Holocene Activity Characteristics and Seismic Risk of Major Earthquakes in the Middle Segment of the Jinshajiang Fault Zone, East of the Qinghai–Tibetan Plateau
<p>Tectonic framework and seismic activity of the Jinshajiang fault zone and adjacent regions. The black dashed rectangle represents the study area.</p> "> Figure 2
<p>(<b>a</b>) Distribution map of major faults and field survey sites in the middle section of the Jinshajiang fault zone and its adjacent areas. (<b>b</b>) On the basis of the GF-7 satellite data, a hillshade map was generated to interpret the detailed fault tracks of the Yarigong and Ciwu faults.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) Geological profile of the Jinshajiang fault zone in Hongdong Village. (<b>c</b>) Photograph of the top of the geological section showing the fault displaced top strata.</p> "> Figure 4
<p>Right-lateral offset of a gully and profiles of the dating sample collection south of Yarigong Town. (<b>a</b>,<b>b</b>) The right-lateral offset of the gully was obtained using unmanned aerial vehicle (UAV) photogrammetry. The white rectangle in panel (<b>b</b>) indicates the sampling location of the dating samples. (<b>c</b>,<b>d</b>) The dating samples were collected from the T3 and T4 terraces of the Muqu River, respectively.</p> "> Figure 5
<p>Fault profiles exposed along the Yarigong fault. (<b>a</b>–<b>c</b>) The fault profiles are exposed north of the Ran, Dalong, and Lide villages, respectively, where the fault has displaced Late Quaternary strata. In (<b>a</b>), the fault has displaced the Holocene alluvial layer. And the fault has displaced the late Pleistocene alluvial layer in (<b>b</b>). The red arrows indicate the fault traces.</p> "> Figure 6
<p>Photograph of the fault profile and its explanatory profile.</p> "> Figure 7
<p>Structural landform of the Ciwu fault southwest of Nidou Village. (<b>a</b>) Fault track of the newest activity of the Ciwu fault on the alluvial fan. (<b>b</b>,<b>c</b>) Linear fault trough gullies and reverse fault scarps. The red arrows indicate the fault traces.</p> "> Figure 8
<p>(<b>a</b>) Right-lateral offset of the T2 terrace of the Ciwu River and location of the dating sample. The image was obtained using UAV photogrammetry. (<b>b</b>) Photograph showing the dating sample collection section in the T2 terrace of the Ciwu River.</p> "> Figure 9
<p>(<b>a</b>) Tectonic landform near trench TC1 according to UAV photogrammetry. (<b>b</b>) Photograph of the linear fault trough landform. The red arrows indicate the fault trace.</p> "> Figure 10
<p>Photograph of the southern wall of the Bugge trench and explanatory profile. The radiocarbon dating sample ages of the TC1 trench are detailed in <a href="#applsci-15-00009-t002" class="html-table">Table 2</a>.</p> "> Figure 11
<p>(<b>a</b>) Tectonic landform near trench TC2 shown via UAV photogrammetry. The gully to the south of the site is right-laterally offset by approximately 18 ± 2 m. (<b>b</b>) Photograph of the trench site.</p> "> Figure 12
<p>Photograph of the southern wall of the Bugge trench and explanatory profile. The radiocarbon dating sample ages of the TC2 trench are detailed in <a href="#applsci-15-00009-t002" class="html-table">Table 2</a>.</p> "> Figure 13
<p>Paleoseismic sequences of the Yarigong and Ciwu faults, the raw carbon ages of which were calibrated using OxCal 4.4.4 [<a href="#B42-applsci-15-00009" class="html-bibr">42</a>]. (<b>a</b>,<b>b</b>) are the paleoseismic sequences revealed in trench TC1 and TC2, respectively.</p> ">
Abstract
:1. Introduction
2. Regional Seismic and Tectonic Setting
3. Data and Method
4. Result
4.1. Holocene Activity Characteristics of the Main Fault
The Fault Holocene Activity Characteristics
- Hongjunshan and Hetaoping faults
- 2.
- Yarigong fault
- 3.
- Ciwu fault
4.2. Paleoseismic Studies
4.2.1. Trench TC1 at Bugge
4.2.2. TC2 Trench at Nidou
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.W.; Zhang, P.Z.; Wen, X.Z.; Qin, Z.L.; Chen, G.H.; Zhu, A.L. Features of Active Tectonics and Recurrence Behaviors of Strong Earthquakes in The Western Sichuan Province and Its Adjacent Regions. Seismol. Geol. 2005, 27, 446–461, (In Chinese with English abstract). [Google Scholar]
- Tapponnier, P.; Peltzer, G.; Le Dain, A.Y.; Cobbold, P. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology 1982, 10, 611–616. [Google Scholar] [CrossRef]
- Replumaz, A.; Tapponnier, P. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J. Geophys. Res. 2003, 108, 2285. [Google Scholar] [CrossRef]
- Tang, R.C.; Zhang, Y.G.; Huang, Z.Z.; Lei, J.C. A Study of Seismic Zoning of Shimian-xichang Area in Sichuan Province. J. Seismol. Res. 1993, 3, 306–315, (In Chinese with English abstract). [Google Scholar]
- Xu, Z.Q.; Hou, L.W.; Wang, Z.X. Orogenic Process Beneath the Songpan-Garze Orogenic Belt; Geological Publishing House: Beijing, China, 1992. [Google Scholar]
- Zhou, R.J.; Chen, G.X.; Li, Y.; Zhou, Z.H.; Gong, Y.; He, Y.L.; Li, X.G. Research on Active Faults in Litang-Batang Region, Western Sichuan Province, and the Seismogenic Structures of the 1989 Batang M6.7 Earthquake Swarm. Seismol. Geol. 2005, 27, 31–43, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.J.; Hu, W.J.; Zhong, H.; Zhu, W.G.; Bai, Z.J. Oceanic lithosphere heterogeneity in the eastern Paleo-Tethys revealed by PGE and Re–Os isotopes of mantle peridotites in the Jinshajiang ophiolite. Geosci. Front. 2021, 12, 101114. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jiang, L.W.; Zhang, G.Z.; Wang, D. Discussion on Quaternary activity characteristics of northern section of Jinshajiang fault zone along Sichuan-Tibet railway. High Speed Railw. Technol. 2019, 10, 23–28, (In Chinese with English abstract). [Google Scholar]
- Wu, X.G.; Cai, C.X. The Neotectonic Activity Along the Central Segment of Jinshajiang Fault Zone and the Epicentral Determination of Batang M6.5 Earthquake. J. Seismol. Res. 1992, 04, 401–410, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.Z.; Wang, E.N.; Shen, Z.K.; Wang, M.; Gan, W.J.; Qiao, X.J.; Meng, G.J.; Li, T.M.; Tao, W.; Yang, Y.L.; et al. Constrained Inversion of the Current Activity Rate of Major Faults in the Sichuan-Yunnan Region Based on GPS Data. Sci. Sin. 2008, 38, 582–597, (In Chinese with English abstract). [Google Scholar]
- Xu, X.X.; Ji, L.Y.; Jiang, F.Y.; Zhang, Y.T. Study on Current Activity Features of Jinshajiang Fault Zone Based on GPS and Small Earthquakes. J. Geod. Geodyn. 2020, 40, 1062–1067, (In Chinese with English abstract). [Google Scholar]
- Yi, G.X.; Long, F.; Liang, M.J.; Zhang, Z.W.; Zhao, M.; Qi, Y.P.; Gong, Y.; Qiao, H.Z.; Wang, Z.; Wang, S.W.; et al. Seismogenic structure of the M4.9 and M5.1 Litang Earthquakes on 23 September 2016 ion Southwestern China. Seismol. Geol. 2017, 39, 949–963, (In Chinese with English abstract). [Google Scholar]
- Gao, S.P. Late Quaternary Paleoseismology and Faulting Behavior of the Internal and Western Boundary Faults of Northwest Sichuan Subblock. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2022. [Google Scholar]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan—Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Molnar, P.; Stock, J.M. Slowing of India’s Convergence with Eurasia Since 20 Ma and Its Implications for Tibetan Mantle Dynamics. Tectonics 2009, 28. [Google Scholar] [CrossRef]
- Lee, T.Y.; Lawver, L.A. Cenozoic Plate reconstruction of Southeast Asia. Tectonophysics 1995, 251, 85–138. [Google Scholar] [CrossRef]
- Chung, S.L.; Chu, M.F.; Zhang, Y.Q.; Xie, Y.W.; Lo, C.H.; Lee, T.Y.; Lan, C.Y.; Li, X.H.; Zhang, Q.; Wang, Y.Z. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-collisional Magmatism. Earth Sci. Rev. 2005, 68, 173–196. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Zhao, K.; Liu, J.T. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China: Geochronological constraints. Acta Petrol. Sin. 2011, 27, 2519–2532. [Google Scholar]
- Mao, J.; Zhou, Y.; Liu, H.; Zhang, C.; Fu, D.; Liu, B. Metallogenic setting and ore genetic model for the Beiya porphyry-skarn polymetallic Au orefield, western Yunnan, China. Ore Geol. Rev. 2017, 86, 21–34. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Li, G.; Li, C.; Wang, C. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res. 2014, 26, 419–437. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Res. 2017, 50, 216–266. [Google Scholar] [CrossRef]
- Zhong, N.; Yang, Z.; Zhang, X.B.; Ding, Y.Y.; Wu, R.A.; Wang, Y.; Guo, C.B.; Li, H.B. Evidence of Holocene activity and paleoseismic records in the central section of Bangda fault in Nujiang fault zone. Geol. Rev. 2022, 68, 2021–2032, (In Chinese with English abstract). [Google Scholar]
- Han, M.M. Late Quaternary Activity of the Bangda Segment Along the Nujiang Fault Zone. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2022. [Google Scholar]
- Pu, Z.Y. The Geological Features of the Changning Melange Belt of West Yunnan. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2016. [Google Scholar]
- Liu, H.B.; Kong, X.R.; Ma, X.B.; Wang, Q.S.; Yan, Y.L.; Yan, Y.F.; Yang, Z.Q. The Crustal physical structure characteristics in the southeastern region of the Qinghai-Tibet Plateau. Sci. Sin. 2001, S1, 61–65, (In Chinese with English abstract). [Google Scholar]
- Shi, S. Study on Fault Activity of Changdu-Yanjing Segment of Lancang River Fault Zone. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2023. [Google Scholar]
- Allen, C.R.; Luo, Z.; Qian, H.; Wen, X.Z.; Zhou, H.W.; Huang, W.S. Field study of a highly active fault zone: The Xianshuihe Fault of southwestern China. Geol. Soc. Am. Bull. 1991, 103, 1178–1199. [Google Scholar] [CrossRef]
- Wen, X.Z.; Ma, S.L.; He, Y.N. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Phys. Earth Planet. Inter. 2008, 168, 16–36. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Zou, Y.; Liang, H.; Zhang, J.; Zhang, Y. Zircon U-Pb geochronology and geochemistry of ore-bearing porphyries in the southern Yulong porphyry copper belt, and factors resulting in the differences in scale of mineralization between the southern and northern Yulong porphyry copper belt. Acta Petrol. Sin 2016, 32, 2522–2534. [Google Scholar]
- Li, Y.B.; Wang, H.; Liu, H.G.; Chen, L.C. The surface rupture remains along the Dangjiang segment of Garzê-Yushu fault and the 1738 AD earthquake. Technol. Earthq. Disaster Prev. 2016, 11, 207–217. [Google Scholar]
- Chevalier, M.L.; Leloup, P.H.; Replumaz, A.; Pan, J.W.; Métois, M.; Li, H. Temporally constant slip rate along the Ganzi fault, NW Xianshuihe fault system, eastern Tibet. GSA Bull. 2017, 130, 396–410. [Google Scholar] [CrossRef]
- Liang, M.J.; Yang, Y.; Du, F.; Gong, Y.; Sun, W.; Zhao, M.; He, Q. Late Quaternary Activity of The Central Segment of The Dari Fault and Restudy of The Surface Rupture Zone of the 1947 M73/4 Dari Earthquake, Qinghai Province. Seismol. Geol. 2020, 42, 703–714. [Google Scholar]
- Zhang, P.; Wang, W.; Gan, W.; Zhang, Z.; Zhang, H.; Zheng, D.; Zheng, W.; Wang, Y.; Wang, Y.; Xu, B.; et al. Present-day deformation and geodynamic processes of the Tibetan Plateau. Acta Geol. Sin. 2022, 96, 3297–3313, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Qiao, X.; Zhou, Y.; Zhang, P.Z. Along-strike variation in fault structural maturity and seismic moment deficits on the Yushu-Ganzi-Xianshuihe fault system revealed by strain accumulation and regional seismicity. Earth Planet. Sci. Lett. 2022, 596, 117799. [Google Scholar] [CrossRef]
- Zuo, H.; Qin, Y.L.; Liang, M.J.; Sun, K.; Huang, F.P.; Liao, C.; Zhou, W.Y.; Wu, W.W.; Zhang, H.P.; Yang, Y. Geological and geomorphological evidence of holocene activity along the maisu fault in the northern Sichuan–Yunnan block, Tibetan Plateau. Front. Earth Sci. 2022, 10, 966558. [Google Scholar] [CrossRef]
- Xu, X.W.; Wen, X.Z.; Yu, G.H.; Zheng, R.Z.; Luo, H.Y.; Zheng, B. The Average Slip Rate, Seismic Rupture Segmentation and Recurrence Characteristics of the Litang Fault Zone In Western Sichuan. Sci. Sin. 2005, 6, 540–551, (In Chinese with English abstract). [Google Scholar]
- Chevalier, M.L.; Leloup, P.H.; Replumaz, A.; Pan, J.W.; Liu, D.L.; Gourbet, L. Tectonic-geomorphology of the Litang fault system, SE Tibetan Plateau, and implication for regional seismic hazard. Tectonophysics 2016, 682, 278–292. [Google Scholar] [CrossRef]
- Chang, Z.F.; Zhang, Y.F.; Li, J.L.; Zan, Y. The Geological and Geomorphic Characteristic of Late Quaternary. J. Seismol. Res. 2014, 37, 46–52. [Google Scholar]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.G.; Akiz, S.O. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault. Science 2010, 327, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Nissen, E.; Saripalli, S.; Arrowsmith, J.R.; Mcgarey, P.; Scharer, K.; Williams, P.; Blisniuk, K. Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere 2014, 10, 969–986. [Google Scholar] [CrossRef]
- Bi, H.Y.; Zheng, W.J.; Zeng, J.Y.; Yu, J.X.; Ren, Z.K. Application of SfM photogrammetry method to the quantitative study of active tectonics. Seismol. Geol. 2017, 39, 656–674. [Google Scholar]
- Ramsey, C.B.; Lee, S. Recent and planned developments of the program oxcal. Radiocarbon 2013, 55, 720–730. [Google Scholar] [CrossRef]
- Reimer, P.; Austin, W.; Bard, E.; Bayliss, A.; Blackwell, P.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Xia, J.W.; Zhu, M. Study on tectonic characteristics and activity of middle section of Jinshajiang Main Fault Zone. Yangtze River 2020, 51, 131–137, (In Chinese with English abstract). [Google Scholar]
- Li, Y.H.; Hao, M.; Ji, L.Y.; Qin, S.L. Fault Slip rate and seismic moment deficit on major active faults in mid and south part of the Eastern margin of Tibet plateau. Chin. J. Geophys. 2014, 57, 1062–1078, (In Chinese with English abstract). [Google Scholar]
- Huang, W.L.; Zhang, J.L.; Xiang, W.; Yang, Q.H. The late quaternary activity characteristics and slip rate of Batang fault in SE Tibetan plateau. Seismol. Geol. 2023, 45, 1265–1285. [Google Scholar]
Sample | U (ppm) | Th (ppm) | K (%) | Annual Dose Rate (Gy/ka) | Equivalent Dose (Gy) | Age (ka) |
---|---|---|---|---|---|---|
LX-G-910 | 2.72 | 13.22 | 1.00 | 2.5 ± 0.1 | 55.3 ± 2.6 | 22.1 ± 1.0 |
LX-G-916 | 3.44 | 13.8 | 1.85 | 3.5 ± 0.1 | 194.0 ± 11.7 | 55.4 ± 3.4 |
LX-G-917 | 3.6 | 15.1 | 1.44 | 3.2 ± 0.1 | 102.1 ± 5.9 | 31.9 ± 1.8 |
Sample | Lab No. | Description | 13C/12C (o/oo) | Measured Radiocarbon Age (a BP) | Conventional Radiocarbon Age (cal BP) |
---|---|---|---|---|---|
BGC06 | 647813 | charcoal | −24.1 | 620 ± 30 | 654–550 |
BGC08 | 660112 | charcoal | −23.6 | 1220 ± 30 | 1180–1062 |
BGC11 | 647812 | charcoal | −25.1 | 710 ± 30 | 688–641 |
BGC14 | 660113 | charcoal | −18.1 | 5970 ± 30 | 6893–6731 |
BGC16 | 660114 | charcoal | −19.6 | 1600 ± 30 | 1534–1405 |
BGC26 | 647811 | charcoal | −22.1 | 1940 ± 30 | 1940–1746 |
BGC27 | 647810 | charcoal | −24.1 | 3520 ± 30 | 3880–3698 |
NDC02 | 646655 | charcoal | −23.6 | 8000 ± 30 | 9001–8754 |
NDC24 | 660115 | charcoal | −23.2 | 19,080 ± 60 | 23,109–22,903 |
NDC29 | 648911 | charcoal | −23.4 | 28,290 ± 150 | 33,010–31,860 |
NDC44 | 660116 | charcoal | −25.2 | 2750 ± 30 | 2889–2766 |
NDC53 | 648912 | charcoal | −23.7 | 32,250 ± 220 | 37,036–36,158 |
NDC55 | 660117 | charcoal | −22.5 | 25,190 ± 110 | 29,844–29,180 |
NDC59 | 648913 | charcoal | −22.1 | 20,030 ± 60 | 24,219–23,857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Luo, N.; Dong, Y.; Tan, L.; Su, J.; Wu, W. Holocene Activity Characteristics and Seismic Risk of Major Earthquakes in the Middle Segment of the Jinshajiang Fault Zone, East of the Qinghai–Tibetan Plateau. Appl. Sci. 2025, 15, 9. https://doi.org/10.3390/app15010009
Liang M, Luo N, Dong Y, Tan L, Su J, Wu W. Holocene Activity Characteristics and Seismic Risk of Major Earthquakes in the Middle Segment of the Jinshajiang Fault Zone, East of the Qinghai–Tibetan Plateau. Applied Sciences. 2025; 15(1):9. https://doi.org/10.3390/app15010009
Chicago/Turabian StyleLiang, Mingjian, Naifei Luo, Yunxi Dong, Ling Tan, Jinrong Su, and Weiwei Wu. 2025. "Holocene Activity Characteristics and Seismic Risk of Major Earthquakes in the Middle Segment of the Jinshajiang Fault Zone, East of the Qinghai–Tibetan Plateau" Applied Sciences 15, no. 1: 9. https://doi.org/10.3390/app15010009
APA StyleLiang, M., Luo, N., Dong, Y., Tan, L., Su, J., & Wu, W. (2025). Holocene Activity Characteristics and Seismic Risk of Major Earthquakes in the Middle Segment of the Jinshajiang Fault Zone, East of the Qinghai–Tibetan Plateau. Applied Sciences, 15(1), 9. https://doi.org/10.3390/app15010009