Synergistic Chemical Modification and Physical Adsorption for the Efficient Curing of Soluble Phosphorus/Fluorine in Phosphogypsum
<p>Picture of Hubei Xingfa Chemical Group Co., Ltd.’s PG.</p> "> Figure 2
<p>Comparison of soluble phosphorus and fluorine impurity contents in PG before and after treatment with zeolite powder and CaO.</p> "> Figure 3
<p>Morphological changes in PG under different treatment conditions: (<b>a</b>) untreated PG; (<b>b</b>) PG treated with CaO; (<b>c</b>) PG treated with zeolite powder; (<b>d</b>) PG treated with a combination of zeolite powder and CaO.</p> "> Figure 4
<p>XRD spectra of PG under different treatment conditions.</p> "> Figure 5
<p>FT-IR spectra of PG under different treatment conditions.</p> "> Figure 6
<p>(<b>a</b>) Specific surface area and (<b>b</b>) pore size analyses of PG samples under different treatment conditions.</p> "> Scheme 1
<p>Schematic illustration of physical adsorption and chemical modification method to immobilize soluble phosphorus and fluorine in PG.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.3. Methods of Analysis
2.3.1. Chemical Composition and Mineral Phase Analysis of Materials
2.3.2. Micro-Morphological Analysis
2.3.3. Infrared Spectroscopy Analysis
2.3.4. Particle Size and Surface Area Analysis
2.3.5. Specimen Preparation
2.3.6. Analysis of Water-Soluble Phosphorus Content
2.3.7. Analysis of Water-Soluble Fluoride Content
3. Results
3.1. Curing Performance of Zeolite Powder Synergized with CaO on Pollutants in PG
3.2. Mechanism of Zeolite Powder Synergized with CaO for Immobilization of Pollutants in PG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P. Comprehensive Recovery and Sustainable Development of Phosphate Resources. Procedia Eng. 2014, 83, 37–51. [Google Scholar] [CrossRef]
- Fang, K.; Xu, L.; Yang, M.; Chen, Q. One-step wet-process phosphoric acid by-product CaSO4 and its purification. Sep. Purif. 2023, 309, 123048. [Google Scholar] [CrossRef]
- Ryszko, U.; Rusek, P.; Kolodynska, D. Quality of Phosphate Rocks from Various Deposits Used in Wet Phosphoric Acid and P-Fertilizer Production. Materials 2023, 16, 793. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Han, C.; Shao, L.; Nie, R.; Dong, S.; Liu, H.; Ma, L. Chemical looping gasification of lignite to syngas using phosphogypsum: Overview and prospects. J. Clean. Prod. 2024, 445, 141329. [Google Scholar] [CrossRef]
- Rashad, A.M. PG as a construction material. J. Clean. Prod. 2017, 166, 732–743. [Google Scholar] [CrossRef]
- Wu, F.; Ren, Y.; Qu, G.; Liu, S.; Chen, B.; Liu, X.; Zhao, C.; Li, J. Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum. J. Environ. Manag. 2022, 313, 114957. [Google Scholar] [CrossRef] [PubMed]
- Bilal, E.; Bellefqih, H.; Bourgier, V.; Mazouz, H.; Dumitraş, D.-G.; Bard, F.; Laborde, M.; Caspar, J.P.; Guilhot, B.; Iatan, E.-L.; et al. Phosphogypsum circular economy considerations: A critical review from more than 65 storage sites worldwide. J. Clean. Prod. 2023, 414, 137561. [Google Scholar] [CrossRef]
- Neto, J.S.A.; Bersch, J.D.; Silva, T.S.M.; Rodríguez, E.D.; Suzuki, S.; Kirchheim, A.P. Influence of phosphogypsum purification with lime on the properties of cementitious matrices with and without plasticizer. Constr. Build. Mater. 2021, 299, 123935. [Google Scholar] [CrossRef]
- Shu, J.; Chen, M.; Wu, H.; Li, B.; Wang, B.; Li, B.; Liu, R.; Liu, Z. An innovative method for synergistic stabilization/solidification of Mn2+, NH4+-N, PO43− and F− in electrolytic manganese residue and phosphogypsum. J. Hazard. Mater. 2019, 376, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Yi, W.; Peng, J.; Li, G.; Yin, S. Preparation of anhydrite from phosphogypsum: Influence of phosphorus and fluorine impurities on the performances. Constr. Build. Mater. 2022, 318, 126021. [Google Scholar] [CrossRef]
- Valančius, Z.; Vaickelionienė, R.; Vaickelionis, G.; Makčinskas, P. Use of an industrial by-product phosphogypsum in the production of white textured paints. J. Clean. Prod. 2022, 380, 134888. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, J.; Wang, H.; Lv, S.; Jiang, F.; Pan, Z.; Liu, J. Simultaneous and efficient removal of fluoride and phosphate in phosphogypsum leachate by acid-modified sulfoaluminate cement. Chemosphere 2022, 305, 135422. [Google Scholar] [CrossRef]
- Cui, S.F.; Fu, Y.Z.; Zhou, B.Q.; Li, J.X.; He, W.Y.; Yu, Y.Q.; Yang, J.Y. Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil. Chemosphere 2021, 278, 130432. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhu, H.; Zhou, P.; Wang, X.; Wang, Z.; Yang, S.; Yang, D.; Li, B. Application of phosphogypsum in soilization: A review. Int. J. Environ. Sci. Technol. 2023, 20, 10449–10464. [Google Scholar] [CrossRef]
- Du, M.; Wang, J.; Dong, F.; Wang, Z.; Yang, F.; Tan, H.; Fu, K.; Wang, W. The study on the effect of flotation purification on the performance of alpha-hemihydrate gypsum prepared from phosphogypsum. Sci. Rep. 2022, 12, 95. [Google Scholar]
- Contreras, M.; Teixeira, S.R.; Santos, G.T.A.; Gázquez, M.J.; Romero, M.; Bolívar, J.P. Influence of the addition of phosphogypsum on some properties of ceramic tiles. Constr. Build. Mater. 2018, 175, 588–600. [Google Scholar] [CrossRef]
- Liu, S.; Wu, F.; Qu, G.; Kuang, L.; Liu, Y.; Ren, Y.; Chen, B.; Li, J. Preparation of high-performance lightweight materials based on the phosphogypsum -inorganic material system. Sustain. Chem. Pharm. 2022, 30, 100901. [Google Scholar] [CrossRef]
- Xiang, J.; Qiu, J.; Song, Y.; Miao, Y.; Gu, X. Synergistic removal of phosphorus and fluorine impurities in phosphogypsum by enzyme-induced modified microbially induced carbonate precipitation method. J. Environ. Manag. 2022, 324, 116300. [Google Scholar] [CrossRef] [PubMed]
- Pliaka, M.; Gaidajis, G. Potential uses of PG: A review. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2022, 57, 746–763. [Google Scholar] [CrossRef]
- Rao, S.M.; Asha, K. Role of Fly Ash Pozzolanic Reactions in Controlling Fluoride Release from phosphogypsum. J. Mater. 2013, 25, 999–1005. [Google Scholar] [CrossRef]
- Tiwari, S.B.; Veksha, A.; Chan, W.P.; Fei, X.; Liu, W.; Lisak, G.; Lim, T.-T. Acidic hydrothermal carbonization of sewage sludge for enhanced alkaline extraction of phosphorus and reduced co-extraction of trace elements. Resour. Conserv. Recycl. 2025, 212, 107936. [Google Scholar] [CrossRef]
- Attallah, M.F.; Metwally, S.S.; Moussa, S.I.; Soliman, M.A. Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: Elemental and radiological effects. Microchem. J. 2019, 146, 789–797. [Google Scholar] [CrossRef]
- Gaidajis, G.; Anagnostopoulos, A.; Garidi, A.; Mylona, E.; Zevgolis, I.E. Laboratory evaluation of phosphogypsum for alternative uses. Environ. Geotech 2018, 5, 310–323. [Google Scholar] [CrossRef]
- Singh, M. Role of PG impurities on strength and microstructure of selenite plaster. Constr. Build. Mater. 2005, 19, 480–486. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Shi, Y.; Zhu, Q.; Du, J. Reuse of phosphogypsum pretreated with water washing as aggregate for cemented backfill. Sci. Rep. 2022, 12, 16091. [Google Scholar] [CrossRef]
- Pérez-Moreno, S.M.; Romero, C.; Guerrero, J.L.; Barba-Lobo, A.; Gázquez, M.J.; Bolívar, J.P. Evolution of the waste generated along the cleaning process of PG leachates. J. Environ. Chem. Eng. 2023, 11, 111485. [Google Scholar] [CrossRef]
- Akfas, F.; Elghali, A.; Toubri, Y.; Samrane, K.; Munoz, M.; Bodinier, J.L.; Benzaazoua, M. Environmental assessment of phosphogypsum: A comprehensive geochemical modeling and leaching behavior study. J. Environ. Manag. 2024, 359, 120929. [Google Scholar] [CrossRef]
- Qin, X.; Cao, Y.; Guan, H.; Hu, Q.; Liu, Z.; Xu, J.; Hu, B.; Zhang, Z.; Luo, R. Resource utilization and development of PG-based materials in civil engineering. J. Clean. Prod. 2023, 387, 135858. [Google Scholar] [CrossRef]
- Chen, X.; Gao, J.; Liu, C.; Zhao, Y. Effect of neutralization on the setting and hardening characters of hemihydrate phosphogypsum plaster. Constr. Build. Mater. 2018, 190, 53–64. [Google Scholar] [CrossRef]
- Xue, S.; Li, M.; Jiang, J.; Millar, G.J.; Li, C.; Kong, X. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics. J. Environ. Sci. 2019, 77, 1–10. [Google Scholar] [CrossRef]
- Wu, F.; Chen, B.; Qu, G.; Liu, S.; Zhao, C.; Ren, Y.; Liu, X. Harmless treatment technology of phosphogypsum: Directional stabilization of toxic and harmful substances. J. Environ. Manag. 2022, 311, 114827. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Chen, L.; Xue, B.; Wang, G.; Zhu, G.; Gou, W.; Yang, D. Potential of artificial soil preparation for vegetation restoration using red mud and phosphogypsum. Sci. Total Environ. 2024, 941, 173553. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qian, J.; Lu, L.; Zhang, W.; Wang, S.; Wang, W.; Cheng, X. Phosphogypsum as a component of calcium sulfoaluminate cement: Hazardous elements immobilization, radioactivity and performances. J. Clean. Prod. 2020, 248, 119287. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, F.; Wu, X.; Jiao, Y.; Sun, T.; Li, Z.; Yang, F.; Li, H.; Li, B.; Xu, J.; et al. Retardation mechanism of phosphogypsum in PG-based excess-sulfate cement. Constr. Build. Mater. 2024, 428, 136293. [Google Scholar] [CrossRef]
- Chen, L.; Liu, T.; Cheng, M.; Zhang, L.; Liu, Y.; Fu, Z.; Zhou, T.; Yang, J.; Xiao, P.; Huang, Q.; et al. Enhanced strength and fluoride ion solidification/stabilization mechanism of modified phosphogypsum backfill material. Constr. Build. Mater. 2024, 449, 138572. [Google Scholar] [CrossRef]
- Lin, S.; Zheng, Y.; Liu, W.; Ma, H.; Rao, F.; Yang, L.; Zhong, S. Consolidation of phosphorus tailings and soluble fluorine & phosphorus with calcium carbide residue-mirabilite waste as a green alkali activator. Case Stud. Constr. Mater. 2023, 18, e01779. [Google Scholar]
- Huang, S.; Liu, W.; Li, W.; Xi, Z.A. Study on water resistance of phosphogypsum solidified by magnesium oxychloride cement (MOC) and NaHCO3. Constr. Build. Mater. 2024, 451, 138877. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Dalconi, M.C.; Molinari, S.; Valentini, L.; Wang, Y.; Sun, S.; Wang, P.; Artioli, G. Enhancing the sustainable immobilization of phosphogypsum by cemented paste backfill with the activation of γ-Al2O3. Constr. Build. Mater. 2022, 347, 128624. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Wang, Y.; Zhang, Q.; Liu, Y. Highly-efficient fluoride retention in on-site solidification/stabilization of phosphogypsum: Cemented paste backfill synergizes with poly-aluminum chloride activation. Chemosphere 2022, 309, 136652. [Google Scholar] [CrossRef] [PubMed]
- Novytskyi, Y.; Topylko, N.; Marushchak, U.; Turba, Y. Composite Materials Based on phosphogypsum for Constructive Layers of Road Pavement. Chem. Chem. Technol. 2024, 18, 7–15. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Chen, K.-S. Research on Road Characteristics and the Microscopic Mechanism of Lime–phosphogypsum -Stabilized Red Clay. Appl. Sci. 2023, 13, 8057. [Google Scholar] [CrossRef]
- James, J.; Arthi, C.; Balaji, G.; Chandraleka, N.; Kumar, R.H.M.N. Lime activated flyash- phosphogypsum blend as a low-cost alternative binder. Int. J. Environ. Sci. Technol. 2022, 19, 8969–8978. [Google Scholar] [CrossRef] [PubMed]
- Nizevičienė, D.; Vaičiukynienė, D.; Vaitkevičius, V.; Rudžionis, Ž. Effects of waste fluid catalytic cracking on the properties of semi-hydrate phosphogypsum. J. Clean. Prod. 2016, 137, 150–156. [Google Scholar] [CrossRef]
- Dehghan, R.; Anbia, M. Zeolites for adsorptive desulfurization from fuels: A review. Fuel Process. Technol. 2017, 167, 99–116. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Xue, Y.; Chang, X. Adsorption Effect and Adsorption Mechanism of High Content Zeolite Ceramsite on Asphalt VOCs. Materials 2022, 15, 6100. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wu, F.; Qu, G.; Ning, P.; Ren, Y.; Liu, S.; Jin, C.; Li, H.; Zhao, C.; Liu, X.; et al. Waste control by waste: A comparative study on the application of carbide slag and quicklime in preparation of phosphogypsum -based ecological restoration materials. Chem. Eng. Process. 2022, 178, 109051. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, Y.; Zhan, W.; Guo, L.; Du, Y.; Zhang, T.C.; Du, D. Four stage precipitation for efficient recovery of N, P, and F elements from leachate of waste phosphogypsum. Miner. Eng. 2022, 178, 107420. [Google Scholar] [CrossRef]
- Wu, M.; Wang, C.; Zuo, Y.; Yang, S.; Zhang, J.; Luo, Y. Study on strength prediction and strength change of phosphogypsum-based composite cementitious backfill based on BP neural network. Mater. Today Commun. 2024, 41, 110331. [Google Scholar] [CrossRef]
- Wang, C.-Q.; Chen, S.; Huang, D.-M.; Huang, Q.-C.; Li, X.-Q.; Shui, Z.-H. Safe environmentally friendly reuse of red mud modified phosphogypsum composite cementitious material. Constr. Build. Mater. 2023, 368, 130348. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, R.; Cao, Y.; Wang, C. Rapid conversion of red mud into soil matrix by co-hydrothermal carbonization with biomass wastes. J. Environ. Chem. Eng. 2021, 9, 106039. [Google Scholar] [CrossRef]
- Lan, X.; Gao, J.; Qu, X.; Guo, Z. An environmental-friendly method for recovery of soluble sodium and harmless utilization of red mud: Solidification, separation, and mechanism. Resour. Conserv. Recycl. 2022, 186, 106543. [Google Scholar] [CrossRef]
SO3 | CaO | SiO2 | P2O5 | F | Al2O3 | K2O | Fe2O3 |
---|---|---|---|---|---|---|---|
43.3207 | 36.2531 | 1.7975 | 0.5932 | 0.4028 | 0.2285 | 0.1315 | 0.1244 |
SiO2 | Al2O3 | CaO | K2O | Fe2O3 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|
57.2450 | 10.8209 | 2.7942 | 2.4337 | 1.8661 | 0.8454 | 0.4164 | 0.1378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Yang, Y.; Li, H.; Zhu, G.; Yang, H. Synergistic Chemical Modification and Physical Adsorption for the Efficient Curing of Soluble Phosphorus/Fluorine in Phosphogypsum. Appl. Sci. 2025, 15, 780. https://doi.org/10.3390/app15020780
Zhou J, Yang Y, Li H, Zhu G, Yang H. Synergistic Chemical Modification and Physical Adsorption for the Efficient Curing of Soluble Phosphorus/Fluorine in Phosphogypsum. Applied Sciences. 2025; 15(2):780. https://doi.org/10.3390/app15020780
Chicago/Turabian StyleZhou, Junsheng, Yue Yang, Huiquan Li, Ganyu Zhu, and Haoqi Yang. 2025. "Synergistic Chemical Modification and Physical Adsorption for the Efficient Curing of Soluble Phosphorus/Fluorine in Phosphogypsum" Applied Sciences 15, no. 2: 780. https://doi.org/10.3390/app15020780
APA StyleZhou, J., Yang, Y., Li, H., Zhu, G., & Yang, H. (2025). Synergistic Chemical Modification and Physical Adsorption for the Efficient Curing of Soluble Phosphorus/Fluorine in Phosphogypsum. Applied Sciences, 15(2), 780. https://doi.org/10.3390/app15020780