Conversion of 10 min Rain Rate Time Series into 1 min Time Series: Theory, Experimental Results, and Application in Satellite Communications
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (cyan) and corresponding <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (magenta). Both rain rates are expressed in mm/h. Spino d’Adda, 20 October 2000; the event starts at 10:32.</p> "> Figure 2
<p>Histograms of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> in the ranges of <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>–</mo> <mn>2</mn> </mrow> </semantics></math> mm/h of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (<b>left panel</b>) and <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>–</mo> <mn>4</mn> </mrow> </semantics></math> mm/h (<b>right panel</b>) of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>Histograms of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> in the ranges of <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>–</mo> <mn>6</mn> </mrow> </semantics></math> mm/h of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (<b>left panel</b>) and <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>–</mo> <mn>8</mn> </mrow> </semantics></math> mm/h (<b>right panel</b>) of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>Histograms of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> in the ranges of <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>–</mo> <mn>10</mn> </mrow> </semantics></math> mm/h of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (<b>left panel</b>) and <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>–</mo> <mn>15</mn> </mrow> </semantics></math> mm/h (<b>right panel</b>) of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>Histograms of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> in the ranges of <math display="inline"><semantics> <mrow> <mn>15</mn> <mo>–</mo> <mn>20</mn> </mrow> </semantics></math> mm/h of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (<b>left panel</b>) and <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>–</mo> <mn>30</mn> </mrow> </semantics></math> mm/h (<b>right panel</b>) of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>Histograms of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> in the ranges of <math display="inline"><semantics> <mrow> <mn>30</mn> <mo>–</mo> <mn>40</mn> </mrow> </semantics></math> mm/h of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (<b>left panel</b>) and <math display="inline"><semantics> <mrow> <mo>></mo> <mn>40</mn> </mrow> </semantics></math> mm/h (<b>right panel</b>) of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>10</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (mm/h) (blue, original) and simulated <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mi>s</mi> <mi>i</mi> <mi>m</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (mm/h) time series (black, simul). Left: low-intensity rain rate event. Right panel: high-intensity rain rate event. The 10 min quantity of water is conserved.</p> "> Figure 8
<p>Mean value (<b>left panel</b>, mm/h) and standard deviation (<b>right panel</b>, mm/h) of <math display="inline"><semantics> <mrow> <mi>ε</mi> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 9
<p>Example of 1 min rain rate time series, measured (blue line, original) and simulated (red line, gener), after filtering and water conservation. (<b>Left panel</b>): a low rain rate event. (<b>Right panel</b>): a high-intensity rain rate event (see also <a href="#applsci-15-00743-f007" class="html-fig">Figure 7</a>).</p> "> Figure 10
<p>Probability distribution (PD) that the 1 min rain rate in abscissa is exceeded in the experimental data <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>; blue line (original), and in the simulated 1 min data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>, black line (simul).</p> "> Figure 11
<p>Scatterplots of mean values (<b>left panel</b>), standard deviations (<b>central panel</b>), and correlation coefficients (<b>right panel</b>) between the values of the sites in <a href="#applsci-15-00743-t001" class="html-table">Table 1</a> and Spino d’Adda. Gera Lario: green; Fucino: blue; Madrid: cyan; Prague: yellow; Tampa: red; White Sands: magenta; Vancouver: black.</p> "> Figure 12
<p><b>Gera Lario.</b> Probability distribution that the 1 min rain rate in abscissa is exceeded in the experimental data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>, blue line, and in the simulated 1 min data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>, black line. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 13
<p><b>Fucino.</b> Probability distribution that the 1 min rain rate in abscissa is exceeded in the experimental data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>, blue line, and in the simulated 1 min data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>, black line. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 14
<p><b>Madrid.</b> Probability distribution that the 1 min rain rate in abscissa is exceeded in the experimental data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>, blue line, and in the simulated 1 min data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>, black line. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 15
<p><b>Prague.</b> Probability distribution that the 1 min rain rate in abscissa is exceeded in the experimental data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>, blue line, and in the simulated 1 min data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>, black line. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 16
<p><b>Tampa.</b> Probability distribution that the 1 min rain rate in abscissa is exceeded in the experimental data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>, blue line, and in the simulated 1 min data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>, black line. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 17
<p><b>White Sands.</b> Probability distribution that the 1 min rain rate in abscissa is exceeded in the experimental data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>, blue line, and in the simulated 1 min data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>, black line. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 18
<p><b>Vancouver.</b> Probability distribution that the 1 min rain rate in abscissa is exceeded in the experimental data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math>, blue line, and in the simulated 1 min data, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>, black line. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 19
<p>Average annual probability distribution <math display="inline"><semantics> <mrow> <mi>P</mi> <mfenced separators="|"> <mrow> <mi>A</mi> </mrow> </mfenced> </mrow> </semantics></math>—namely, the fraction of time of a year—that the rain attenuation <math display="inline"><semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> (dB) in abscissa is exceeded, estimated with the SST. Cyan line: experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>; magenta line: simulated <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 20
<p><b>Gera Lario.</b> Average annual probability distribution <math display="inline"><semantics> <mrow> <mi>P</mi> <mfenced separators="|"> <mrow> <mi>A</mi> </mrow> </mfenced> </mrow> </semantics></math> that the rain attenuation <math display="inline"><semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> (dB) in abscissa is exceeded, estimated with the SST; blue line: experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, black line: simulated <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional rain rate PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 21
<p><b>Fucino.</b> Average annual probability distribution <math display="inline"><semantics> <mrow> <mi>P</mi> <mfenced separators="|"> <mrow> <mi>A</mi> </mrow> </mfenced> </mrow> </semantics></math> that the rain attenuation <math display="inline"><semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> (dB) in abscissa is exceeded, estimated with the SST; blue line: experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, black line: simulated <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional rain rate PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 22
<p><b>Madrid.</b> Average annual probability distribution <math display="inline"><semantics> <mrow> <mi>P</mi> <mfenced separators="|"> <mrow> <mi>A</mi> </mrow> </mfenced> </mrow> </semantics></math> that the rain attenuation <math display="inline"><semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> (dB) in abscissa is exceeded, estimated with the SST; blue line: experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, black line: simulated <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional rain rate PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 23
<p><b>Prague.</b> Average annual probability distribution <math display="inline"><semantics> <mrow> <mi>P</mi> <mfenced separators="|"> <mrow> <mi>A</mi> </mrow> </mfenced> </mrow> </semantics></math> that the rain attenuation <math display="inline"><semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> (dB) in abscissa is exceeded, estimated with the SST; blue line: experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, black line: simulated <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional rain rate PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 24
<p><b>Tampa.</b> Average annual probability distribution <math display="inline"><semantics> <mrow> <mi>P</mi> <mfenced separators="|"> <mrow> <mi>A</mi> </mrow> </mfenced> </mrow> </semantics></math> that the rain attenuation <math display="inline"><semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> (dB) in abscissa is exceeded, estimated with the SST; blue line: experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, black line: simulated <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional rain rate PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 25
<p><b>White Sands.</b> Average annual probability distribution <math display="inline"><semantics> <mrow> <mi>P</mi> <mfenced separators="|"> <mrow> <mi>A</mi> </mrow> </mfenced> </mrow> </semantics></math> that the rain attenuation <math display="inline"><semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> (dB) in abscissa is exceeded, estimated with the SST; blue line: experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, black line: simulated <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional rain rate PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> "> Figure 26
<p><b>Vancouver.</b> Average annual probability distribution <math display="inline"><semantics> <mrow> <mi>P</mi> <mfenced separators="|"> <mrow> <mi>A</mi> </mrow> </mfenced> </mrow> </semantics></math> that the rain attenuation <math display="inline"><semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> (dB) in abscissa is exceeded, estimated with the SST; blue line: experimental <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, black line: simulated <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. <b>Left panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using local values of the conditional rain rate PDFs. <b>Right panel</b>: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math> is obtained by using Spino d’Adda conditional PDFs (<a href="#applsci-15-00743-t002" class="html-table">Table 2</a>).</p> ">
Abstract
:1. Introduction
2. Exploratory Data Analysis in Spino d’Adda
3. From to
3.1. Simulation Steps
- Sample 1 of (t). According to sample 1 of —in a real application, this would be the first value of the provided by meteorological institutes—the mean value and the standard deviation of the conditional PDF and the correlation coefficient are selected from Table 1.
- A standard Gaussian random number is generated and denormalized according to the values of step 1, according to the following relationships:
- 3.
- Samples 2 to 10. A standard Gaussian random number is generated for each sample as in step 2, but now it is denormalized according to Equations (4) and (5). Continuing the example of step 2: mm/h. Let (randomly generated); then, and . Therefore, mm/h. Since the next sample depends only on the previous one, the simulation process is a first-order Markov process [13].
- 4.
- The 1 min rain rate sample is scaled to conserve the quantity of water of the original sample, the latter given by:Now, the quantity of water in the simulation is given by:
- 5.
- The simulation process is repeated by considering the successive value until the last sample of the rain event. The passage from sample 10 simulated from to sample 1 of the next sample is memoryless; therefore, step 1 is repeated without recalling sample 10 of the previous interval. Moreover, notice that we neglect the “border” distortion due to the last 10 min sample of in a rain event because this interval may not be completely rainy (information lost, of course, also in real experimental data).
3.2. Optimum Filter
4. From to in Other Sites
5. Rain Attenuation in Slant Paths to Geostationary Satellites: The Synthetic Storm Technique
5.1. Synthetic Storm Technique
5.2. Application of the SST to All Sites
6. Conclusions
- (a)
- The conversion of into is very accurate, even using the rain rate conversion parameters of Spino d’Adda.
- (b)
- obtained by using the rain rate parameters of Spino d’Adda as the SST input is indistinguishable from that simulated with the local conversion parameters, in a large probability range useful for practical applications in satellite communications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Mathematical Symbols
Symbol | Definition |
rain attenuation | |
digital filter cut-off frequency | |
Nyquist frequency | |
optimum digital filter cut-off frequency | |
log average value | |
log conditional average value | |
quantity of water accumulated in 10 min, experimental | |
quantity of water accumulated in 10 min, simulated | |
quantity of water accumulated in 10 min, simulated and filtered. | |
annual average probability distribution of rain attenuation, simulated | |
probability distribution of 1 min rain rate, experimental | |
probability distribution of 1 min rain rate, simulated | |
1 min rain rate time series, experimental | |
10 min rain rate time series, experimental | |
1 min rain rate time series, simulated, not filtered, not scaled | |
1 min rain rate time series, simulated, not filtered, scaled | |
1 min rain rate time series, simulated, filtered, scaled | |
1 min rain rate time series, simulated, double-filtered, scaled: final simulated time series. | |
log standard deviation | |
conditional log standard deviation | |
standard Gaussian random variable | |
denormalized Gaussian random variable | |
error at equal probability |
Appendix B. Conditional PDFs Parameters
(mm/h) | Mean | Standard Deviation | Correlation Coefficient |
---|---|---|---|
0–2 | −0.68 | 0.81 | 0.94 |
2–4 | 0.94 | 0.46 | 0.71 |
4–6 | 1.50 | 0.45 | 0.65 |
6–8 | 1.82 | 0.55 | 0.63 |
8–10 | 2.08 | 0.54 | 0.71 |
10–15 | 2.30 | 0.77 | 0.70 |
15–20 | 2.64 | 0.78 | 0.66 |
20–30 | 3.02 | 0.71 | 0.73 |
30–40 | 3.20 | 1.03 | 0.58 |
>40 | 3.64 | 1.07 | 0.72 |
(mm/h) | Mean | Standard Deviation | Correlation Coefficient |
---|---|---|---|
0–2 | −0.69 | 0.79 | 0.92 |
2–4 | 0.91 | 0.53 | 0.67 |
4–6 | 1.47 | 0.51 | 0.65 |
6–8 | 1.83 | 0.50 | 0.63 |
8–10 | 2.08 | 0.51 | 0.60 |
10–15 | 2.33 | 0.59 | 0.61 |
15–20 | 2.63 | 0.78 | 0.58 |
20–30 | 2.86 | 0.97 | 0.61 |
30–40 | 2.80 | 0.95 | 0.75 |
>40 | 3.77 | 0.92 | 0.75 |
(mm/h) | Mean | Standard Deviation | Correlation Coefficient |
---|---|---|---|
0–2 | −0.36 | 0.66 | 0.85 |
2–4 | 0.90 | 0.50 | 0.70 |
4–6 | 1.43 | 0.59 | 0.68 |
6–8 | 1.77 | 0.63 | 0.65 |
8–10 | 1.97 | 0.77 | 0.60 |
10–15 | 2.16 | 0.96 | 0.66 |
15–20 | 2.49 | 0.98 | 0.68 |
20–30 | 2.85 | 0.96 | 0.73 |
30–40 | 3.25 | 0.95 | 0.78 |
>40 | 3.57 | 0.78 | 0.72 |
(mm/h) | Mean | Standard Deviation | Correlation Coefficient |
---|---|---|---|
0–2 | −0.70 | 0.74 | 0.91 |
2–4 | 0.91 | 0.52 | 0.72 |
4–6 | 1.47 | 0.55 | 0.65 |
6–8 | 1.71 | 0.74 | 0.61 |
8–10 | 2.02 | 0.67 | 0.77 |
10–15 | 2.25 | 0.87 | 0.7 |
15–20 | 2.63 | 0.76 | 0.56 |
20–30 | 2.87 | 1.16 | 0.75 |
30–40 | 3.32 | 0.74 | 0.68 |
>40 | 3.90 | 0.83 | 0.69 |
(mm/h) | Mean | Standard Deviation | Correlation Coefficient |
---|---|---|---|
0–2 | −0.50 | 0.77 | 0.82 |
2–4 | 0.90 | 0.62 | 0.69 |
4–6 | 1.40 | 0.70 | 0.71 |
6–8 | 1.63 | 0.94 | 0.70 |
8–10 | 1.93 | 0.83 | 0.69 |
10–15 | 2.20 | 0.91 | 0.67 |
15–20 | 2.49 | 1.01 | 0.70 |
20–30 | 2.94 | 0.88 | 0.69 |
30–40 | 3.25 | 0.91 | 0.71 |
>40 | 3.87 | 0.81 | 0.69 |
(mm/h) | Mean | Standard Deviation | Correlation Coefficient |
---|---|---|---|
0–2 | −0.58 | 0.75 | 0.85 |
2–4 | 0.93 | 0.51 | 0.68 |
4–6 | 1.49 | 0.6 | 0.67 |
6–8 | 1.78 | 0.69 | 0.69 |
8–10 | 1.99 | 0.71 | 0.68 |
10–15 | 2.15 | 1.05 | 0.72 |
15–20 | 2.6 | 0.8 | 0.69 |
20–30 | 2.88 | 0.91 | 0.65 |
30–40 | 3.48 | 0.51 | 0.75 |
>40 | 3.88 | 0.71 | 0.69 |
(mm/h) | Mean | Standard Deviation | Correlation Coefficient |
---|---|---|---|
0–2 | −0.40 | 0.71 | 0.92 |
2–4 | 0.93 | 0.37 | 0.74 |
4–6 | 1.52 | 0.37 | 0.70 |
6–8 | 1.78 | 0.49 | 0.55 |
8–10 | 2.05 | 0.48 | 0.60 |
10–15 | 2.42 | 0.52 | 0.75 |
15–20 | 2.59 | 0.58 | 0.69 |
20–30 | 2.72 | 0.96 | 0.82 |
30–40 | –– | –– | –– |
>40 | –– | –– | –– |
References
- Matricciani, E. Physical–mathematical model of the dynamics of rain attenuation based on rain–rate time series and a two–layer vertical structure of precipitation. Radio Sci. 1996, 31, 281–295. [Google Scholar] [CrossRef]
- Matricciani, E.; Riva, C. The search for the most reliable long-term rain attenuation cdf of a slant path and the impact on prediction models. IEEE Trans. Antennas Propag. 2005, 53, 3075–3079. [Google Scholar] [CrossRef]
- Matricciani, E. A Mathematical Theory of De–Integrating Long–Time Integrated Rainfall and Its Application for Predicting 1–Min Rain Rate Statistics. Int. J. Satell. Commun. Netw. 2011, 29, 501–530. [Google Scholar] [CrossRef]
- Matricciani, E. A mathematical theory of de-integrating long-time integrated rainfall statistics. Part II: From 1 day to 1 minute, Int. J. Satell. Commun. Netw. 2013, 31, 77–102. [Google Scholar]
- Connolly, R.D.; Schirmer, J.; Dunn, P.K. A daily rainfall disaggregation model. Agric. For. Meteorol. 1998, 92, 105–117. [Google Scholar] [CrossRef]
- Salles, C.; Poesen, J. Sempere–Torres. D. Kinetic energy and its functional relationship with intensity. J. Hydrol. 2002, 257, 256–270. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Bruijnzeel, L.A.; Rosewell, C.J. Rainfall intensity–kinetic energy relationships: A critical literature appraisal. J. Hydrol. 2002, 261, 1–23. [Google Scholar] [CrossRef]
- Ali, S.; Rahman, A.; Shaik, R. A Review of Event–Based Conceptual Rainfall–Runoff Models: A Case for Australia. Encyclopedia 2024, 4, 966–983. [Google Scholar] [CrossRef]
- Papoulis, A. Probability & Statistics; Prentice Hall: Hoboken, NJ, USA, 1990. [Google Scholar]
- Matricciani, E. Earth–space rain–cell modelling through SIRIO propagation data. Electron. Lett. 1980, 6, 81–82. [Google Scholar] [CrossRef]
- Lindgren, B.W. Statistical Theory, 2nd ed.; MacMillan Company: New York, NY, USA, 1968. [Google Scholar]
- Bury, K.V. Statistical Models in Applied Science; John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Kleinrock, L. Queueing Systems; John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Haykin, S.; Van Veen, B. Signals and Systems, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Haykin, S. Communication Sysyems, 4th ed.; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Matricciani, E. Prediction of fade durations due to rain in satellite communication systems. Radio Sci. 1997, 32, 935–941. [Google Scholar] [CrossRef]
- Matricciani, E. Physical–mathematical model of dynamics of rain attenuation with application to power spectrum. Electron. Lett. 1994, 30, 522–524. [Google Scholar] [CrossRef]
- Kanellopoulos, S.; Panagopoulos, A.; Matricciani, E.; Kanellopoulos, J. Annual and Diurnal Slant Path Rain Attenuation Statistics in Athens Obtained With the Synthetic Storm Technique. IEEE Trans. Antennas Propag. 2006, 54, 2357–2364. [Google Scholar] [CrossRef]
- Sánchez-Lago, I.; Fontán, F.P.; Mariño, P.; Fiebig, U.C. Validation of the Synthetic Storm Technique as Part of a Time-Series Generator for Satellite Links. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 372–375. [Google Scholar] [CrossRef]
- Mahmudah, H.; Wijayanti, A.; Mauludiyanto, A.; Hendrantoro, G.; Matsushima, A. Analysis of Tropical Attenuation Statistics using Synthetic Storm for Millimeter-Wave Wireless Network Design. In Proceedings of the 5th IFIP International Conference on Wireless and Optical Communications Networks (WOCN ’08), Surabaya, East Java, Indonesia, 5-7 May 2008. [Google Scholar]
- Lyras, N.K.; Kourogiorgas, C.I.; Panagopoulos, A.D.; Ventouras, S. Rain Attenuation Statistics at Ka and Q band in Athens using SST and Short Scale Dynamic Diversity Gain Evaluation. In Proceedings of the 2016 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016. [Google Scholar]
- Nandi, A. Prediction of Rain Attenuation Statistics from Measured Rain Rate Statistics using Synthetic Storm Technique for Micro and Millimeter Wave Communication Systems. In Proceedings of the 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, India, 28-30 November 2018. [Google Scholar]
- Jong, S.L.; Riva, C.; D’Amico, M.; Lam, H.Y.; Yunus, M.M.; Din, J. Performance of synthetic storm technique in estimating fade dynamics in equatorial Malaysia. Int. J. Satell. Commun. Netw. 2018, 36, 416–426. [Google Scholar] [CrossRef]
- Papafragkakis, A.Z.; Kourogiorgas, C.I.; Panagopoulos, A.D. Performance Evaluation of Ka- and Q-band Earth–Space Diversity Systems in Attica, Greece using the Synthetic Storm Technique. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP 2019), Krakow, Poland, 31 March–5 April 2019. [Google Scholar]
- Das, D.; Animesh Maitra, A. Application of Synthetic Storm Technique to Predict Time Series of Rain Attenuation from Rain Rate Measurement for a Tropical Location. In Proceedings of the 5th International Conference on Computers and Devices for Communication (CODEC), Kolkata, India, 17–19 December 2021. [Google Scholar]
Site | Latitude N (°) | Longitude E (°) | Altitude (m) | Continuous Observation Time (Years) | Wind Speed at ~700 mb Height (m/s) |
---|---|---|---|---|---|
Spino d’Adda (Italy) | 45.4 | 9.5 | 84 | 10 (1993–2002) | 10.6 |
Gera Lario (Italy) | 46.2 | 9.4 | 210 | 5 (1978–1982) | 8.2 |
Fucino (Italy) | 42.0 | 13.6 | 680 | 5 (1978–1982) | 10.4 |
Madrid (Spain) | 40.4 | 356.3 | 630 | 9 (2006–2014) | 10.9 |
Prague (Czech Republic) | 50.0 | 14.5 | 250 | 5 (1999–2003) | 12.6 |
Tampa (Florida) | 28.1 | 277.6 | 50 | 4 (1995–1998) | 9.2 |
White Sands (New Mexico) | 32.5 | 253.4 | 1463 | 5 (1994–1998) | 9.1 |
Vancouver (British Columbia) | 49.2 | 236.8 | 80 | 3 (1995, 1996, 1998) | 12.4 |
(mm/h) | Mean | Standard Deviation | Correlation Coefficient |
---|---|---|---|
0–2 | –0.60 | 0.75 | 0.94 |
2–4 | 0.94 | 0.37 | 0.76 |
4–6 | 1.51 | 0.41 | 0.70 |
6–8 | 1.83 | 0.49 | 0.72 |
8–10 | 2.07 | 0.52 | 0.68 |
10–15 | 2.35 | 0.61 | 0.72 |
15–20 | 2.62 | 0.76 | 0.71 |
20–30 | 3.03 | 0.68 | 0.70 |
30–40 | 3.32 | 0.77 | 0.75 |
>40 | 3.95 | 0.72 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matricciani, E.; Riva, C. Conversion of 10 min Rain Rate Time Series into 1 min Time Series: Theory, Experimental Results, and Application in Satellite Communications. Appl. Sci. 2025, 15, 743. https://doi.org/10.3390/app15020743
Matricciani E, Riva C. Conversion of 10 min Rain Rate Time Series into 1 min Time Series: Theory, Experimental Results, and Application in Satellite Communications. Applied Sciences. 2025; 15(2):743. https://doi.org/10.3390/app15020743
Chicago/Turabian StyleMatricciani, Emilio, and Carlo Riva. 2025. "Conversion of 10 min Rain Rate Time Series into 1 min Time Series: Theory, Experimental Results, and Application in Satellite Communications" Applied Sciences 15, no. 2: 743. https://doi.org/10.3390/app15020743
APA StyleMatricciani, E., & Riva, C. (2025). Conversion of 10 min Rain Rate Time Series into 1 min Time Series: Theory, Experimental Results, and Application in Satellite Communications. Applied Sciences, 15(2), 743. https://doi.org/10.3390/app15020743