zonation of the Southern Quito Area. Ph.D. Thesis, Universitá degli Studi di Ferrara, Ferrara, Italy, 2022. [Google Scholar]
- Hidalgo, S.; Andrade, D. Presentación, Historia Volcánica. Actividad Actual, y Peligros Volcánicos Potenciales. Available online: https://www.igepn.edu.ec/publicaciones-para-la-comunidad/comunidad-espanol/tripticos/14156-triptico-volcanes-atacazo-ninahuilca-y-pululahua/file (accessed on 9 July 2024).
- Hidalgo, S.; Monzier, M.; Almeida, E.; Chazot, G.; Eissen, J.-P.; Van Der Plicht, J.; Hall, M.L. Late Pleistocene and Holocene activity of the Atacazo–Ninahuilca Volcanic Complex (Ecuador). J. Volcanol. Geotherm. Res. 2008, 176, 16–26. [Google Scholar] [CrossRef]
- Panchana, C. Estudio de los Domos del Volcán Quilotoa y su Correlación con la Estratigrafía del Volcán. Bachelor’s Thesis, Escuela Politécnica Nacional, Quito, Ecuador, 2015. [Google Scholar]
- Silva-Yumi, J.; Martínez, R.C.; Serrano, C.M.; Lescano, G.C. Alofán, Una Nanopartícula Natural Presente En Andisoles Del Ecuador, Propiedades Y Aplicaciones. Granja. Rev. Cienc. Vida 2021, 33, 53–66. [Google Scholar] [CrossRef]
- Mizota, C.; Carrasco, M.A.; Wada, K. Clay mineralogy and some chemical properties of Ap horizons of Ando soils used for paddy rice in Japan. Geoderma 1982, 27, 225–237. [Google Scholar] [CrossRef]
- Guojun, L. Evaluation of Liquefaction Potential in Relation to the Shearing History Using Shear Wave Velocity. Doctoral Dissertation, Kyushu University, Fukuoka, Japan, 2019. [Google Scholar] [CrossRef]
- Andrejko, M.J.; Fiene, F.; Cohen, A. Comparison of Ashing Techniques for Determination of the Inorganic Content of Peats. In Testing of Peats and Organic Soils; Jarret, P.M., Ed.; ASTM International: Toronto, ON, Canada, 1982. [Google Scholar]
- Landva, A.O.; Korpijaakko, E.O.; Pheeney P., E. Geotechnical Classification of Peats and Organic Soils. In Testing of Peats and Organic Soils; Jarret, P.M., Ed.; ASTM International: Toronto, ON, Canada, 1982. [Google Scholar]
- Arenaldi Perisic, G.; Ovalle, C.; Barrios, A. Compressibility and creep of a diatomaceous soil. Eng. Geol. 2019, 258, 105145. [Google Scholar] [CrossRef]
- IGM. Instituto Geográfico Militar, Cartografía de Libre Acceso. Available online: https://www.geoportaligm.gob.ec/portal/index.php/descargas/cartografia-de-libre-acceso/ (accessed on 4 February 2024).
- FAO. ClimWat. Land & Water Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/es/ (accessed on 20 February 2024).
- FAO. CropWat. Land & Water Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/es/ (accessed on 20 February 2024).
- MAG. Ministerio de Agricultura y Ganadería del Ecuador, (MAG). Available online: https://www.agricultura.gob.ec/ (accessed on 18 December 2023).
- Aparicio, F. Fundamentos de Hidrología de Superficie; Limusa: México, México, 1999; ISBN 968-18-3014-8. [Google Scholar]
- Guachamin, W.; García, F.; Arteaga, M.; Cadena, J. Determinación de Ecuaciones Para el Cálculo de Intensidades Máximas de Precipitación; Instituto Nacional de Meteorologia e Hidrologia (INAMHI): Quito, Ecuador. Available online: https://www.inamhi.gob.ec/Publicaciones/Hidrologia/ESTUDIO_DE_INTENSIDADES_V_FINAL.pdf (accessed on 15 July 2024).
- ASTM-D6635-15; Standard Test Method for Performing the Flat Plate Dilatometer (Withdrawn 2024). ASTM International: West Conshohocken, PA, USA, 2024. Available online: https://www.astm.org/d6635-15.html (accessed on 18 March 2024).
- Marchetti, S. In Situ Tests by Flat Dilatometer. J. Geotech. Eng. Div. 1980, 106, 299–321. [Google Scholar] [CrossRef]
- Pilatasig, B. Análisis Mineralógico–Caupicho. Faculty of Geology and Petroleum; Department of Geology, National Polytechnic School,: Quito, Ecuador, 2024. [Google Scholar]
- Criollo, E.; Endara, D. Análisis de Difracción de Rayos x–Caupicho; Department of Extractive Metallurgy, National Polytechnic School: Quito, Ecuador, 2024. [Google Scholar]
- Bolaños, D.; Espinoza-Montero, P. Análisis de Forma y Composición Química con Microscopio Electrónico SEM 400-800x. Master’s Thesis, School of Chemical Sciences, Laboratory 007 of the Fundamental and Applied Electro-Chemistry Group GEFA, Pontificia Universidad Católica del Ecuador, Quito, Ecuador, 2024. [Google Scholar]
- ASTM D2216-19; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/d2216-19.html (accessed on 17 August 2023).
- ASTM D4318-17; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/d4318-17e01.html (accessed on 17 August 2023).
- ASTM D1140; Standard Test Methods for Amount of Material in Soils Finer than No. 200 (75-μm) Sieve. ASTM International: West Conshohocken, PA, USA, 2014. Available online: https://www.astm.org/d1140-00r06.html (accessed on 17 August 2023).
- ASTM D2487-17; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d2487-17.html (accessed on 18 August 2023).
- ASTM D2974-20; Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d2974-20e01.html (accessed on 12 September 2023).
- ASTM D7263-21; Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/d7263-21.html (accessed on 12 September 2023).
- ASTM D4767-11; Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d4767-11r20.html (accessed on 12 September 2023).
- ASTM D2435/D2435M; Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d2435_d2435m-11r20.html (accessed on 28 April 2024).
- Rabarijoely, S. A New Approach to the Determination of Mineral and Organic Soil Types Based on Dilatometer Tests (DMT). Appl. Sci. 2018, 8, 2249. [Google Scholar] [CrossRef]
- Marchetti, S.; Crapps, D. Flat Dilatometer Manual. Available online: https://www.marchetti-dmt.it/wp-content/uploads/bibliografia/marchetti_1981_crapps_manual.pdf (accessed on 16 July 2024).
- Marchetti, S.; Marchetti, D.; Villalobos, F. El Dilatómetro Sísmico SDMT para ensayos de suelos in situ. Obras Proy. 2013, 20–29. [Google Scholar] [CrossRef]
- Marchetti, S.; Monaco, P.; Totani, G.; Marchetti, D. In Situ Tests by Seismic Dilatometer (SDMT). In From Research to Practice in Geotechnical Engineering; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 292–311. [Google Scholar] [CrossRef]
- Marchetti, S.; Totani, G. Ch evaluations from DMTA dissipation curves. In Proceedings of the Congrès International de Mécanique des Sols et Des Travaux de Fondations, Rio de Janiero, Brazil, 13–18 August 1989. [Google Scholar]
- Gobin, M.; Yasufuku, N.; Liu, G.; Watanabe, M.; Ishikura, R. Small strain stiffness, microstructure and other characteristics of an allophanic volcanic ash. Eng. Geol. 2023, 313, 106967. [Google Scholar] [CrossRef]
- Li, W.; O’Kelly, B.C.; Yang, M.; Fang, K.; Li, X.; Li, H. Briefing: Specific gravity of solids relationship with ignition loss for peaty soils. Geotech. Res. 2020, 7, 134–145. [Google Scholar] [CrossRef]
- Skempton, A.W.; Petley, D.J. Ignition Loss and other Properties of Peats and Clays from Avonmouth, King’s Lynn and Cranberry Moss. Géotechnique 1970, 20, 343–356. [Google Scholar] [CrossRef]
- Das, B.M. Fundamentos de Ingeniería Geotécnica, 4th ed.; Cengage Learning Editores S.A.: México, México, 2015. [Google Scholar]
- Mejía, R.; Mendoza, G. Aplicación del Método Geofísico MASW, Para la Obtención de Perfiles de Onda Vs y Cálculo de Vs30 del Subsuelo en la Microzonificación Sísmica del sur de Quito. Master’s Thesis, Pontificia Universidad Católica del Ecuador, Quito, Ecuador, 2021. [Google Scholar]
- Goldich, S.S. A Study in Rock-Weathering. J. Geol. 1938, 46, 17–58. [Google Scholar] [CrossRef]
- Henmi, T.; Wada, K. Morphology and composition of allophane. Am. Mineral. 1976, 61, 379–390. [Google Scholar]
- Madaschi, A.; Gajo, A. One-dimensional response of peaty soils subjected to a wide range of oedometric conditions. Géotechnique 2015, 65, 274–286. [Google Scholar] [CrossRef]
Month | Min Temp | Max Temp | Humidity | Wind | Insolation | Rad | ETo |
---|---|---|---|---|---|---|---|
°C | °C | % | km/day | hours | MJ/m2/day | mm/day | |
January | 5.90 | 18.10 | 79 | 181 | 4.00 | 15.20 | 2.84 |
February | 6.20 | 17.60 | 79 | 190 | 3.50 | 14.80 | 2.78 |
March | 6.40 | 17.60 | 80 | 181 | 3.30 | 14.60 | 2.74 |
April | 6.40 | 17.60 | 81 | 181 | 2.80 | 13.50 | 2.56 |
May | 6.30 | 17.90 | 87 | 181 | 4.20 | 14.80 | 2.55 |
June | 5.30 | 17.70 | 81 | 216 | 4.50 | 14.50 | 2.64 |
July | 4.90 | 18.20 | 70 | 268 | 4.70 | 15.10 | 3.09 |
August | 4.60 | 18.60 | 69 | 259 | 4.80 | 16.00 | 3.30 |
September | 4.80 | 18.60 | 72 | 242 | 4.40 | 16.10 | 3.22 |
October | 5.30 | 18.20 | 78 | 181 | 3.60 | 14.90 | 2.86 |
November | 5.60 | 18.00 | 79 | 173 | 3.90 | 14.90 | 2.79 |
December | 5.80 | 18.10 | 78 | 181 | 4.10 | 15.10 | 2.83 |
Average | 5.60 | 18.00 | 78 | 203 | 4.00 | 15.00 | 2.85 |
Month | January | February | March | April | May | June | July | August | September | October | November | December | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precipitation (mm) | 132 | 157 | 173 | 192 | 140 | 68 | 31 | 40 | 86 | 141 | 142 | 121 | 1423 |
Soil Texture | Area (Ha) | % | Runoff Coefficient (Ce) | %/100 × Ce | ||
---|---|---|---|---|---|---|
Minimum | Maximum | |||||
Urban areas | 4.98 | 1.00 | 0.30 | 0.50 | 0.00 | 0.00 |
Clayey | 51.96 | 7.00 | 0.18 | 0.22 | 0.01 | 0.01 |
Sandy loam (fine to coarse) | 386.15 | 50.00 | 0.10 | 0.15 | 0.05 | 0.08 |
Silt loam | 326.34 | 42.00 | 0.10 | 0.15 | 0.04 | 0.06 |
Total | 769.42 | 100.00 | 0.11 | 0.16 |
Basin Area | Channel Length (L) | River Slope (S) | Return Time | Runoff Coefficient (Ce) | Concentration Time (tc) | Daily Intensity (Idtr) | Maximum Intensity of Rain (Itr) | Maximum Flow |
---|---|---|---|---|---|---|---|---|
Km2 | m | m/m | years | min | mm/h | mm/h | cms | |
5.13 | 4281.00 | 0.03 | 100.00 | 0.16 | 47.06 | 3.30 | 62.35 | 14.22 |
Return Period | Daily Intensity (Idtr) | Maximum Intensity of Rain (Itr) | Maximum Flow |
---|---|---|---|
Year | mm/h | mm/h | cm |
2 | 1.80 | 34.00 | 7.75 |
5 | 2.00 | 37.79 | 8.62 |
10 | 2.30 | 43.46 | 9.91 |
25 | 2.60 | 49.12 | 11.20 |
50 | 3.00 | 56.68 | 12.92 |
100 | 3.30 | 62.35 | 14.22 |
Laboratory Test | Parameters | Reference |
---|---|---|
Thin-section mineralogy | Mineral content | [24] |
Rx diffraction | Mineral content | [25] |
Scanning electron microscope (SEM) | Chemical form | [26] |
Moisture content | w (%) | [27] |
Atterberg limits | Ll, Lp, Ip (%) | [28] |
Material finer than 75 μm | Fines (%) | [29] |
USCS classification | Soil classification | [30] |
Ash and organic content | Ash content, organic material | [31] |
Unit weight | Ƴ | [32] |
Triaxial CU | c’, ɸ’ | [33] |
Oedometric consolidation | Cc, Cs, Cv, Kv | [34] |
Soil Type | Material Index (ID) | ||
---|---|---|---|
Organic soils and cohesive soils | Peat/Sensitive clays | <0.10 | |
Clay | 0.10 | 0.35 | |
Silty clay | 0.35 | 0.60 | |
Clayey silt | 0.60 | 0.90 | |
Silt | 0.90 | 1.20 | |
Sandy silt | 1.20 | 1.80 | |
Non-cohesive soils | Silty sand | 1.80 | 3.30 |
Sand | >3.30 |
Soil | Caupicho1 | Caupicho2 | Caupicho3 |
---|---|---|---|
% | % | % | |
MUD * | 52.63 | 68.42 | 0.00 |
Clay | 0.00 | 1.75 | 0.00 |
Silty clay | 10.53 | 12.28 | 35.71 |
Clayey silt | 5.26 | 3.51 | 16.67 |
Silt | 8.77 | 7.02 | 4.76 |
Sandy silt | 7.02 | 3.51 | 14.29 |
Silty sand | 8.77 | 0.00 | 14.29 |
Sandy silt | 7.02 | 3.51 | 14.29 |
Total | 100.00 | 100.00 | 100.00 |
Muck/Peat | Caupicho1 | Caupicho2 | Caupicho3 |
---|---|---|---|
% | % | % | |
Yes | 56.6 | 69.6 | 0.0 |
No | 43.4 | 30.4 | 100.0 |
Total | 100.0 | 100.0 | 100.0 |
Z (m) | KD | Ko | MDMT | Ch (cm2/min) | Kh (m/seg) |
---|---|---|---|---|---|
5.20 | 1.82 | 0.50 | 1.16 | 3.87 | 1.10 × 10−7 |
5.40 | 1.87 | 0.51 | 0.51 | 3.87 | 2.42 × 10−7 |
Petrographic Analysis (2.5–3 m) | % |
---|---|
Coalescence of cavities with clay mixture (CC) | 2.00 |
Soil matrix (Matriz) | 47.80 |
Pyroxenes (Px) | 0.30 |
Plagioclases (Pl) | 5.00 |
Organic material (RO) | 23.40 |
Porosity | 21.50 |
100.00 |
Mineral | Formula | Mineral Concentration (%) |
---|---|---|
Plagioclase | (Na,Ca) Al (Si,Al)Si2O8 | 78 |
Muscovite | KAl2(AlSi3O10) (OH)2 | 17 |
Quartz | SiO2 | 3 |
Cordierite | Mg2Al4Si5O18 | 2 |
100 |
Element | O | C | B | Si | N | Fe | Al | Na | Br | Ca | Ti | K | Mg | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight concentration (%) | 41.02 | 33.46 | 11.59 | 5.25 | 3.03 | 2.84 | 1.01 | 0.55 | 0.53 | 0.39 | 0.16 | 0.10 | 0.07 | 100.00 |
Element Number | Element Symbol | Element Name | Atomic Concentration (%) | Weight Concentration (%) |
---|---|---|---|---|
8 | O | Oxygen | 67.26 | 58.15 |
14 | Si | Silicon | 13.64 | 20.7 |
7 | N | Nitrogen | 10.92 | 8.27 |
13 | Al | Aluminum | 4.74 | 6.9 |
19 | K | Potassium | 1.96 | 4.15 |
11 | Na | Sodium | 1.48 | 1.83 |
Element Number | Element Symbol | Element Name | Atomic Concentration (%) | Weight Concentration (%) |
---|---|---|---|---|
6 | C | Carbon | 41.1 | 19.02 |
8 | O | Oxygen | 26.15 | 16.12 |
26 | Fe | Iron | 19.57 | 42.1 |
22 | Ti | Titanium | 11.15 | 20.56 |
14 | Si | Silicon | 2.03 | 2.2 |
Element Number | Element Symbol | Element Name | Atomic Concentration (%) | Weight Concentration (%) |
---|---|---|---|---|
8 | O | Oxygen | 56.62 | 46.87 |
6 | C | Carbon | 23.59 | 14.66 |
14 | Si | Silicon | 12.45 | 18.1 |
35 | Br | Bromine | 3.16 | 13.07 |
11 | Na | Sodium | 1.79 | 2.13 |
26 | Fe | Iron | 0.86 | 2.47 |
20 | Ca | Calcium | 0.64 | 1.34 |
12 | Mg | Magnesium | 0.53 | 0.67 |
Sample | Depth | Particle Specific Gravity | Initial Moisture Content | Initial Bulk Density | Initial Dry Density | Initial Void Index (eo) | Initial Degree of Saturation | Porosity (n) |
---|---|---|---|---|---|---|---|---|
m | % | Mg/m3 | Mg/m3 | % | % | |||
1 | 6.5–7.0 | 2.24 | 288.46 | 1.07 | 0.28 | 6.92 | 90.85 | 87.50 |
2 | 2.5–3.0 | 2.27 | 257.16 | 1.14 | 0.32 | 6.14 | 95.14 | 85.90 |
3 | 5.5–6.0 | 2.18 | 366.79 | 1.04 | 0.22 | 8.79 | 91.01 | 89.91 |
4 | 8.5–9.0 | 2.24 | 256.54 | 1.15 | 0.32 | 5.93 | 96.86 | 85.71 |
Sample | Depth | Final Void Ratio (ef) | Final Degree of Saturation | Preconsolidation Pressure (σ’c) | σ’o | OCR (σ’c/σ’o) | Bulging Index | Compression Index |
---|---|---|---|---|---|---|---|---|
m | % | Kpa | Kpa | Cs | Cc | |||
1 | 6.5–7.0 | 4.32 | 99.75 | 25.00 | 19.09 | 1.31 | 0.23 | 3.71 |
2 | 2.5–3.0 | 1.44 | 99.72 | 20.00 | 18.84 | 1.06 | 0.18 | 2.65 |
3 | 5.5–6.0 | 2.42 | 99.10 | 22.40 | 20.84 | 1.07 | 0.35 | 2.57 |
4 | 8.5–9.0 | 1.31 | 99.77 | 28.68 | 0.15 | 2.21 |
Pressure (Loading) | Coefficient of Consolidation (Cv) |
---|---|
Kpa | mm2/min |
Depth: 6.5–7.0 m | |
12.50 | 13.59 |
25.00 | 6.12 |
50.00 | 9.43 |
100.00 | 6.79 |
Pressure (Loading) | Coefficient of Consolidation (Cv) | ||
---|---|---|---|
Kpa | mm2/min | ||
Depth: 2.5–3.0 m | Depth: 5.5–6.0 m | Depth: 8.5–9.0 m | |
25.00 | 69.18 | 65.90 | 23.69 |
50.00 | 24.37 | 3.16 | 16.80 |
100.00 | 24.65 | 1.99 | 5.90 |
200.00 | 21.97 | 2.59 | 3.63 |
400.00 | 1.84 | 0.95 | 2.70 |
800.00 | 1.88 | 1.11 | 1.47 |
Sample | Depth | σ’ | Kv = Cv.Ƴw.mv | σ’ | Kv = Cv.Ƴw.mv | Kv Mean |
---|---|---|---|---|---|---|
m | Kpa | m/s | Kpa | m/s | m/s | |
1 | 6.5–7.0 | 0–12 | 1.68 × 10−8 | 12–25 | 6.36 × 10−9 | 1.16 × 10−8 |
2 | 2.5–3.0 | 0–25 | 5.53 × 10−8 | 25–50 | 5.54 × 10−9 | 3.04 × 10−8 |
3 | 5.5–6.0 | 0–25 | 1.10 × 10−7 | 25–50 | 2.55 × 10−9 | 5.64 × 10−8 |
4 | 8.5–9.0 | 0–25 | 3.98 × 10−8 | 25–50 | 1.67 × 10−8 | 2.82 × 10−8 |
Kv average | 5.55 × 10−8 | 7.78 × 10−9 | 3.16 × 10−8 |
Depth (m) | Axial Strain (%) | ɸ’ (◦) | c’ (KPa) |
---|---|---|---|
2.5–4.0 | 14.75 | 30.00 | 16.67 |
4.0–5.0 | 14.74 | 25.49 | 20.90 |
5.0–6.0 | 13.40 | 30.05 | 47.27 |
6.5–8.0 | 14.78 | 28.74 | 11.90 |
Average | 14.42 | 28.57 | 24.19 |
Caupicho1 | Mayanquer | Albuja | Seismic Quito [6] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Soil | 1 | 2 | 3 | S1 | S2 | S3 | S4 | P4-SQ | P5-SQ | |
Peat | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 34.48 | 0.00 |
Clay | 67.92 | 82.14 | 39.47 | 76.09 | 61.22 | 9.62 | 23.91 | 62.50 | 44.83 | 19.05 |
Silt | 22.64 | 16.07 | 39.47 | 19.57 | 28.57 | 84.62 | 69.57 | 23.44 | 13.79 | 57.14 |
Sand | 9.43 | 1.79 | 21.05 | 4.35 | 10.20 | 5.77 | 6.52 | 14.06 | 6.90 | 23.81 |
Total (%) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Soil | Caupicho | Mayanquer |
---|---|---|
MUD | 40.35 | 21.08 |
Clay | 20.09 | 22.17 |
Silt | 23.60 | 45.59 |
Sand | 15.96 | 11.15 |
Total (%) | 100.00 | 100.00 |
Topographic Heigh | ||
---|---|---|
Study | Height z (m) | ∆z |
Mayanquer | 2994.46 | 22.92 |
Albuja | 2993.73 | 22.19 |
Caupicho1 | 2986.39 | 14.85 |
Caupicho2 | 2976.18 | 4.64 |
Caupicho3 | 2971.54 | 0.00 |
Shots | Layers | Depth (m) | dᵢ (m) | Vs (m/s) | Vs30 (m/s) | Depth (m) | dᵢ (m) | Vs (m/s) | Vs30 (m/s) | Depth (m) | dᵢ (m) | Vs (m/s) | Vs30 (m/s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Profile | 1 | 9.2 | 9.2 | 104.0 | 172.9 | 5.5 | 5.5 | 110.2 | 208.1 | 2.2 | 2.2 | 131.6 | 148.1 |
2 | 15.6 | 6.4 | 250.0 | 15.2 | 9.7 | 236.7 | 19.5 | 7.3 | 157.4 | ||||
3 | 17.7 | 2.2 | 105.8 | 17.6 | 2.4 | 177.0 | 26.2 | 6.7 | 104.9 | ||||
4 | 30.0 | 12.3 | 314.2 | 30.0 | 12.4 | 312.4 | 30.0 | 3.8 | 315.0 | ||||
2-3 | 1 | 9.1 | 9.1 | 103.1 | 151.2 | 2.8 | 2.8 | 142.3 | 165.4 | 5.3 | 5.3 | 101.3 | 141.8 |
2 | 20.9 | 11.7 | 193.0 | 18.9 | 9.7 | 151.2 | 14.0 | 8.7 | 200.2 | ||||
3 | 24.7 | 3.9 | 120.0 | 18.9 | 6.4 | 103.1 | 27.2 | 13.3 | 123.6 | ||||
4 | 30.0 | 5.3 | 312.4 | 30.0 | 11.1 | 311.5 | 30.0 | 2.8 | 312.4 | ||||
4-5 | 1 | 9.4 | 9.4 | 102.2 | 157.2 | 12.0 | 12.0 | 128.0 | 167.4 | 7.5 | 7.5 | 147.0 | 194.3 |
2 | 19.0 | 9.6 | 201.9 | 14.2 | 13.0 | 157.4 | 11.0 | 3.5 | 206.4 | ||||
3 | 23.0 | 4.1 | 137.8 | 20.8 | 6.6 | 114.7 | 16.7 | 5.7 | 191.2 | ||||
4 | 30.0 | 7.0 | 315.0 | 30.0 | 9.2 | 312.4 | 30.0 | 13.3 | 315.0 | ||||
6-7 | 1 | 8.7 | 8.7 | 101.3 | 157.0 | 11.0 | 11.0 | 102.2 | 151.9 | 11.1 | 11.1 | 128.0 | 189.5 |
2 | 11.5 | 2.8 | 196.6 | 15.0 | 4.0 | 229.5 | 12.5 | 1.4 | 185.0 | ||||
3 | 17.8 | 6.3 | 123.6 | 19.0 | 4.0 | 105.8 | 15.0 | 2.5 | 157.4 | ||||
4 | 30.0 | 12.2 | 305.2 | 30.0 | 11.1 | 315.0 | 30.0 | 15.0 | 312.4 | ||||
Center | 1 | 11.6 | 11.6 | 104.9 | 146.6 | 7.1 | 7.1 | 101.3 | 176.9 | 5.0 | 5.0 | 118.2 | 149.0 |
2 | 16.0 | 4.4 | 226.0 | 14.4 | 7.3 | 222.4 | 13.3 | 8.3 | 166.3 | ||||
3 | 20.9 | 4.9 | 108.6 | 18.7 | 3.4 | 127.2 | 21.5 | 3.1 | 128.0 | ||||
4 | 30.0 | 9.2 | 315.0 | 30.0 | 12.2 | 313.3 | 30.0 | 8.5 | 305.2 | ||||
10-11 | 1 | 4.6 | 4.6 | 105.8 | 190.0 | 9.7 | 9.7 | 101.3 | 171.3 | 3.7 | 3.7 | 109.3 | 148.5 |
2 | 7.2 | 2.6 | 202.8 | 14.6 | 4.9 | 193.3 | 14.0 | 3.7 | 130.3 | ||||
3 | 17.7 | 10.6 | 168.1 | 18.0 | 3.4 | 152.3 | 21.2 | 8.8 | 103.1 | ||||
4 | 30.0 | 12.3 | 315.0 | 30.0 | 11.1 | 312.4 | 30.0 | 8.2 | 312.4 | ||||
12-13 | 1 | 6.8 | 6.8 | 103.1 | 193.1 | 4.6 | 4.6 | 108.4 | 180.6 | 3.7 | 3.7 | 103.1 | 150.6 |
2 | 14.3 | 7.5 | 249.1 | 6.9 | 2.5 | 209.1 | 12.7 | 8.1 | 163.6 | ||||
3 | 16.4 | 2.1 | 130.7 | 12.5 | 5.9 | 103.1 | 21.5 | 8.8 | 136.6 | ||||
4 | 30.0 | 13.6 | 314.2 | 30.0 | 11.1 | 312.4 | 30.0 | 8.6 | 308.8 | ||||
14-15 | 1 | 9.0 | 9.0 | 102.2 | 175.3 | 1.1 | 1.1 | 108.4 | 178.9 | 8.4 | 8.4 | 144.9 | 176.0 |
2 | 15.0 | 6.0 | 246.5 | 11.3 | 9.2 | 103.1 | 12.7 | 10.4 | 192.1 | ||||
3 | 17.6 | 2.6 | 104.9 | 14.3 | 5.1 | 180.7 | 21.4 | 8.7 | 157.4 | ||||
4 | 30.0 | 13.0 | 314.2 | 30.0 | 18.7 | 315.0 | 30.0 | 2.4 | 115.5 | ||||
Back Profile | 1 | 10.8 | 10.8 | 102.2 | 166.4 | 9.1 | 9.1 | 100.4 | 162.4 | 2.4 | 2.4 | 115.5 | 182.7 |
2 | 12.1 | 1.3 | 155.6 | 15.8 | 6.6 | 250.0 | 6.3 | 5.9 | 157.4 | ||||
3 | 15.3 | 3.3 | 182.2 | 19.0 | 3.3 | 101.3 | 16.9 | 6.6 | 136.0 | ||||
4 | 30.0 | 14.7 | 301.7 | 30.0 | 11.0 | 314.2 | 30.0 | 13.1 | 306.1 | ||||
Average Vs30 (m/s) | 167.7 | 173.7 | 164.5 |
Caupicho1 | T42-T44-T46 | |
---|---|---|
Depth Z (m) | Vs (m/s) | |
1.50–6.50 | 74.30 | 107.00 (60%) 120.00 (40%) |
6.50–8.50 | 330.25 | |
8.50–9.60 | 82.00 | |
9.60–10.50 | 353.50 | 239.00 (max) |
Characteristic Minerals | Degree of Weathering [45] | Minerals Found | |||
---|---|---|---|---|---|
Andesite | Dacite | Petrographic Analysis | X-Ray Diffraction | ||
2.5–3.0 m | 8.5–9.0 m | ||||
Quartz | X | X | 1 | X | |
Muscovite | X | X | 2 | X | |
Orthoclase | X | 3 | |||
Biotite | X | X | 4 | ||
Plagioclase | X | X | 5 | X | X |
Amphibole | X | X | 6 | ||
Pyroxene | X | 7 | X |
Depth | Pressure (Loading) | Coefficient of Consolidation (Cv) |
---|---|---|
m | KPa | mm2/min |
2.5–3.0 | 50–800 | 14.94 |
5.5–6.0 | 50–800 | 1.96 |
8.5–9.0 | 50–800 | 7.45 |
Sample | Levitico Peat | Fiavé Peat | Egna Peat | Caupicho |
---|---|---|---|---|
Mean specific gravity, Gs | 2.3 | 1.8 | 1.6 | 2.2–2.3 |
Organic Specific weight Gsm | 2.7 | 2.7 | 2.6 | |
Inorganic specific weight Gso | 1.3 | 1.4 | 1.4 | |
Organic matter: % | 19.9 | 49.3 | 71.0 | 5.0–26.0 |
Liquid limit, Wl: % | 114.0 | 305.0 | 346.0 | 210.9 |
Plastic limit, Wp: % | 76.0 | 183.0 | 226–272 | 142.1 |
Plastic index, Ip: % | 38.0 | 126.0 | 121–74 | 68.8 |
Natural water content, w: % | 150–180 | 209.0 | 280.0 | 245.9 |
Compression index, Cc Rem. | 1.05–1.39 | 1.67 | ||
Compression index, Cc Nat. | 0.82 | 1.72 | 1.87 | 2.21–3.71 |
Swelling index, Cs Nat. | 0.11–0.13 | 0.21 | 0.15–0.35 | |
Swelling index, Cs Rem. | 0.11 | 0.29 | 0.28 |
Type of Test | ||||
---|---|---|---|---|
Unconsolidated Undrained | Consolidated Undrained | Consolidated Drained | Reference | |
Soil | UU | CU | CD | |
Silt or silty sand | ||||
Loose | 20–22 | 27–30 | [43] | |
Dense | 25–30 | 30–35 | “ | |
Clay | 0° if saturated | 3–20° | 20–42 | “ |
Silty clay | 17–22 | [44] | ||
Muddy | 20.8 | “ | ||
Peat | 27.8–31.7 * | [45] | ||
Organic silt–Caupicho | 25.5–30 ** | Current research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez, E.F.; Albuja-Sánchez, J.; Córdova, M. Integrated Geotechnical Analysis of Allophanic Volcanic Ash Soils: SDMT and Laboratory Perspectives. Appl. Sci. 2025, 15, 1386. https://doi.org/10.3390/app15031386
Sanchez EF, Albuja-Sánchez J, Córdova M. Integrated Geotechnical Analysis of Allophanic Volcanic Ash Soils: SDMT and Laboratory Perspectives. Applied Sciences. 2025; 15(3):1386. https://doi.org/10.3390/app15031386
Chicago/Turabian StyleSanchez, Eddy Fernando, Jorge Albuja-Sánchez, and Maritza Córdova. 2025. "Integrated Geotechnical Analysis of Allophanic Volcanic Ash Soils: SDMT and Laboratory Perspectives" Applied Sciences 15, no. 3: 1386. https://doi.org/10.3390/app15031386
APA StyleSanchez, E. F., Albuja-Sánchez, J., & Córdova, M. (2025). Integrated Geotechnical Analysis of Allophanic Volcanic Ash Soils: SDMT and Laboratory Perspectives. Applied Sciences, 15(3), 1386. https://doi.org/10.3390/app15031386