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Abstract: The lattice-based multi-identity fully homomorphic encryption scheme com-
bines the quantum security of lattice cryptography with the advantage of identity-based
encryption. However, existing schemes face challenges such as large key sizes, inefficient
ciphertext expansion processes, and reliance on outdated trapdoor designs, limiting their
compactness and practicality. In this study, we propose a novel Compact Multi-Identity
Fully Homomorphic Encryption Scheme (WZ-MIBFHE) that eliminates the need for fresh
ciphertexts during expansion. First, we construct a compact identity-based encryption
scheme by combining the YJW23 trapdoor and ABB10 under the standard model, proving
its IND-sID-CPA security. The scheme is then adapted to ensure correctness and security
when integrated with the decomposition method for ciphertext expansion. This adaptation
also utilizes approximation errors to reduce overall noise. Finally, we expand the modified
IBE scheme’s ciphertext using the decomposition method to construct the WZ-MIBFHE
scheme. Compared to existing methods, WZ-MIBFHE reduces the lattice dimension to
nlog q + logb q, improves public and private key sizes, and significantly lowers ciphertext
expansion rates by removing the need for fresh ciphertexts. These improvements enhance
both the compactness and efficiency of the scheme, making it a promising solution for
multi-identity homomorphic encryption.

Keywords: fully homomorphic encryption; identity-based encryption; multi-identity;
learning with errors; fresh ciphertext

1. Introduction
With the advancement of technology and the popularization of digitization, people

are in a data-centric era, where the volume of data is growing rapidly and the circulation
and interaction between data have become more frequent. Data owners, due to their own
resource constraints, usually do not store or process the data directly, but entrust it to
non-trusted third parties for storage or processing. We refer to this data processing model
as the outsourced computing model. The rapid development of outsourced computing has
brought convenience for people to solve more complex problems, but also introduced many
new issues, privacy security being the first one. How to solve the contradiction between
outsourced data storage and computation and privacy security is a new issue emerging
from the outsourced computing model. Homomorphic encryption technology can perfectly
solve the conflict between outsourced data storage and computation and privacy security
in the outsourced computing model.

In 1978, Rivest et al. [1] first introduced the concept of homomorphic encryption,
i.e., encryption methods that allow data to be encrypted in an encrypted state for spe-
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cific computations. Based on different mathematical problems, cryptographers have con-
structed various homomorphic encryption schemes, such as the RSA scheme [2] based
on the problem of integer factorization, the ElGamal scheme [3] based on the discrete
logarithm problem, and the Paillier scheme [4] based on the composite residuosity assump-
tion. However, with the rapid development of quantum computers, the limitations of
these traditional number-theoretic homomorphic encryption schemes in resisting quan-
tum algorithm attacks have been greatly amplified. Consequently, ideal lattice problems,
which can withstand quantum attacks, have attracted the attention of researchers. In 2009,
Gentry [5] constructed the first fully homomorphic encryption scheme based on ideal
lattices. Since then, cryptographers have engaged in extensive and in-depth research on
constructing homomorphic encryption schemes based on ideal lattices. Homomorphic
encryption has different branches based on different foundational schemes. According to
these foundational schemes, homomorphic encryption is divided into four generations: the
first generation represented by GSW [6], the second generation represented by BGV [7],
and the third generation represented by TFHE [8], Finally, there is the fourth generation of
homomorphic encryption schemes, represented by CKKS [9].

Fully homomorphic encryption extends the functionality of traditional public key
encryption systems, but like traditional public key encryption, it requires a complex certifi-
cate management system. In large-scale networks, managing a vast number of public keys
and certificates becomes increasingly complex, affecting the system’s efficiency. Identity-
Based Encryption (IBE) schemes, on the other hand, can generate public keys and public
parameters directly from a user’s unique identity, eliminating the need for public key
certificates for authentication. In an IBE system, a trusted Private Key Generator (PKG)
creates the user’s secret key and securely sends it to the user. The distribution mechanism
is as follows: the user submits their identity information to the PKG, which generates the
master key and the corresponding user private key based on the user’s identity. These keys
are then securely distributed to the user via encrypted transmission or similar methods.
This approach avoids the overhead of public key certificates and allows for more efficient
key management.

The integration of identity-based mechanisms with cryptographic schemes has been
explored in various contexts to address application-specific challenges. For example, Ah-
mad and Hannusch [10] proposed a keyed hash function based on Latin squares and
error-correcting codes, aiming to enhance user authentication in smart home environ-
ments. Their work demonstrates how lightweight cryptographic primitives can address
identity-related security challenges in IoT applications. Similarly, our work leverages
the advantages of IBE to reduce the public key overhead in homomorphic encryption
systems. Identity-Based Fully Homomorphic Encryption (IBFHE) combines the strengths
of both homomorphic encryption and identity-based encryption, enabling access control
and homomorphic operations on identity-based ciphertexts while also facilitating efficient
key management.

In 2013, Gentry et al. [6] introduced the method of approximate eigenvector and
constructed a FHE scheme, known as the GSW scheme. The method of approximate
eigenvector can transform any IBE scheme that meets specific conditions into an IBFHE
scheme. Unfortunately, this IBFHE scheme only allows homomorphic operations on ci-
phertexts under the same identity, limiting its ability to address outsourced computation
scenarios.In order to resolve this issue, Clear et al. [11] in 2015 extended the GSW scheme to
support multiple identities by introducing a Mask System (MS). Through the MS, they ex-
panded “fresh” ciphertext matrices encrypted under different identities into multi-identity
ciphertext matrices. These extended ciphertext matrices could then undergo homomor-
phic operations, ultimately constructing the first selectively secure multi-identity fully
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homomorphic encryption (MIBFHE) scheme in the oracle model. However, the ciphertext
expansion process in this scheme was complex, and the noise growth occurred too rapidly.

In 2017, Canetti et al. [12] dynamically combined Multi-Key Fully Homomorphic
Encryption (MKFHE) with IBE to construct a Multi-Identity Based Fully Homomorphic
Encryption scheme. However, the ciphertext expansion in this scheme depended on
the number of ciphertexts, making it less compact. That same year, Wang et al. [13]
leveraged the MP12 trapdoor by Micciancio and Peikert [14] along with the MS to design
a more efficient MIBFHE scheme. In 2019, Tu et al. [15] applied the MP12 trapdoor to
improve the CHKP10 [16] identity-based scheme, upon which they constructed an MIBFHE
scheme. However, since the size of the public key and the length of the ID in the CHKP10
scheme grow linearly in proportion, this greatly affects the storage space and computational
efficiency of the MIBFHE system. In the same year, Shen et al. [17] optimized the ABB10 [18]
scheme using the MP12 trapdoor, and based on this optimization, they built a highly
efficient MIBFHE scheme. The optimized scheme significantly improved the size of the
master secret key, identity public key, and ciphertext. In 2021, Shen et al. [19] utilized
a compressible ciphertext extension technique to construct a compact MIBFHE scheme,
which, to some extent, addressed the issue of low bandwidth efficiency in multi-identity
settings. In 2022, Liu et al. [20] proposed a multi-hop MIBFHE scheme utilizing the
ciphertext extension technique from PS16 [21], thereby expanding the functionality of
MIBFHE schemes. That same year, Fan et al. [22] proposed an improved lattice-based
MIBFHE scheme by combining the MP12 trapdoor with the Dual Regev algorithm to
construct an enhanced IBE scheme. Based on this, they used MS to design a highly
efficient MIBFHE scheme. Compared to similar schemes, their approach significantly
reduced both lattice dimensions and ciphertext size. Although the aforementioned MIBFHE
schemes have achieved varying degrees of optimization, the efficiency of MIBFHE still
faces bottlenecks. The core issue lies in the fact that the trapdoors used in these schemes are
outdated compared to the theoretical advancements in trapdoor research. These trapdoors
rely on computationally expensive matrix inversion operations, and the preimage sampling
algorithms require high-precision real-number orthogonal iteration during the sampling
process. This results in large public parameter sizes and a lack of compactness in the
schemes. While techniques for reducing public parameter sizes exist, they often lead to
increased scheme complexity. Additionally, existing MIBFHE schemes typically use the
MS for ciphertext extension, which requires first generating fresh ciphertexts and then
converting them into extended ciphertexts. This leads to a cumbersome and inefficient
overall process, and the noise expansion rate in previous ciphertext extension methods is
excessively high.

Our Contributions: We present a Compact Multi-Identity Fully Homomorphic Encryp-
tion Scheme without Fresh Ciphertexts by integrating various optimizations to emphasize
compactness. Specifically, our main contributions as follows:

1. We incorporated the YJW23 [23] trapdoor-based preimage sampling algorithm into
the ABB10-IBE scheme, thereby proposing a compact foundational IBE scheme within
the standard model. We also provide a proof that our scheme is IND-sID-CPA secure.

2. We made appropriate optimizations to the foundational IBE scheme by adjusting the
relationship between the public key matrix and the identity vector to meet the security
requirements for constructing a compact MIBFHE scheme using the decomposition
method. And we modified the structure of the key so that the approximation error
originally introduced can be subtracted from the noise generated during decryption,
thereby reducing the overall noise in the scheme.

3. We introduce a new ciphertext extension method—the decomposition method—which
directly extends our improved IBE scheme into an MIBFHE scheme, WZ-MIBFHE,
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without the need to convert the IBE into an IBFHE and then apply ciphertext extension
to the IBFHE scheme to construct the MIBFHE scheme. WZ-MIBFHE can directly
generate extended ciphertexts for homomorphic evaluation without the need to pre-
generate new ciphertexts. WZ-MIBFHE exhibits smaller noise growth, with the lattice
dimension being only n log q + logb q and the ciphertext expansion rate is reduced
to D.

2. Preliminaries
Notation. Let R and Z represent the set of real numbers and integers, respectively. For a

positive integer q, define the set Zq as:

Zq =
{
−
⌊ q

2

⌋
,−
⌊ q

2

⌋
+ 1, . . . , q−

⌊ q
2

⌋
− 1
}

.

When q is not divisible by 2, the floor function ⌊x⌋ is used to ensure proper rounding during modular
reductions. Modulo allowing negative values to be equivalent to positive values, we use the negative
sign to denote half of the integer field. This symmetric representation provides a balanced interval for
modular arithmetic, which is particularly beneficial in lattice-based cryptographic schemes. We use
a← D to represent drawing a sample a from the distribution D. For a finite set S, U(S) denotes
the uniform distribution over S, and a← S indicates that the sample a is drawn according to the
uniform distribution U(S). The notation [A | B] is used to indicate the concatenation of matrices

A and B. The Euclidean norm of a vector A is denoted as ∥A∥ =
√

∑i A2
i , and σ1(R) represents

the largest singular value of matrix R. For a vector a = (a1, a2, . . . , an) ∈ Zn
q , ai denotes the i-th

component of the vector. For a matrix A ∈ Zn×m
q , A[i, j] refers to the element in the i-th row and

j-th column.

2.1. Definition

Below we provide some definitions that will be used in this paper.

Definition 1 (Negligible Function). Let n denote the input size of an algorithm. A function
negl(n) is called negligible if it is a function that approaches zero more rapidly than the inverse
of any polynomial. Specifically, for any polynomial poly(n) , there exists an integer n such that
for all n ⩾ N , the inequality negl(n) ≤ 1

poly(n) always holds. If the probability of an event
occurring is given by a negligible function negl(n), then the event is said to be negligible. Conversely,
if the probability of an event occurring is 1 − negl(n) , then the event is said to occur with
overwhelming probability.

Definition 2 (B-Bounded Distribution). A collection of distributions {χn}n∈N over integers is
called B-bounded if it satisfies the following equation.

Pr
x←≻n

[∥e∥ > B] = negl(n)

Definition 3 (β-Noisy Ciphertext). A message msg encrypted under the secret key sk = t results
in a β-noisy ciphertext C, satisfying tC = v̄tGn + e, where ||e|| ≤ β.

Definition 4 (Multi-Identity Based Fully Homomorphic Encryption Scheme). An MIBFHE
scheme is comprised of six probabilistic polynomial-time (PPT) algorithms: Setup, Extract, Enc,
Extend, Eval, and Dec, each defined as follows:

Setup
(
1λ, 1D, 1L): Input the security parameter λ, the maximum depth L of homomorphic

operation circuits, and the maximum number of user identities D. Output the master public key
(MPK) and master secret key (MSK).
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Extract(MPK, MSK, id): Input the MPK, MSK, and identity vector id. Output the identity
public key Aid and corresponding private key skid.

Enc(MPK, id, msg ∈ {0, 1}): Input MPK, identity id, and message msg ∈ {0, 1}. Output
a fresh ciphertext Cid.

Extend(MPK, (id1, id2, · · · , idD, ), Cid): Input MPK, the necessary identities (id1, id2, · · · , idD),
and the fresh ciphertext Cid. Compute and output the extended ciphertext for the concatenated
identities (id1, id2, · · · , idD)

Eval
(

MPK, Ĉid1 , Ĉid2 · ··, ĈidD , f
)
: Input MPK, a Boolean circuit f , and the ciphertexts(

Ĉid1 , Ĉid2 · ··, ĈidD

)
. Output the result ciphertext Ĉeval .

Dec
(

MPK,
(
skid1 , skid2 , · · ·, skidD

)
, Cid

)
: Input MPK, the concatenated private keys of D

identities, and the extended ciphertext or result ciphertext Cid. Output the message msg ∈ {0, 1}.

Definition 5 (Indistinguishable from Random, Select-Identity, Chosen-Plaintext Attach-
ment). (IND-sID-CPA) imposes additional restrictions on the adversary, requiring the adversary to
declare the target identity it plans to attack before obtaining the public parameters. For an MIBFHE
scheme, the security model between the challenger C and the PPT adversary A is defined as follows:

Initialization Phase: The adversaryA first declares the target identity id∗ it plans to attack.
Then, given the maximum depth L of the computation circuit and the number of participating user
identities D, the challenger C runs the initialization algorithm Setup to generate MPK and MSK,
and sends the MPK to the adversary.

Query Phase: The adversary A initiates private key queries for idi ̸= id∗(i = 1, · · ·, D). The
challenger C runs the private key generation algorithm Extract to generate the corresponding private
keys skid1 , · · ·, skidD and sends them to the adversary.

Challenge Phase: AdversaryA submits a plaintext message msg as the challenge. Challenger
C chooses a random bit r from {0, 1} and a random ciphertext c. If r equals 0, then c∗ is defined
as Encrpt(MSK, id∗, msg); if r equals 1, then c∗ equals c. Challenger C then dispatches c∗ to
adversary A as the challenge.

Guess Phase: The adversary A outputs r
′ ∈ {0, 1} as their guess. If r

′
equals r, then

adversary A wins the game and is considered an IND-sID-CPA adversary. Let Adv(A) =∣∣∣Pr
[
r
′
= r
]
− 1

2

∣∣∣ denote the advantage of adversary A in attacking the encryption scheme. If for

all IND-sID-CPA adversaries the advantage is Adv(A) =
∣∣∣Pr
[
r
′
= r
]
− 1

2

∣∣∣ = negl(n), then the
encryption scheme is IND-sID-CPA secure.

2.2. Lattice

A lattice in the Euclidean space is a set of points arranged in a regular pattern, and the
coordinates of these points can be represented by a set of integer-coefficient vectors in the
space, referred to as the basis vectors of the lattice. The specific definition is as follows:

Definition 6 (Lattice). Let v1, v2, . . . , vn be n linearly independent vectors in Rm, let V =

{v1, v2, . . . , vn} ∈ Rm×n. The lattice Λ(V) generated by the vectors in V is defined as follows:

Λ(V) = {∑n
i xivi ∈ Z}

where {v1, v2, . . . , vn} are a set of basis vectors for the lattice Λ(V), and a lattice can have multiple
sets of bases. m represents the dimension of the lattice, and n is the rank of the lattice, with m ⩾ n.
When m ⩾ n, the lattice Λ(V) is referred to as a full-rank lattice.

Definition 7 (q-ary Lattice). Given V ∈ Zm×n
q , a prime q, and m, n ∈ Z. A q-ary lattice is

defined as follows: For some x ∈ Zn
q

Λq(V) =
{

t ∈ Zn
q : t = Vt· x mod q

}
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Definition 8 (Integral Lattice).

Λ⊥q (V) =
{

t ∈ Zn
q : t = V· t = 0 mod q

}
If all the elements of the vectors in the lattice Λ are integers, then Λ is called an integral lattice. Let q
be a prime number and V ∈ Zm×n

q . The q-ary integral lattice is defined as follows: For some x ∈ Zn
q

Λq(V) =
{

t ∈ Zn
q : t = Vt· x mod q

}
Λ⊥q (V) =

{
t ∈ Zn

q : t = V· t = 0 mod q
}

2.3. Discrete Gaussian Distribution

The Gaussian distribution is a commonly used probability distribution in the design
of lattice cryptographic schemes. Next, we will introduce the relevant definitions and
important lemmas involved in this paper.

Definition 9 (Gaussian Function). Given any real number σ ∈ R > 0, with standard deviation
σ and a center σ ∈ Rn, the Gaussian function for all ∀x ∈ Rn is defined as follows:

ρσ,c(x) = exp

(
−π∥ x− c ∥2

σ2

)

Definition 10 (Discrete Gaussian Distribution). Consider Λ ∈ Rm×n. Given a real number
σ ∈ R > 0, and a center c ∈ Rn with standard deviation σ, the discrete Gaussian distribution for
any ∀x ∈ Λ is defined as follows:

DΛ,σ,c(x) =
ρσ,c(x)
ρσ,c(Λ)

=
ρσ,c(x)

∑v∈Λρσ,c(v)

For clarity, when c = 0, ρσ,0 and DΛ,σ,0 are simplified to ρσ and DΛ,σ, respectively. Similarly,
when σ = 1, ρ1 is denoted as ρ. The distribution DΛ,σ,c is generally defined over the lattice
Λ = Λ⊥q (A) associated with a matrix A ∈ Zn×m

q , or over a shifted lattice Λ = t + Λ⊥q (A), where
t ∈ Zm.

Lemma 1 ([24]). Consider B be a basis for the m-dimensional lattice Λ , and for some negligible
function ∈ m , let s ⩾ η∈(Λ). Then,

Pr
x←DΛ,s

[
∥x∥ > s

√
m
]
≤ negl(m)

Lemma 2 ([25]). Let n be a positive integer, and let t be a vector randomly selected from Zm. Let

the error vector y
−
Ψ

m
α←−− Zm

q , where 0 < α ≤
(
ω
(√

log n
))−1 , and −Ψ α

represents the discrete
Gaussian distribution over Zq corresponding to a normal distribution with mean 0 and standard

deviation α√
2π

over [0, 1). If
−
Ψ

m

α represents an m-dimensional error vector randomly selected from

the distribution
−
Ψα, then

∣∣tTy
∣∣ can be viewed as an integer in the range [0, q− 1] and satisfies

∣∣∣tTy
∣∣∣ ≤ ∥t∥qαω

(√
log m

)
+
∥t∥
√

m
2

Lemma 3 ([26]). Assume m > (n + 1) log q + ω log n , and q is a prime. Uniformly randomly
select matrices A ∈ Zm×n

q and B ∈ Zm×n
q . Let R be an m×m matrix uniformly randomly selected



Appl. Sci. 2025, 1, 473 7 of 22

from {0, 1}m×m. For all vectors w ∈ Zm
q , The distributions

(
A, AR, ARTw

)
and

(
A, B, RTw

)
are statistically indistinguishable.

2.4. Learning with Errors

The LWE problem, a classic lattice problem defined by Regev, underpins the security
of all the constructions presented in this paper. The LWE problems are divided into two pri-
mary categories: worst-case problems and average-case problems. In lattice cryptography
schemes, the most frequently employed problems are LWE problem and the Small Integer
Solution (SIS) assumption. The LWE problem is predominantly used for constructing
public key encryption, attribute-based encryption schemes, and identity-based encryption.
Conversely, the SIS assumption is mainly utilized in the creation of one-way hash functions,
collision-resistant hash functions, digital signatures, and authentication schemes.

Definition 11 (LWE Distribution). For a uniformly random and fixed secret vector s ∈ Zn
q , a

vector a← Zn
q is selected uniformly at random, and a random number e is drawn from a distribution

χ, where χ is a discrete Gaussian error distribution over Zq. The LWE distribution is defined as the
output of uniform samples of the form (a, b = ⟨a, s⟩+ e mod q) ∈ Zn

q ×Zq, denoted as As,χ.

Definition 12 (Search LWE). Given m independent and uniformly random samples (ai, bi) ∈
Zn

q ×Zq from the LWE distribution As,χ, the objective is to recover the unknown secret vector s.

Definition 13 (Decision LWE). Let λ be the security parameter, q = q(λ) ≥ 2 be a prime, and
χ = χ(λ) be a discrete Gaussian error distribution over Zq. An instance of the LWEλ,q,χ problem
is to distinguish between the following two challenge oracles O: O$: Outputs uniformly random

samples (ai, bi) from Zn
q × Zq, where ai

$← Zn
q and bi

$← Zq, “ $←” denotes uniform random
sampling. Os: Selects a uniformly random fixed secret vector s← Zn

q , then selects ei ← χ and
samples ai ← Zn

q uniformly, with bi = ⟨ai, s⟩+ ei. Outputs (ai, bi) ∈ Zn
q ×Zq.

The LWE problem is that it is difficult to distinguish between the two oracle outputs
mentioned above.

2.5. Preimage Sampling Algorithm

Lemma 4 ([27]). Let (A, T) be a matrix approximation trapdoor pair, B =
[

T
−IN

]
and (r, Σ)

such that
√

Σp ⊕ r2IN ⩾ η(L(B)). Use A−1 to denote ApproxPreSamp(A, T, ·, r, Σ). The
two distributions that follow are statistically indistinguishable:{

(A, x, u, e) : u $← Zn
Q, x← A−1(u), e = u−Ax mod Q}

{
(A, x, u, e) : x← DZm ,

√
∑, e $← Zn

p, u = Ax + e mod Q}

The efficiency of basic Gaussian sampling is crucial to the overall performance of
the Gaussian preimage sampling algorithm. The standard deviation σ is a significant
measure of this algorithm’s effectiveness. A smaller standard deviation σ indicates a higher
quality of the Gaussian preimage sampling algorithm. Furthermore, the quality of the
trapdoor matrix R also significantly influences the performance of the Gaussian preimage
sampling algorithm.

3. Identity-Based Encryption Scheme
The efficiency of MIBFHE schemes is largely determined by the underlying IBE scheme.

To construct a compact and streamlined MIBFHE scheme, the design of the underlying
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IBE scheme is crucial. The two most mainstream IBE schemes are CHKP10 and ABB10.
However, the size of the public key and the length of the identity ID in CHKP10 grow pro-
portionally and linearly, which limits its storage space and computational efficiency. In this
section, we incorporate the preimage sampling algorithm based on the YJW23 trapdoor into
the ABB10 scheme, constructing a compact IBE scheme. The parameters of the improved
scheme are more concise, and we have verified its correctness and security. Compared
to similar IBE schemes, our compact IBE scheme achieves significant optimizations in its
main parameters.

3.1. Our IBE Construction

The parameters of the scheme are defined as follows: Let λ be the security parameter,
Q = pq be the modulus where p and q are positive integers, and let m1 = n log q, m =

m1 + nω, m′ = m + 1, and ω = logb q. Let Bχ be the bounded error distribution, χ = χ(λ).
Construct a gadget matrix F = In⊗ fT ∈ Zn×nω where fT = p ·

[
1, b1, b2, . . . , bω−1] ∈ Z1×ω

Q ,
In is an n× n identity matrix, and b is a small integer. The identity encoding Full-Rank
Differences (FRD) function H : Zn×1

Q → Zn×n
Q satisfies Hid1 −Hid2 ̸= 0.

The IBE scheme constructed in this paper consists of four parts: the initialization
algorithm IBE.Setup, the key generation algorithm IBE.Extract, the encryption algorithm
IBE.Enc, and the decryption algorithm IBE.Dec:

(1) IBE.Setup(1λ): Input the security parameter λ, choose n = n(λ), error distribution
χ = χ(λ). Let Q = pq and m = m1 + nω. Uniformly and randomly select an

n-dimensional vector u $← Zn×1
Q , a matrix A $← Zn×m1

Q , and generate a uniformly

random matrix A =
[
A ∥ −AR

]
∈ Zn×m

Q with a trapdoor matrix R ∈ Zm1×nω
Q .

Outputs MPK = (A, u) as the master public key and MSK = R as the master
secret key.

(2) IBE.Extract(MPK, MSK, id): Provide the MPK, MSK, and the user identity vector
id ∈ Zn×1

Q as input. Use the identity encoding FRD function H : Zn×1
Q → Zn×n

Q to
generate an invertible matrix Hid ∈ Zn×n

Q corresponding to each identity id. Let the
user identity public key matrix be Aid = A + [0 ∥ HG] =

[
A ∥ HF−AR

]
∈ Zn×m

Q .
Run the preimage sampling algorithm ApproxPreSamp(Aid, R, u, σ) to generate a
sampling vector tid ∈ Zm×1

Q that follows the discrete Gaussian distribution DΛu
q (Aid),σ,

satisfying Aidtid = uid − eapp mod Q, where eapp is the approximation error of the
trapdoor. Let A′id = [u ∥ Aid] ∈ Zn×m′

Q . Output the private key for each user identity

skid = (1,−tid) ∈ Zm′×1
Q , satisfying A′idskid = eapp mod Q.

(3) IBE.Enc(MPK, id, msg): Provide as input the MPK, user identity id, and a plaintext

bit message msg ∈ {0, 1}. Define the vector v̄ =
(

msg · Q
2 , 0, . . . , 0

)
∈ Zm′

q . Uniformly

and randomly select a vector y $← {0, 1}n×1, and uniformly randomly select an error

vector e $← χm′×1
Ψα

from the LWE error distribution, with ∥e∥ < Bχ. Output the

ciphertext cid = A′Tid y + v̄ + e ∈ Zm′×1
Q .

(4) IBE.Dec(MPK, skid, cid): Input MPK, user private key skid, and ciphertext cid. Com-

pute sT
id · cid and denote the result as msg′ = skT

id · cid ∈ ZQ. When
∣∣∣∣∣∣msg′ −

∣∣∣Q
2

∣∣∣∣∣∣∣∣∣ <∣∣∣Q
4

∣∣∣, output msg = 1; otherwise, ||msg′|| <
∣∣∣Q

4

∣∣∣, output msg = 0.

3.2. Correctness and Parameters

Theorem 1. When m = n · ω(log b + 1), Q = m
3
2
√

nω(log n), σ =
√

mω(log n), α <

σ ·
√

m ·ω(
√

log n)−1. According to Definition 1, we state the IBE we described in Section 3.1
achieves correct decryption with overwhelming probability.
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Proof of Theorem 1. From the decryption formula, we have

skT
id·cid = skT

id

(
A
′T
idy + v̄ + e

)
= skT

idA
′T
idy +

〈
skT

id, v̄
〉
+
〈

skT
id, e

〉
= eappy + msg

⌊
Q
2

⌋
+
〈

skT
id, e

〉
Let e = (e0 ∥ e1) ∈ ZQ × Zm×1

Q ,Then we have
∣∣∣〈skT

id, e
〉∣∣∣ = ∣∣e0 −

〈
tT
id, e1

〉∣∣ ≤ |e0|+∣∣〈tT
id, e1

〉∣∣. From Lemma 1, we know that ∥tid∥ ≤ σ
√

m , where σ ≥ s1(R) ·ω
(√

log n
)
=√

mω(log n); From Lemma 2, we have∣∣∣〈tT
id, e1

〉∣∣∣ ≤ ∥tid∥Qαω
(√

log m
)
+
∥tid∥

√
m

2
≤ σ
√

mQαω
(√

log m
)
+O(σm)

i.e.,
∣∣∣〈skT

id, e
〉∣∣∣ = |e0|+

∣∣∣〈tT
id, e1

〉∣∣∣ ≤ σ
√

mQαω
(√

log m
)
+O(σm).

To ensure the correctness of the IBE scheme’s decryption, the relevant parameter
values must satisfy the following conditions:

(1) To guarantee the decryption algorithm works correctly, it is necessary to ensure that

the error term satisfies
∣∣∣〈skT

id, e
〉∣∣∣ < Q

4 . As stated in GPV08, this condition holds

when α ≤
(
σ
√

m + 1 ·ω
(√

log n
))−1

and Q ≥ 5σ(m + 1), it is highly probable that∣∣∣〈skT
id, e

〉∣∣∣ ≤ Q
5 < Q

4 , and
∣∣∣eappy

∣∣∣< Q
20 . When

∣∣∣〈skT
id, e

〉∣∣∣ < Q
4 , if msg = 1, then∣∣∣∣∣∣〈skT

id, cid

〉
−
∣∣∣Q

2

∣∣∣∣∣∣∣∣∣ < Q
4 ; if msg = 0, then

∣∣∣〈skT
id, cid

〉∣∣∣ < Q
4 , Clearly, the decryption

algorithm is capable of successfully decrypting with overwhelming probability.
(2) The hardness assumption of the LWE problem requires that αQ > 2

√
n. From the

above, we know that when α and Q are chosen to their extreme values, we can achieve,

We can ensure α ·Q = 5
√

m+1
ω
(√

log n
) >

5
√

2nlog q

ω
(√

log n
) > 2

√
n, meeting the security condition

of the LWE problem αQ > 2
√

n.

Based on the above analysis, we set the scheme parameters (m, Q, σ, α) as follows:

m = nlog q + nlogb q = n ·ω(log b + 1)

Q = m
3
2
√

nω(log n)

σ =
√

mω(log n)

α < σ ·
√

m ·ω(
√

log n)
−1

3.3. Security Analysis

Theorem 2. The enhanced IBE scheme proposed in this paper is proven to be IND-sID-CPA secure
under the assumption that the LWEλ,Q,χ problem is hard.

Proof of Theorem 2. The security proof for the enhanced IBE scheme involves a sequence
of IND-sID-CPA games conducted between the adversary A and the challenger C within
the standard model. In this paper, we use the term “game” to describe the interaction
process between the attacker and the encryption system, rather than referring to an actual
game. The proof process is summarized as follows:

Game 0: The initial standard IND-sID-CPA game between the adversary A and the
challenger C for the IBE scheme.



Appl. Sci. 2025, 1, 473 10 of 22

Game 1: The adversary A declares the target identity id∗ to be attacked. Compared
to Game 0, the challenger C in Game 1 changes the generation method of the matrix A,
uniformly randomly generating the matrix

A =

[−
A ∥ −Hid∗F−

−
AR
]

instead of

A =

[−
A ∥ HidF−

−
AR
]

in Game 0. According to Lemma 3, for the adversary A, the matrix A generated in Game
0 is statistically indistinguishable from the matrix A generated in Game 1. Therefore, the
ability of adversary A to distinguish between Game 1 and Game 0 is extremely limited,
with an advantage so small it can be considered negligible.

Game 2: In Game 2, compared to Game 1, the challenger C changes the response
method for private key queries for id ̸= id∗. Game 2 uses the public matrix F and the
trapdoor matrix R of the lattice Λ⊥Q(F), retaining the form of

A =

[−
A ∥ −Hid∗F−

−
AR
]

from Game 1, then

Aid =

[−
A ∥ (Hid −Hid∗)F−

−
AR
]

.

Based on the definition of the identity encoding FRD function, (Hid −Hid∗) is guaranteed
to be non-singular. To respond to the adversary’s private key query, the challenger utilizes
preimage sampling on the trapdoor matrix R by executing the preimage sampling algorithm

ApproxPreSamp(Aid, R, u, σ)→ tid,

and the private key skid = (1,−tid) is provided to the adversary A. If id = id∗, then
(Hid −Hid∗) becomes a singular matrix, causing the game to terminate. According to
Lemma 4, the distribution skid in Game 2 is statistically indistinguishable from skid in Game
1 as DΛu

Q(Aid),σω(
√

log n). Therefore, the advantage of the adversary A in distinguishing

Game 2 from Game 1 is negligible.
Game 3: Compared to Game 2,the challenger C always selects random independent

elements from the ciphertext space Zm
′

Q as the challenge ciphertext. Thus, the challenge
ciphertext appears as an indistinguishable random ciphertext within the ciphertext space,
making the adversary’s advantage negligible.

For the PPT adversaryA, we still need to use the hardness of the LWEλ,Q,χ assumption
to prove that the adversary cannot computationally distinguish Game 2 from Game 3.
Suppose the adversary A has a non-negligible advantage in distinguishing Game 2 from
Game 3. Simulator S for the LWEλ,Q,χ assumption can use the adversary A to distinguish
whether the oracle O is a truly random oracle O$ or a pseudo-random oracleO$. The steps
for the simulator S are as follows:

Instance: The challenger C samples m1 + 1 samples (ui, vi) ∈ Zn×1
Q × ZQ from the

oracle O, where i = 0, 1, . . . , m1.
Target: The adversaryA declares the target identity id∗ to be attacked to the challenger C.
Setup: The challenger C sets up the MPK based on the target identity id∗ declared by

the adversary A.
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(1) The challenger C constructs the matrix
−
A = (u1 ∥ u2 ∥ · · · ∥ um1) ∈ Zn×m1

Q using the
sampled samples.

(2) Let u0 be the public random vector u = u0∈ Zn×1
Q .

(3) Choose R from the distribution Dm1×nω and form the matrix A1 = −Hid∗F−
−
AR.

(4) Output the public parameters
{

u,
−
A, A1

}
to the adversary A.

Queries 1: As in Game 2,the challenger C provide the adversary A with each private
key query for id ̸= id∗.

Challenge: The adversary A provides the challenge identity id∗ associated with the
challenge plaintext msg∗ ∈ {0, 1}. The challenger C then generates the challenge ciphertext
for the target identity id∗ using the following process:

(1) Let v∗ = (v1, . . . , vm1)
T ∈ Zm1×1

Q ;

(2) Hide the plaintext bit message msg∗ with c∗0 = v0 + msg∗
∣∣∣Q

2

∣∣∣;
(3) Let c∗1 =

[
v∗

−RTv∗ + e

]
∈ Zm

Q, where e
−
Ψα← Znω

Q ;

(4) Select a random bit r $← {0, 1}. If r = 0, the challenger sends c∗ = (c∗0 , c∗1) to the

adversary A; if r = 1, a vector cid ∈ Zm
′

Q is uniformly sampled and sent to A. When
O = Os, the distribution of c∗ is indistinguishable from the challenge ciphertext

in Game 2. By the definition of LWEλ,Q,χ, v0 = uT
0 sk + e0 and v∗ =

−
A

T
sk + e1.

Furthermore, Aid∗ =

[−
A ∥ (Hid∗ −Hid∗)F−

−
AR
]
=

[−
A ∥ −

−
AR
]

, we get

c∗1 =

[
v∗

−RTv∗ + e

]
= AT

id∗sk +

[
e1

−RTe1 + e

]

which is exactly the challenge ciphertext c1 in Game 2, The part c∗0 = v0 + msg∗
∣∣∣Q

2

∣∣∣ =
uT

0 sk + e0 + msg∗
∣∣∣Q

2

∣∣∣ is the challenge ciphertext c0, Thus, c∗ is a valid ciphertext for the

plaintext bit msg∗ associated with the identity id∗. WhenO = O$, v0 ∈ ZQ and v∗ ∈ Zm1×1
Q

are uniformly sampled at random. According to Lemma 3, the matrix −RTv∗ adheres to a
discrete random distribution, the expression −RTv∗ + e similarly conforms to a discrete
random distribution. Consequently, the distribution of the challenge ciphertext c∗ in Game
2 is indistinguishable from its distribution in Game 3.

Queries 2: The adversary A may proceed to make private key queries in the same
manner described in Queries 1.

Guess: The adversary A attempts to determine whether the ciphertext is a random

vector in the ciphertext space Zm
′

Q or the actual ciphertext of the plaintext bit message msg∗.
The challenger C determines whether the sampled samples from the oracle O are LWEλ,Q,χ

samples from Os or random samples from Os based on the guess.
In summary, when O = Os, the adversary A experiences the scenario as in Game

2; when O = Os, the scenario is perceived as in Game 3. Given that the simulator S ’s
capability to resolve the LWEn,Q,χ assumption is equivalent to the adversary A’s ability to
differentiate between Game 2 and Game 3, and considering that no PPT simulator S can
effectively solve the LWEn,Q,χ assumption, it follows that the IBE scheme discussed in this
paper is secure under the IND-sID-CPA model. This completes the proof.

3.4. Efficiency Analysis of Our IBE Scheme

We compared the parameters of the proposed IBE scheme with the most classic
ABB10 scheme and another scheme with better parameters, focusing on critical parameters
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such as the lattice dimension, the size of the master private key, the identity public key,
and the ciphertext, the comparison results are presented in Table 1, where our scheme
demonstrates improvements in all these key parameters. Additionally, we provide a
set of instantiated parameters

(
Q = 393216, p = 1536, q = 28, b = 16, n = 1024

)
to more

intuitively compare the efficiency of the scheme. the comparison results are presented in
Table 2.

Table 1. Primary Comparison of Parameters in Similar Schemes.

Scheme Dimension Master Private Key
Size

Identity Public Key
Size Ciphertext Size

ABB10 [18] 6nlog q 36n2log2 q 18n2log q + n 2m + 1
Fan [22] 2nlog q n2log2 q 2n2log q + n m + 1

Ours n log q + n logb q nlog q× n logbq n2 log q+n2 logb q+n m + 1

Table 2. Comparison of Instantiated Parameters.

Scheme Dimension Master Private Key
Size

Identity Public Key
Size Ciphertext Size

ABB10 [18] 48n 2304 n2 432n2 + n 2m + 1
Fan [22] 16n 256n2 48n2 + n m + 1

Ours 9.75n 14n2 9.75n2 + n m + 1

4. Modifed Identity-Based Encryption Scheme
In Section 3, we constructed a compact IBE scheme, but this scheme cannot be directly

combined with the decomposition method to construct an MIBFHE scheme. The decom-
position method requires the identity to be represented as a vector in the security proof,
whereas in Section 3, our IBE scheme uses the FRD function to map the identity into a
matrix form and incorporate it into the identity public key.

Therefore, before combining the foundational IBE scheme with the decomposition
method, it is necessary to appropriately transform the foundational IBE scheme to ensure
the security and correctness of the constructed MIBFHE scheme. Additionally, based on
our observations, modifying the identity private key can cleverly utilize the trapdoor error
to reduce the overall noise of the scheme.

4.1. Modifed IBE Construction

The parameters of the scheme are defined as follows: difine security parameter as
λ, n = n(λ), and Let Q = p · q represent the modulus, where p and q are both positive
integers. m1 = nlog q, m = m1 + nω, m′ = m + 1, and ω = logb q. Let Bχ be the bounded
error distribution χ = χ(λ). Construct an gadget matrix F = In ⊗ fT ∈ Zn×nω, where
fT = p ·

[
1, b1, b2, . . . , bω−1] ∈ Z1×ω

Q , In is an n× n identity matrix, and b is a small integer.
The IBE scheme constructed in this chapter consists of four parts: IBE.Setup,

IBE.Extract, IBE.Enc, IBE.Dec.

(1) IBE.Setup(1λ): Input the security parameter λ, choose n = n(λ), and the error
distribution χ = χ(λ). Generate the basic parameters Q = pq, m = m1 + nω.

Uniformly select an invertible matrix H $← Zn×n
Q , a uniformly random matrix A $←

Zn×m1
Q and a collision-resistant hash function H: Z∗Q → Zn

Q. Sample the trapdoor
matrix R ← DRm1×nω ,σ, generate a uniformly random matrix A =

[
A ∥ −AR

]
∈

Zn×m
Q , and provide the master public key MPK = (A, H) along with the master

private key MSK = R. For different identities, the matrix A remains unchanged.
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(2) IBE.Extract(MPK, MSK, id): Provide the master public key MPK, the master private
key MSK, and the user identity vector id ∈ Z∗Q as input. Use the hash function
H : Z∗Q → Zn

Q to map each user identity id into an identity vector uid ∈ Zn
Q. Let the

user identity public key matrix be Aid = A + [0 ∥ HG] =
[
A ∥ HF−AR

]
∈ Zn×m

Q .
For each different identity, the matrix Aid remains the same. Run ApproxPre-
Sample(Aid, R, uid, σ) to generate a sampling vector tid ∈ Zm

Q that follows the dis-
crete Gaussian distribution DΛu

Q(Aid),σ, satisfying Aidtid = uid − eapp mod Q. Let

A′id = [uid ∥ Aid] ∈ Zn×m′
Q and output the private key corresponding to each user id

as skid = (−1, tid) ∈ Zm′
Q , satisfying A′idskid = −eapp mod Q.

(3) IBE.Enc(MPK, id, msg): Input MPK, the user identity id and a message msg ∈ {0, 1}
to be encrypted. Let the vector v̄ =

(
msg Q

2 , 0, . . . , 0
)
∈ Zm

′×1
Q . Uniformly select a

vector y $← {0, 1}n×1, and uniformly select an error vector e $← χm
′×1
−
Ψα

, such that

∥e∥ < Bχ. Output the ciphertext vector

cid = A
′T
idy + v̄ + e ∈ Zm

′×1
Q .

(4) IBE.Dec(MPK, skid, cid): Input MPK, the private key skid under identity id, and the
ciphertext cid under identity id. Set msg′ = skT

id · cid ∈ ZQ, Calculate

skT
id·cid = skT

id

(
A
′T
idy + v̄ + e

)
= skT

idA
′T
idy +

〈
skT

id, v̄
〉
+
〈

skT
id, e

〉
= −eappy + msg

⌊
Q
2

⌋
+
〈

skT
id, e

〉
If
∣∣∣∣∣∣msg

′ −
∣∣∣Q

2

∣∣∣∣∣∣∣∣∣ < ∣∣∣Q
4

∣∣∣, let msg = 1; if
∣∣∣∣∣∣msg

′
∣∣∣∣∣∣ < ∣∣∣Q

4

∣∣∣, let msg = 0. Output msg = 1.

4.2. Parameters, Security Analysis, And Effciency Analysis

In the aforementioned improved IBE scheme, we introduce a collision-resistant hash
function H : Z∗q → Zn

q and reconstruct the public key A
′
id, thereby modifying the relation-

ship between the identity public key and the identity vector. Since our extended method
eliminates the need for the eigenvector approach to transform the IBE scheme into the
IBFHE scheme, the identity private key vector no longer requires its first component to be 1.
Instead, we redefine the identity key as (−1, skid). This change allows the approximation
error from the approximate trapdoor in our improved IBE scheme to partially cancel out
the decryption noise, effectively reducing the scheme’s overall noise. The noise size of the
modified IBE scheme is given as follows:

||β IBE|| =
∣∣∣∣∣∣〈skT

id, e
〉
− eappy

∣∣∣∣∣∣ ≤ ||skide|| −
∣∣∣∣eappy

∣∣∣∣.
Clearly, the noise in the modified IBE scheme is smaller than that in the basic IBE scheme,
enabling the modified scheme to perform correct decryption. The reduced noise allows the
MIBFHE scheme in Section 5 to support more homomorphic operations. Other parameter
choices remain the same as those in the IBE scheme presented in Section 3.

5. Multi-Identity Full Homomorphic Encryption Scheme
In Section 4, we proposed a modified IBE scheme suited solely for single-identity sce-

narios, where ciphertexts encrypted under different identities are unable to directly engage
in homomorphic operations with one another. To overcome this limitation, in this section,
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we build upon the improved IBE scheme from Section 4 and apply the decomposition
method [28] for ciphertext extension, resulting in an MIBFHE scheme that does not require
fresh ciphertexts.We refer to this scheme as WZ-MIBFHE.

5.1. The Decomposition Method

Previous MIBFHE schemes required the IBFHE encryption algorithm to generate fresh
ciphertexts for homomorphic operations. These fresh ciphertexts were then extended using
the Mask System technique to produce extended ciphertexts that support multi-identity
operations.In contrast, the decomposition method can directly extend the ciphertexts of the
IBE scheme into extended ciphertexts that support multi-identity homomorphic operations,
eliminating the need for the intermediate step of generating fresh ciphertexts.

Before introducing the decomposition method, we will briefly outline the ciphertext
extension approach using the Mask System. Assume there are (D = 2) participants, and any
number of participants D can be analogously processed using this method. Suppose in the
IBFHE scheme, under participant identities id1 and id2 the fresh ciphertexts C1 and C2 are
obtained by encrypting plaintext bit messages msg1 and msg2 , respectively. Here, identities id1

and id2 correspond to private keys sk1 and sk2 , which satisfy skT
1 C1 = msg1skT

1 M + e1 and
skT

2 C2 = msg2skT
2 M + e2 and M represents the preimage matrix, satisfying MM−1(A) = A.

By expanding the ciphertexts C1, C2 ∈ Zm
′×N

Q according to the number of participants D, they

become extended ciphertexts Ĉ1, Ĉ2 ∈ Z2m
′×2N

Q , satisfying

[
skT

1 , skT
2

]
Ĉ1 = msg1

[
skT

1 , skT
2

][M 0
0 M

]
+ error,

[
skT

1 , skT
2

]
Ĉ2 = msg2

[
skT

1 , skT
2

][M 0
0 M

]
+ error.

The general method for converting a IBFHE scheme into a MIBFHE scheme involves
expanding the ciphertext matrix, originally encrypted under a single identity, into a gen-
eral matrix with dimensions Dm

′ × DN, where N = m
′
log q. In this way, the extended

ciphertexts Ĉ1 and Ĉ2 corresponding to id1 and id2, respectively, both have dimensions
2m

′ × 2N. Homomorphic operations can be performed by inputting Ĉ1 and Ĉ2 into a
binary logic circuit f . Previous MIBFHE schemes required the IBFHE encryption algorithm
to generate fresh ciphertexts C for homomorphic operations. These fresh ciphertexts were
then extended using the Mask System technique to produce extended ciphertexts Ĉ that
support multi-identity operations.

Next, we describe using the decomposition method to extend ciphertexts. First, we
restructure the form of the extended ciphertext and decompose the new ciphertext into two
parts. The new ciphertext can be defined as: C = AR + msgFn. The first part is a combina-
tion of the public key matrix A and the trapdoor R, and the second part is a combination
of the plaintext msg and the public matrix F. With this ciphertext form, the second part of
the new ciphertext can be directly extended during decryption. The method of ciphertext
extension is no longer to extend the entire ciphertext C → Ĉ, but to extend the first and
second parts of the ciphertext separately. Adding these two parts together naturally gives
us the extended ciphertext we desire. Moreover, the MIBFHE scheme constructed using
the decomposition method can directly generate extended ciphertexts that are executable
for homomorphic operations without the need to generate new ciphertexts, making the
scheme more concise and reducing the operations that users need to perform.

We will better explain the decomposition method through the following example.
Consider the case of two users, where user i = {1, 2}. The ciphertext Ci = AiRi +msgiGn ∈
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Zn×m
q is the fresh ciphertext. Let ŝk1,2 = (sk1, sk2) be the concatenation of the two keys.

Using the decomposition method, the extended ciphertext is constructed in the following
two steps:

(1) Construct Xi, such that Xi satisfies ŝk1,2 · Xi = ê1,2 ∈ Z2m
Q ;

(2) Construct Yi, such that Yi = msgiF2n and satisfies ŝk1,2 · Yi = msgi ŝk1,2F2n ∈ Z2m
Q .

Compared to traditional ciphertext extension methods, the new ciphertext produced
by the decomposition method is no longer just a part of the extended ciphertext. The newly
generated ciphertext can directly perform homomorphic operations. The overall scheme
does not require generating new ciphertexts, allowing users to execute fewer operations,
making the scheme more concise.

5.2. Our MIBFHE Construction

The WZ-MIBFHE scheme is composed of five components: MIBFHE.Setup, MIBFHE.
Extract, MIBFHE.Enc, MIBFHE.Eval, and MIBFHE.Dec.

The basic parameters of the scheme are defined as follows: Let λ be the security
parameter, Q = pq be the modulus, m = O(nlog q), A ∈ Zn×m

Q be a uniformly random
matrix, and R ∈ Zm1×nω be its trapdoor, where m1 = nlog q and m = m1 + nω. Construct
a gadget matrix F = In ⊗ fT ∈ Zn×nω where fT = p ·

[
1, b1, b2, . . . , bω−1] ∈ Z1×ω

Q , In is an
n× n identity matrix, and ω = logb q. Let m′ = m + 1.

(1) MIBFHE.Setup
(
1λ, 1L, 1D): Takes as input the security parameter λ, the maximum

circuit depth L for homomorphic operations, and the maximum number of users D
allowed in the scheme. Execute IBE.Setup and output MPK = (A, H) and MSK = R.

(2) MIBFHE.Extract(MPK, MSK, [idi]): Input MPK, MSK, and [idi]i∈[D] ∈ Zn×1
Q . Run

IBE.Extract to sequentially generate the private keys skid1 , . . . , skidD corresponding
to the identities id1, . . . , idD, and the corresponding identity public key matrices
A
′
id1

, . . . , A
′
idD

. Output the private keys set
{

skidi

}
i∈[D]

and the identity public key

matrices set
{

A
′
idi

}
i∈[D]

.

(3) MIBFHE.Enc(MPK, {idi}, msg): Input MPK, the user identity vectors {idi}i∈[D], and

the plaintext msg ∈ {0, 1}. Let ŝkid =
(
skid1 , . . . , skidD

)
∈ ZDm

′

Q be the concatenation
of the private keys corresponding to the D identities. Select a series of matrices
to compute the extended ciphertext Ĉidi

= Xidi
+ Yidi

∈ ZD(m×1)×D(m×1)ω
q . First,

compute Xidi
:

Xidi
=



Aidi

∼
M

1

i · · · 0
...

. . .

Aidi

∼
M

1

i · · · Aidi

∼
M

i

i · · · Aidi

∼
M

D

i
...

. . .

0 0 Aidi

∼
M

D

i


(1)

where
( ∼

M
1

i ,
∼
M

2

i , · · · ,
∼
M

D

i

)
∈ {0, 1}n×m

′
ω are random matrices. Compute:

skidi
A
′
idj

+ skidj
A
′
idi

=
(
−1, tT

idi

)(uT
idj

AT

)
+
(
−1, tT

idj

)(uT
idi

AT

)
= uT

idj
− tT

idi
AT + uT

idi
− tT

idj
AT

= −eappi
− eappj

;
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And accordingly to Formula (1):

ŝkidXidi
=
(
skid1 , skid2 , · · · , skidD

)
Xidi

= −êDm
′
ω

appi
.

To construct Yidi
, we define

Yidi
= msgiFDm′ + Eidi

= msgi
(
IDm′ ⊗ f

)
+ Eidi

= msgi


Gm′ · · · 0m

′×m
′
ω

...
. . .

...

0m
′×m

′
ω · · · Gm′


D×D

+ Eidi

(2)

where the error matrix Eidi
← χDm

′×Dm
′
ω. Then,

ŝkidYidi
= msgi ŝkidFDm′ + ŝkidEidi

Now that we have completed the generation and extension of the ciphertext, accord-
ingly to Formulas (1) and (2), Ĉidi

can be described as:

Ĉidi
= Xidi

+ Yidi

=



Aidi

∼
M

1

i · · · 0
...

. . .

Aidi

∼
M

1

i · · · Aidi

∼
M

i

i · · · Aidi

∼
M

D

i
...

. . .

0 0 Aidi

∼
M

D

i


+ msgiGDm′ + Eidi

Then,

ŝkidĈidi
= ŝkidXidi

+ ŝkidYidi
= −êappi

+ msgi ŝkidGDm′ + ŝkidEidi
.

(4) MIBFHE.Eval
(

MPK,
(
Ĉid1 , · · · , ĈidD

)
, f
)
: Input MPK, a Boolean circuit f , and the

number of identities D involved in the computation supported by the scheme. Output
the ciphertext Ĉeval after homomorphic evaluation. The above ciphertexts are of the
GSW type, and the homomorphic operations are similar to those in the GSW scheme.
The definitions for homomorphic addition, multiplication, and NAND operations
are as follows:

GSW.Add
(
Ĉid1 , Ĉid2

)
= Ĉid1 + Ĉid2

=
(
Xid1 + Xid2

)
+
(
Yid1 + Yid2

)
=
(
Xid1 + Xid2

)
+ (msg1 + msg2)GDm′ ∈ ZDn×Dnω

q

GSW.Multi
(
Ĉid1 , Ĉid2

)
= Ĉid1 ·G

−1
Dm′

(
Ĉid2

)
=
(

Xid1 + msg1GDm′
)
+ Eid1 ·G

−1
Dm′

(
Ĉid2

)
=
(
Xid1 + Eid1

)
·G−1

Dm′
(
Ĉid2

)
+ msg1

(
Xid2 + msg2GDm′ + Eid2

)
= msg1msg2GDm′ +

(
Xid1 + Eid1

)
·G−1

Dm′
(
Ĉid2

)
+ msg1

(
Xid2 + Eid2

)
GSW.NAND

(
Ĉid1 , Ĉid2

)
= GDm′ − Ĉid1 ·G

−1
Dm′

(
Ĉid2

)
= (1−msg1msg2)GDm′ −

(
Xid1 G−1

Dm′
(
Ĉid2

)
+ msg1Xid2

)
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In our scheme, the homomorphic operations are as follows:
Homomorphic Addition t̂Ĉ+:

t̂Ĉ+ = t̂
(
Ĉid1 + Ĉid2

)
= t̂
(
Xid1 + Xid2

)
+ (msg1 + msg2)t̂GDm′

= (msg1 + msg2)t̂GDm′ −
(
êapp1

+ êapp2

)
Homomorphic Multiplication t̂Ĉ×:

t̂Ĉ× = t̂Ĉid1 ·G
−1
Dm′
(
Ĉid2

)
= t̂
(

Xid1 G−1
Dm′
(
Ĉid2

)
+ msg1Xid2

)
+ msg1msg2 t̂GDm′

= msg1msg2 t̂GDm′ −
(

êapp1
G−1

Dm′
(
Ĉid2

)
+ msg1êapp2

)
Homomorphic NAND t̂ĈNAND:

t̂ĈNAND = (1−msg1msg2)t̂GDm′ − t̂
(

Xid1 G−1
Dm′
(
Ĉid2

)
+ msg1Xid2

)
= (1−msg1msg2)t̂GDm′ −

(
êapp1

G−1
Dm′
(
Ĉid2

)
+ msg1êapp2

)
(5) MIBFHE.Dec

(
MPK, ŝkid, Ĉidi

)
: Input MPK, the concatenation of D keys ŝkid, and

the extended ciphertext Ĉidi
. Set the vector

∼
v =

(
msg ·

⌈
Q
2

⌉
, 0, · · · , 0

)T
∈ ZDm′

Q ,
and compute:

msg
′
= ŝkidĈidi

G−1
Dm′

(∼
v
)

=
(

êapp + msgi ŝkidGDm′ + ŝkidEidi

)
·G−1

Dm′

(∼
v
)

= msg
〈

ŝkid,
∼
v
〉
+ ŝkidEidi

G−1
Dm′

(∼
v
)

= msg ·
⌈

Q
2

⌉
+
(

ŝkidEidi
− êapp

)
G−1

Dm′

(∼
v
)

If
∥∥∥msg

′ −
⌈

Q
2

⌉∥∥∥ ≤ Q
4 , output msg

′
= 1. If

∥∥∥msg
′
∥∥∥ ≤ Q

4 , output msg
′
= 0.

5.3. Correctness and Parameters

During the encryption phase, the ciphertext is extended to Ĉidi
, and the noise term

∼
βenc = ŝkidEidi

− êapp is calculated, where
∥∥Eidi

∥∥ ≤ Bχ. We compute:∥∥∥∥∼βenc

∥∥∥∥ =
∥∥∥ŝkidEidi

− êapp

∥∥∥ ≤ ∥∥∥ŝkidEidi

∥∥∥− ∥∥êapp
∥∥ = DBχ

(
m
′)− p,

so the noise level of the ciphertext Ĉidi
is DBχ

(
m
′
)
− p. We refer to Ĉidi

as a ciphertext

with noise level DBχ

(
m
′
)
− p.

During the homomorphic computation phase, the noise generated by homomorphic
multiplication is the largest, so we mainly analyze the noise of homomorphic multiplication.
The computation process of homomorphic multiplication is as follows:
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GSW.Multi
(
Ĉid1 , Ĉid2

)
= Ĉid1 ·G

−1
Dm′
(
Ĉid2

)
=
(
Xid1 + msg1GDm′ + Eid1

)
·G−1

Dm′
(
Ĉid2

)
=
(
Xid1 + Eid1

)
·G−1

Dm′
(
Ĉid2

)
+ msg1

(
Xid2 + msg2GDm′ + Eid2

)
= msg1msg2GDm′ +

(
Xid1 + Eid1

)
·G−1

Dm′
(
Ĉid2

)
+ msg1

(
Xid2 + Eid2

)
.

Thus, we have:

ŝkidĈ×id = ŝkidĈ×id1
·G−1

Dm′
(
Ĉid2

)
= msg1msg2ŝkidGDm′ +

(
êapp1

+ ŝkidEid1 G−1
Dm′

)(
Ĉid2

)
+ msg1

(
−êapp2

+ ŝkidEid2

)
.

Then, the homomorphic computation error is

∼
βeval =

(
−êapp1

+ ŝkidEid1 G−1
Km′

)(
Ĉid2

)
+ msg1

(
−êapp2

+ ŝkidEid2

)
Based on the analysis of circuit noise growth, with error control under correct decryp-

tion conditions, we can infer the upper bounds on the circuit computation depth L and the
number of users D involved in the computation.∥∥∥∥∼βeval

∥∥∥∥ =
∥∥∥(−êapp1

+ ŝkidEid1 G−1
Dm′

)(
Ĉid2

)
+ msg1

(
−êapp2

+ ŝkidEid2

)∥∥∥ ≤ D2(Bχ ·ω ·m′ − p
)

The final error is: ∥∥∥∥∼βeval

∥∥∥∥ ≤ D2L(
Bχ ·ω ·m′ − p

)
(3)

When the noise is less than Q
4 , the decryption algorithm can correctly decrypt. There-

fore, by selecting Q ≥ D2L
(Bχ ·ω ·m′ − p), the WZ-MIBFHE scheme can correctly decrypt.

5.4. Security Analysis

Theorem 3. Under the assumption that the LWEλ,Q,χ assumption is hard, the WZ-MIBFHE
scheme is IND-sID-CPA secure.

Proof of Theorem 3. The security of the WZ-MIBFHE scheme is established through an
IND-sID-CPA game played between an adversaryA and a challenger C. The proof proceeds
as follows:

Suppose the adversary A targets the identity id∗, and let Adv[i] represent the adver-
sary’s advantage in game i.

Game 0: The standard IND-sID-CPA game in the WZ-MIBFHE scheme is conducted
between the adversary A and the challenger C.

Game 1: The adversary A declares the target identity id∗. Compared to Game 0, the
challenger C changes the way the MPK matrix A is generated in Game 1. A uniformly
random matrix A

′ ′
is generated, and MPK = (A

′ ′
, H). According to Lemma 3, for the

adversary A, the matrix A in Game 0 is statistically indistinguishable from the matrix A
′ ′

in Game 1. Therefore, the advantage of the adversary A in distinguishing Game 1 from
Game 0 is negligible.

Game 2: Compared to Game 1, the challenger C changes the way public and private
keys are generated in Game 2. In Game 2, a public matrix F and a trapdoor matrix R of
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the lattice Λ⊥Q(F) are generated. The adversary A sends a set of identities {idα}α∈poly(λ) to
the challenger C for hash queries. The challenger C chooses a uniformly random vector
u
′′
idα

and sets A
′′
idα

=
[
u
′′
idα

∣∣∣∣∣∣A′ ′]. If the identity id∗ ∈ {idα}α∈poly(λ), the game terminates.

Otherwise, the challenger C runs ApproxPreSamp(A
′′
idα

, R, u
′′
idα

, σ) to generate t
′′
idα

, which

satisfies A
′′
idα
· t′′idα

= u
′′
idα
− eapp mod Q. Set sk

′′
idα

= (−1, t
′′
idα

) and return it to the adversary

A. The challenger C ensures that (idα, u
′′
idα

, t
′′
idα

) ∈ store is stored. Therefore, for the same
identity id, the adversary A receives the same result for each query. Thus, the public and
private keys in Game 2 and Game 1 are statistically indistinguishable. Consequently, the
adversary A is unable to differentiate between Game 2 and Game 1 within polynomial
time with any significant advantage, i.e.,

|Adv[2]−Adv[1]| = negl(λ)

Game 3: The adversary A chooses a pair of messages (msg0, msg1) for the challenger
C. The challenger C generates extended ciphertexts in Game 3 differently than in Game 2.

The challenger C chooses a uniformly random matrix P̂ ∈ ZDm
′×Dm

′
ω

Q and Ê ∈ ZDm
′×Dm

′
ω

Q ,
generating the ciphertext Ĉid∗ = P̂ + msgrGDm′ + Ê for the message msgr, where r ∈ {0, 1},
and sends the extended ciphertext Ĉid∗ to the adversary A.

Lemma 5 ([25]). Assuming the parameters satisfy the LWEλ,Q,χ hypothesis. For the above
generated m = O(nω) and (A, AM), the joint distribution (A, AM) is computationally indistin-
guishable from a uniform distribution over Zn×m

Q × Zn×m
Q .

Analyzing the structure of Xi, we observe that the diagonal elements
(

AiMi
1, AiMi

2, . . . ,

AiMi
D
)

and the elements
(

A1Mi
1, A2Mi

2, . . . , ADMi
D
)

are both suitable for Lemma 5.
Given that the remaining elements of Xi are zero, we can conclude that Xi and P are
computationally indistinguishable. Thus,

|Adv[3]− Adv[2]| = negl(λ)

Based on the above analysis, in WZ-MIBFHE scheme, the advantage of the adversaryA
is negligible within polynomial time, and the security is based on the LWEλ,Q,χ hypothesis.
The proof is complete.

5.5. Efficiency Analysis of Ours MIBFHE SCHEME

We compare the existing MIBFHE schemes with the WZ-MIBFHE scheme, focusing
on two main aspects: scheme attributes and scheme parameters. The results are shown in
Tables 3 and 4.

According to Equation (3), the overall error of the scheme after L homomorphic
operations for D identities is∥∥∥∥∼βeval

∥∥∥∥ ≤ D2L(
Bχ ·ω ·m′ − p

)
Since the number of user participation D is known, according to this formula we need to
choose the parameters rigorously to ensure the decryption correctness of the scheme. Based
on Tables 3 and 4, The IBE architecture of WZ-MIBFHE and the IBE architecture from [22]
are both based on ABB10; therefore, our public and private key structures are similar, and
their sizes appear to be the same. However, WZ-MIBFHE has a lower dimension, resulting
in smaller public and private key sizes as well as ciphertext sizes, significantly enhancing
the compactness of the scheme. WZ-MIBFHE employs the decomposition method for
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ciphertext expansion, allowing users to generate expandable ciphertexts directly from
the encryption algorithm without needing to generate fresh ciphertexts in advance. This
approach reduces the overall operations required, making the scheme more concise. Addi-
tionally, with the increase in the number of users participating in WZ-MIBFHE compared
to similar schemes, our noise expansion rate is significantly lower, indicating that we
can perform more homomorphic evaluations. Compared to [20], WZ-MIBFHE has better
performance and parameters, but does not implement the multi-hop property.

Table 3. Comparison of Trapdoor, IBE Architecture, Ciphertext Extension Method, Fresh Ciphertext
Requirement, and Multi-hop Support in Similar Schemes.

Scheme Trapdoor IBE Architecture Ciphertext Extension
Method

Must Fresh
Ciphertext

Multi-Hop
Support

[11] GPV08 Dual Regev Mask system Yes No
[20] MP12 Dual Regev Mask system Yes Yes
[22] MP12 ABB10 Mask system Yes No

WZ-MIBFHE YJW23 Our modified IBE The decomposition method No No

Table 4. Comparison of Dimension, Secret Key Size, Ciphertext Size, and Noise Expansion Rate in
Similar Schemes.

Scheme Dimension Secret Key Size Expanded
Ciphertext Size

Noise Expansion
Rate

[11] 6nlog q Dm
′2

D2m
′2

ω2 1 + nω

[20] 2nlog q Dm
′2

D2m
′2

ω2 1 + 7nω

[22] 2nlog q Dm
′

D2m
′2

ω
(1 + 2n) +

3n(1 + 2nω)3

WZ-MIBFHE nlog q + logb q Dm
′

D2m
′2

ω D

6. Conclusions
In this study, we optimized the ABB10 scheme using the pre-image sampling algorithm

based on YJW23, resulting in a foundational IBE scheme that satisfies IND-sID-CPA security.
We modified the relationship and generation method of the identity vector and identity
public key in our IBE scheme to meet the requirements of the decomposition method.
Utilizing the decomposition method and the modified IBE scheme, we proposed a compact
MIBFHE scheme. Comparisons with other MIBFHE schemes show that our proposal
optimizes parameters such as lattice dimension, public and private key sizes, and noise
growth rates, making it more concise and efficient. Overall, WZ-MIBFHE offers a practical
solution in the field of multi-identity fully homomorphic encryption, demonstrating good
security and scalability. In the future, we aim to extend the functionality of WZ-MIBFHE to
include multi-hop attributes. Additionally, we are keenly aware of the practical application
prospects of MIBFHE in areas like privacy-preserving cloud computing [29–32]. We also
plan to extend WZ-MIBFHE scheme to rings, leveraging the unique properties of rings to
further enhance the efficiency of the MIBFHE scheme. To the best of our knowledge, no
existing scheme has addressed the IBFHE and MIBFHE problems from the perspective of
ring-based LWE.
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