The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization—Part B: 166Ho Microspheres
<p>VSV kernels (available as Supporting Material of this paper) represented as a plot of the AD per unit decay to the target voxel (y-axis) versus the source–target voxel distance (x-axis) for the soft tissue (<b>a</b>) and lung tissue (<b>b</b>) for <sup>166</sup>Ho on a square voxel of 2.21 mm side.</p> "> Figure 2
<p>Correlation plot of the mean absorbed dose in the lungs (<math display="inline"><semantics> <mover> <mrow> <mi>A</mi> <mi>D</mi> </mrow> <mo>¯</mo> </mover> </semantics></math>) per GBq of administered activity, obtained from MC simulations with the reference phantom (x-axis), compared with those obtained using the methods listed in <a href="#applsci-15-00958-t002" class="html-table">Table 2</a> (y-axis). Each point in the data series represents an increasing LS value (10%, 20%, 30%, and 40%), with a line representing the linear interpolation of each dataset, provided as a qualitative visual guide only.</p> "> Figure 3
<p>Example slices in the coronal view of the AD spatial distributions (left) for <math display="inline"><semantics> <msub> <mi>kLT</mi> <mi>L</mi> </msub> </semantics></math> (<b>a</b>), <math display="inline"><semantics> <msub> <mi>kST</mi> <mi>L</mi> </msub> </semantics></math> (<b>b</b>), and MC (<b>c</b>), along with their respective color scales, are shown, whereas the plot (right) reports the corresponding DVH (<b>d</b>). All dosimetric approaches show significant heterogeneity in the AD spatial distribution. The values of the AD maps and the DVH are given in Gy per GBq of administered activity.</p> "> Figure 4
<p>Example slices in the coronal view of the ADr maps (left) of <sup>166</sup>Ho (<b>a</b>) and <sup>90</sup>Y (<b>b</b>), along with the corresponding DrVHs (<b>c</b>), are shown for LS = 10%. The data demonstrate a different degree of inhomogeneity between the two radionuclides, due to the distinct physical characteristics of their decay spectra.</p> "> Figure 5
<p>Cumulative DVHs of <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>Q</mi> <msub> <mi>D</mi> <mn>2</mn> </msub> </mrow> </semantics></math> for <sup>90</sup>Y (blue band) and <sup>166</sup>Ho (yellow band) for the 0.5–1 h range of <math display="inline"><semantics> <msub> <mi mathvariant="normal">T</mi> <mi>μ</mi> </msub> </semantics></math> along with the volumetric constraints (red dots) listed in <a href="#applsci-15-00958-t004" class="html-table">Table 4</a>.</p> "> Figure 6
<p><math display="inline"><semantics> <mover> <mrow> <mi>A</mi> <mi>D</mi> </mrow> <mo>¯</mo> </mover> </semantics></math> NTCP model for RP incidence in partial lung irradiation treatments from EBRT as reported in QUANTEC [<a href="#B42-applsci-15-00958" class="html-bibr">42</a>]. The black solid line is the logistic model according to Equation (<a href="#FD6-applsci-15-00958" class="html-disp-formula">6</a>) with parameters <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>3.87</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.126</mn> <mspace width="4.pt"/> <msup> <mi>Gy</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, the blue dots refer to <sup>90</sup>Y cases, and the yellow ones to <sup>166</sup>Ho cases, each for the LS = 10% case and for the labeled <math display="inline"><semantics> <msub> <mi mathvariant="normal">T</mi> <mi>μ</mi> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropomorphic Voxelized Phantom and Common Dosimetric Methods
Method | Tag | General Formulation | Phantom-Specific Feature |
---|---|---|---|
Mono-compartmental | MIRD | (†) | Organ Mass |
Convolution kernel ST | kST | Activity Distribution | |
Convolution kernel ST + Local Rescale | Activity and Density Distributions | ||
Convolution kernel LT | kLT | Activity Distribution | |
Convolution kernel LT + Global Rescale | Activity Distribution & Mean Organ Density | ||
Convolution kernel LT + Local Rescale | Activity and Density Distributions |
2.2. Monte Carlo Simulations
2.3. Evaluation of Voxel-Based Dosimetric Approaches
3. Results
3.1. VSV Kernel for Soft and Lung Tissue for 166Ho
3.2. 166Ho Monte Carlo Simulations vs. “Classical” Dosimetric Approaches
3.3. 166Ho Versus 90Y Monte Carlo Simulations
3.4. Impact on Clinical Decision-Making: From the to the EBRT Dosimetric Constraints for DVH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, A.; Stauffer, J.A.; LeGout, J.D.; Burns, J.; Croome, K.; Paz-Fumagalli, R.; Frey, G.; Toskich, B. The use of neoadjuvant lobar radioembolization prior to major hepatic resection for malignancy results in a low rate of post hepatectomy liver failure. J. Gastrointest. Oncol. 2021, 12, 751. [Google Scholar] [CrossRef] [PubMed]
- Tohme, S.; Sukato, D.; Chen, H.W.; Amesur, N.; Zajko, A.B.; Humar, A.; Geller, D.A.; Marsh, J.W.; Tsung, A. Yttrium-90 radioembolization as a bridge to liver transplantation: A single-institution experience. J. Vasc. Interv. Radiol. 2013, 24, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Lewandowski, R.J.; Kulik, L.M.; Mulcahy, M.F.; Sato, K.T.; Ryu, R.K.; Omary, R.A.; Salem, R. Complications following radioembolization with yttrium-90 microspheres: A comprehensive literature review. J. Vasc. Interv. Radiol. 2009, 20, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Awais, R.; Salem, R. Side effects of yttrium-90 radioembolization. Front. Oncol. 2014, 4, 198. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, G.L.; Johnson, G.E. Recognizing and managing adverse events in Y-90 radioembolization. In Proceedings of the Seminars in Interventional Radiology; Thieme Medical Publishers, Inc.: Stuttgart, Germany, 2021; Volume 38, pp. 453–459. [Google Scholar]
- Sangro, B.; Martínez-Urbistondo, D.; Bester, L.; Bilbao, J.I.; Coldwell, D.M.; Flamen, P.; Kennedy, A.; Ricke, J.; Sharma, R.A. Prevention and treatment of complications of selective internal radiation therapy: Expert guidance and systematic review. Hepatology 2017, 66, 969–982. [Google Scholar] [CrossRef] [PubMed]
- Dezarn, W.A.; Cessna, J.T.; DeWerd, L.A.; Feng, W.; Gates, V.L.; Halama, J.; Kennedy, A.S.; Nag, S.; Sarfaraz, M.; Sehgal, V.; et al. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med. Phys. 2011, 38, 4824–4845. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Lam, M.; Chiesa, C.; Konijnenberg, M.; Cremonesi, M.; Flamen, P.; Gnesin, S.; Bodei, L.; Kracmerova, T.; Luster, M.; et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1682–1699. [Google Scholar] [CrossRef] [PubMed]
- d’Andrea, E.; Lanconelli, N.; Cremonesi, M.; Patera, V.; Pacilio, M. The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization with 90Y Microspheres. Appl. Sci. 2024, 14, 7684. [Google Scholar] [CrossRef]
- Kao, Y.H.; Steinberg, J.D.; Tay, Y.S.; Lim, G.K.; Yan, J.; Townsend, D.W.; Takano, A.; Burgmans, M.C.; Irani, F.G.; Teo, T.K.; et al. Post-radioembolization yttrium-90 PET/CT-part 1: Diagnostic reporting. EJNMMI Res. 2013, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dryák, P.; Šolc, J. Measurement of the branching ratio related to the internal pair production of Y-90. Appl. Radiat. Isot. 2020, 156, 108942. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, C.; Sjogreen-Gleisner, K.; Walrand, S.; Strigari, L.; Flux, G.; Gear, J.; Stokke, C.; Gabina, P.M.; Bernhardt, P.; Konijnenberg, M. EANM dosimetry committee series on standard operational procedures: A unified methodology for 99m Tc-MAA pre-and 90 Y peri-therapy dosimetry in liver radioembolization with 90 Y microspheres. EJNMMI Phys. 2021, 8, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Elschot, M.; Nijsen, J.F.; Lam, M.G.; Smits, M.L.; Prince, J.F.; Viergever, M.A.; van den Bosch, M.A.; Zonnenberg, B.A.; de Jong, H.W. 99m Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: A quantitative evaluation in patients treated with 166 Ho-microspheres. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Kokabi, N.; Webster, L.A.; Elsayed, M.; Switchenko, J.M.; Chen, B.; Brandon, D.; Galt, J.; Sethi, I.; Cristescu, M.; Kappadath, S.C.; et al. Accuracy and safety of scout dose resin yttrium-90 microspheres for radioembolization therapy treatment planning: A prospective single-arm clinical trial. J. Vasc. Interv. Radiol. 2022, 33, 1578–1587. [Google Scholar] [CrossRef] [PubMed]
- Quirem: Quirem-SpheresTMMicrospheres—QSuite v2.1 Instructions for Use. Available online: https://www.quirem.com/wp-content/uploads/2022/05/LC-80095-01-Q-Suite-2.1-IFU-Multilingual-1.pdf (accessed on 10 October 2024).
- NuDat 3: Nuclear Structure and Decay Data Provided by National Nuclear Data Center (NNDC) at Brookhaven National Laboratory. Available online: https://www.nndc.bnl.gov/nudat3/decaysearchdirect.jsp?nuc=166Ho&unc=NDS (accessed on 10 October 2024).
- Smits, M.L.; Dassen, M.G.; Prince, J.F.; Braat, A.J.; Beijst, C.; Bruijnen, R.C.; de Jong, H.W.; Lam, M.G. The superior predictive value of 166 Ho-scout compared with 99m Tc-macroaggregated albumin prior to 166 Ho-microspheres radioembolization in patients with liver metastases. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 798–806. [Google Scholar] [CrossRef]
- Smits, M.L.; Elschot, M.; van den Bosch, M.A.; van de Maat, G.H.; van het Schip, A.D.; Zonnenberg, B.A.; Seevinck, P.R.; Verkooijen, H.M.; Bakker, C.J.; de Jong, H.W.; et al. In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J. Nucl. Med. 2013, 54, 2093–2100. [Google Scholar] [CrossRef]
- van Rooij, R.; Braat, A.J.; de Jong, H.W.; Lam, M.G. Simultaneous 166 Ho/99m Tc dual-isotope SPECT with Monte Carlo-based downscatter correction for automatic liver dosimetry in radioembolization. EJNMMI Phys. 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Sgouros, G.; Bolch, W.E.; Chiti, A.; Dewaraja, Y.K.; Emfietzoglou, D.; Hobbs, R.F.; Konijnenberg, M.; Sjögreen-Gleisner, K.; Strigari, L.; Yen, T.C.; et al. ICRU REPORT 96, dosimetry-guided radiopharmaceutical therapy. J. ICRU 2021, 21, 1–212. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Meijering, E.H.; Niessen, W.J.; Pluim, J.P.; Viergever, M.A. Quantitative comparison of sinc-approximating kernels for medical image interpolation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI’99: Second International Conference, Cambridge, UK, 19–22 September 1999; pp. 210–217. [Google Scholar]
- ICRU. Tissue substitutes in radiation dosimetry and measurement. In ICRU Report No 44; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1989. [Google Scholar]
- ICRU. Photon, electron, proton and neutron interaction data for body tissues. In ICRU Report No 46; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1992. [Google Scholar]
- Bolch, W.E.; Eckerman, K.F.; Sgouros, G.; Thomas, S.R. MIRD pamphlet no. 21: A generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J. Nucl. Med. 2009, 50, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.L.; Nijsen, J.F.; van den Bosch, M.A.; Lam, M.G.; Vente, M.A.; Huijbregts, J.E.; van het Schip, A.D.; Elschot, M.; Bult, W.; de Jong, H.W.; et al. Holmium-166 radioembolization for the treatment of patients with liver metastases: Design of the phase I HEPAR trial. J. Exp. Clin. Cancer Res. 2010, 29, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bolch, W.E.; Bouchet, L.G.; Robertson, J.S.; Wessels, B.W.; Siegel, J.A.; Howell, R.W.; Erdi, A.K.; Aydogan, B.; Costes, S.; Watson, E.E.; et al. MIRD pamphlet no. 17: The dosimetry of nonuniform activity distributions—Radionuclide S values at the voxel level. J. Nucl. Med. 1999, 40, 11S–36S. [Google Scholar]
- Lanconelli, N.; Pacilio, M.; Meo, S.L.; Botta, F.; Di Dia, A.; Aroche, L.T.; Pérez, M.C.; Cremonesi, M. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys. Med. Biol. 2012, 57, 517. [Google Scholar] [CrossRef] [PubMed]
- Pacilio, M.; Amato, E.; Lanconelli, N.; Basile, C.; Torres, L.A.; Botta, F.; Ferrari, M.; Diaz, N.C.; Perez, M.C.; Fernández, M.; et al. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT. Phys. Med. Biol. 2015, 60, 1945. [Google Scholar] [CrossRef] [PubMed]
- Dieudonné, A.; Hobbs, R.F.; Lebtahi, R.; Maurel, F.; Baechler, S.; Wahl, R.L.; Boubaker, A.; Le Guludec, D.; Sgouros, G.; Gardin, I. Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: Comparison between dose kernel convolution and direct Monte Carlo methods. J. Nucl. Med. 2013, 54, 236–243. [Google Scholar] [CrossRef]
- Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardiès, M.; Bloomfield, P.; et al. GATE: A simulation toolkit for PET and SPECT. Phys. Med. Biol. 2004, 49, 4543. [Google Scholar] [CrossRef]
- Van Dyk, J.; Keane, T.; Rider, W. Lung density as measured by computerized tomography: Implications for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Semenenko, V.A.; Reitz, B.; Day, E.; Qi, X.S.; Miften, M.; Li, X.A. Evaluation of a commercial biologically based IMRT treatment planning system. Med. Phys. 2008, 35, 5851–5860. [Google Scholar] [CrossRef]
- Dale, R. Dose-rate effects in targeted radiotherapy. Phys. Med. Biol. 1996, 41, 1871. [Google Scholar] [CrossRef]
- Dale, R.; Carabe-Fernandez, A. The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother. Radiopharm. 2005, 20, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Pacilio, M.; Betti, M.; Cicone, F.; Del Mastro, C.; Montani, L.; Chiacchiararelli, L.; Monaco, A.; Santini, E.; Scopinaro, F. A theoretical dose-escalation study based on biological effective dose in radioimmunotherapy with 90 Y-ibritumomab tiuxetan (Zevalin). Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Stella, M.; Braat, A.J.; van Rooij, R.; de Jong, H.W.; Lam, M.G. Holmium-166 radioembolization: Current status and future prospective. CardioVascular Interv. Radiol. 2022, 45, 1634–1645. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J. The first James Kirk memorial lecture. What next in fractionated radiotherapy? Br. J. Cancer. Suppl. 1984, 6, 285. [Google Scholar] [PubMed]
- Dale, R.; Plataniotis, G.; Jones, B. A generalised method for calculating repopulation-corrected tumour EQD2 values in a wide range of clinical situations, including interrupted treatments. Phys. Medica 2024, 118, 103294. [Google Scholar] [CrossRef] [PubMed]
- Bisello, S.; Cilla, S.; Benini, A.; Cardano, R.; Nguyen, N.P.; Deodato, F.; Macchia, G.; Buwenge, M.; Cammelli, S.; Wondemagegnehu, T.; et al. Dose–volume constraints fOr oRganS At risk In Radiotherapy (CORSAIR): An “All-in-One” multicenter–multidisciplinary practical summary. Curr. Oncol. 2022, 29, 7021–7050. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.B.; Bentzen, S.M.; Deasy, J.O.; Bradley, J.D.; Vogelius, I.S.; El Naqa, I.; Hubbs, J.L.; Lebesque, J.V.; Timmerman, R.D.; Martel, M.K.; et al. Radiation dose–volume effects in the lung. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S70–S76. [Google Scholar] [CrossRef] [PubMed]
- Milano, A.; Gil, A.V.; Fabrizi, E.; Cremonesi, M.; Veronese, I.; Gallo, S.; Lanconelli, N.; Faccini, R.; Pacilio, M. In Silico Validation of MCID Platform for Monte Carlo-based voxel dosimetry applied to 90Y-radioembolization of liver malignancies. Appl. Sci. 2021, 11, 1939. [Google Scholar] [CrossRef]
- Yu, Q.; Khanjyan, M.; Fidelman, N.; Pillai, A. Contemporary applications of Y90 for the treatment of hepatocellular carcinoma. Hepatol. Commun. 2023, 7, e0288. [Google Scholar] [CrossRef]
Minimum | Maximum | Mean | Median | MPV |
---|---|---|---|---|
0 | 1.06 | 0.221 | 0.179 | 0.130 |
Parameter | Value |
---|---|
Volume Parametrization | Nested sampling algorithm |
Physics interactions model | emstandard-opt3 |
Range Cut | 0.1 mm |
Number of Primaries | for for |
Absorbed Dose Constraint |
---|
< 20 Gy |
Tissue | MC | Convolution | RD |
---|---|---|---|
Soft Tissue | 10.41 | 10.36 | −0.5% |
Lung Tissue | 1.39 | 1.41 | 1.6% |
Lung Shunt | MIRD | kST | kLT | |||
---|---|---|---|---|---|---|
10% | −65% | −92% | −56% | −77% | −69% | −61% |
20% | −64% | −93% | −56% | −76% | −68% | −60% |
30% | −64% | −93% | −56% | −76% | −68% | −59% |
40% | −64% | −93% | −56% | −76% | −68% | −59% |
Lung Shunt | MC | MIRD | kST | kLT | |||
---|---|---|---|---|---|---|---|
10% | 6.2 | 2.2 | 0.5 | 2.7 | 1.4 | 1.9 | 2.4 |
20% | 12.0 | 4.4 | 0.9 | 5.3 | 2.8 | 3.8 | 4.9 |
30% | 17.9 | 6.5 | 1.3 | 7.9 | 4.3 | 5.7 | 7.3 |
40% | 23.9 | 8.7 | 1.8 | 10.5 | 5.7 | 7.6 | 9.7 |
Lung Shunt | MC (Gy/GBq) | AHASA (GBq) | MLA (GBq) |
---|---|---|---|
10% | 6.2 | 4.88 | 0.49 |
20% | 12.0 | 2.50 | 0.50 |
30% | 17.9 | 1.67 | 0.50 |
40% | 23.9 | 1.26 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Andrea, E.; Politano, A.; Cassano, B.; Lanconelli, N.; Cremonesi, M.; Patera, V.; Pacilio, M. The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization—Part B: 166Ho Microspheres. Appl. Sci. 2025, 15, 958. https://doi.org/10.3390/app15020958
d’Andrea E, Politano A, Cassano B, Lanconelli N, Cremonesi M, Patera V, Pacilio M. The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization—Part B: 166Ho Microspheres. Applied Sciences. 2025; 15(2):958. https://doi.org/10.3390/app15020958
Chicago/Turabian Styled’Andrea, Edoardo, Andrea Politano, Bartolomeo Cassano, Nico Lanconelli, Marta Cremonesi, Vincenzo Patera, and Massimiliano Pacilio. 2025. "The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization—Part B: 166Ho Microspheres" Applied Sciences 15, no. 2: 958. https://doi.org/10.3390/app15020958
APA Styled’Andrea, E., Politano, A., Cassano, B., Lanconelli, N., Cremonesi, M., Patera, V., & Pacilio, M. (2025). The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization—Part B: 166Ho Microspheres. Applied Sciences, 15(2), 958. https://doi.org/10.3390/app15020958