Experimental Investigation on Unloading-Induced Sliding Behavior of Dry Sands Subjected to Constant Shear Force
<p>Testing apparatus and experimental materials: (<b>a</b>) the DJZ-500 shear box device; (<b>b</b>) dry sands used in tests; and (<b>c</b>) grain grading curve of the sand samples.</p> "> Figure 2
<p>Experimental configuration: (<b>a</b>) setup of direct shear test under unloading normal force and constant shear force; (<b>b</b>) normal and shear force application scheme during three-stage loading process.</p> "> Figure 3
<p>Normal force variation as function of elapsed time and experimental results of normal and sliding displacement versus time for each test. (<b>a</b>) Normal force, normal displacement, and sliding displacement versus time for different unloading rates (Group A). (<b>b</b>) Normal force, normal displacement, and sliding displacement versus time for different shear force (Group B).</p> "> Figure 4
<p>Sliding velocity versus time for each test since the beginning moment of normal unloading. (<b>a</b>) Sliding velocity versus time for different unloading rates. (<b>b</b>) Sliding velocity versus time for different shear force.</p> "> Figure 5
<p>(<b>a</b>) Relationship between shear displacement and shear force under <span class="html-italic">F</span><sub>N</sub> = 30 kN in a conventional direct shear test. Within the displacement range, the shear strength of the granular material keeps increasing with larger shear displacement. (<b>b</b>) The peak shear force (shear strength) for different normal force in 0.0833 mm/s shear-displacement-controlled conventional direct shear test. (<b>c</b>) Shear displacement (solid lines) and normal displacement (dash lines) versus time for low (0.08 kN/s) and high (0.8 kN/s) unloading rates extracted from <a href="#applsci-15-00401-f003" class="html-fig">Figure 3</a>a and illustration to explain sliding deceleration/intermission.</p> "> Figure 6
<p>Variation in normal force at different sliding velocities. (<b>a</b>) For different unloading rate (Group A) and (<b>b</b>) for different shear force (Group B).</p> "> Figure 7
<p>Normal force versus unloading rate and shear force at sliding velocity of (<b>a</b>) 3.7 mm/s, (<b>b</b>) 2.5 mm/s, and (<b>c</b>) 1.5 mm/s.</p> "> Figure 8
<p>(<b>a</b>) Apparent friction coefficient when the sliding velocity reaches 3.7 mm/s (i.e., ultimate value in the test) for different unloading rates and different shear force. (<b>b</b>) Apparent friction coefficient versus unloading rate and shear force at sliding velocity of 3.7 mm/s. (<b>c</b>) The variation in friction coefficient versus normal unloading time for different shear force (the recorded data in Group B). The different colors represent different single tests.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
2.1. Apparatus and Sample Preparation
2.2. Experimental Scheme
- Stage I: Load the vertical force to 20 kN at a loading rate of 40 kN/min. Then, maintain this normal force for 30 s. After that, load the shear force to the predetermined value within 20 s by activating the horizontal piston.
- Stage II: Maintain the shear force and the normal force at their respective values for 60 s, where the stress state of the whole system remains unchanged.
- Stage III: Unload the normal force linearly at a predetermined rate. The gradient of the descent line in Figure 2b equals the unloading rate. When the normal force descends to a certain level, the shear box begins to slide.
3. Results and Analysis
3.1. Displacement and Velocity During Sliding Process
3.2. Shear Strength and Sliding Deceleration/Intermission
3.3. Effects on the Normal Force of Unloading
3.4. Variation in Apparent Friction Coefficient
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barton, N. A Review of the Shear Strength of Filled Discontinuities in Rock; Norwegian Geotechnical Institute Publication; Norwegian Geotechnical Institute: Oslo, Norway, 1974; p. 105. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Han, M.; Liu, L. Investigating the Shear Strength Characteristics of Slip Zone Soil Based on In-Situ Multiple Shear Tests. KSCE J. Civ. Eng. 2023, 27, 3793–3807. [Google Scholar] [CrossRef]
- Huang, X.; Qi, S.; Xia, K.; Shi, X. Particle crushing of a filled fracture during compression and its effect on stress wave propagation. J. Geophys. Res. Solid Earth 2018, 123, 5559–5587. [Google Scholar] [CrossRef]
- Song, K.; Wang, F.; Yi, Q.; Lu, S. Landslide deformation behavior influenced by water level fluctuations of the Three Gorges Reservoir (China). Eng. Geol. 2018, 247, 58–68. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, Z.; Duan, K. Unloading-induced instability of a simulated granular fault and implications for excavation-induced seismicity. Tunn. Undergr. Space Technol. 2017, 63, 154–161. [Google Scholar] [CrossRef]
- Brideau, M.A.; Sturzenegger, M.; Stead, D.; Jaboyedoff, M.; Lawrence, M.; Roberts, N.J.; Ward, B.C.; Millard, T.H.; Clague, J.J. Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data. Landslides 2012, 9, 75–91. [Google Scholar] [CrossRef]
- Xia, K.; Chen, C.; Yang, K.; Zhang, H.; Pang, H. A case study on the characteristics of footwall ground deformation and movement and their mechanisms. Nat. Hazards 2020, 104, 1039–1077. [Google Scholar] [CrossRef]
- Dang, W.; Konietzky, H.; Li, X. Frictional responses of concrete-to-concrete bedding planes under complex loading conditions. Geomech. Eng. 2019, 17, 253–259. [Google Scholar] [CrossRef]
- Tao, K.; Dang, W.; Liao, X.; Li, X. Experimental study on the slip evolution of planar fractures subjected to cyclic normal stress. Int. J. Coal Sci. Technol. 2023, 10, 67. [Google Scholar] [CrossRef]
- Kilgore, B.; Lozos, J.; Beeler, N.; Oglesby, D. Laboratory observations of fault strength in response to changes in normal stress. J. Appl. Mech.-Trans. ASME 2012, 17, 253–259. [Google Scholar] [CrossRef]
- Boettcher, M.S.; Marone, C. Effects of normal stress variation on the strength and stability of creeping faults. J. Geophys. Res. Solid Earth 2004, 109, B03406. [Google Scholar] [CrossRef]
- Perfettini, H.; Schmittbuhl, J. Periodic loading on a creeping fault: Implications for tides. Geophys. Res. Lett. 2001, 28, 435–438. [Google Scholar] [CrossRef]
- Lockner, D.A.; Beeler, N.M. Premonitory slip and tidal triggering of earthquakes. J. Geophys. Res. Solid Earth 1999, 104, 20133–20151. [Google Scholar] [CrossRef]
- Linker, M.F.; Dieterich, J.H. Effects of variable normal stress on rock friction: Observations and constitutive equations. J. Geophys. Res. Solid Earth 1992, 97, 4923–4940. [Google Scholar] [CrossRef]
- Tao, K.; Dang, W. Frictional behavior of quartz gouge during slide-hold-slide considering normal stress oscillation. Int. J. Coal Sci. Technol. 2023, 10, 34. [Google Scholar] [CrossRef]
- Tao, K.; Dang, W.; Li, Y. Frictional sliding of infilled planar granite fracture under oscillating normal stress. Int. J. Min. Sci. Technol. 2023, 33, 687–701. [Google Scholar] [CrossRef]
- Ikari, M.J.; Carpenter, B.M.; Marone, C. A microphysical interpretation of rate-and state-dependent friction for fault gouge. Geochem. Geophys. Geosyst. 2016, 17, 1660–1677. [Google Scholar] [CrossRef]
- Ikari, M.J.; Niemeijer, A.R.; Marone, C. The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure. J. Geophys. Res. Solid Earth 2011, 116, B08404. [Google Scholar] [CrossRef]
- Proctor, B.P.; Mitchell, T.M.; Hirth, G.; Goldsby, D.; Zorzi, F. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. J. Geophys. Res. Solid Earth 2014, 119, 8107–8131. [Google Scholar] [CrossRef]
- Carpenter, B.M.; Ikari, M.J.; Marone, C. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges. J. Geophys. Res. Solid Earth 2016, 121, 1183–1201. [Google Scholar] [CrossRef]
- Alwalan, M.; Almajed, A.; Lemboye, K.; Almuaim, A. A direct shear characteristics of enzymatically cemented sands. KSCE J. Civ. Eng. 2023, 27, 1512–1525. [Google Scholar] [CrossRef]
- Liu, S.; Mao, H.; Wang, Y.; Weng, L. Experimental study on crushable coarse granular materials during monotonic simple shear tests. Geomech. Eng. 2018, 15, 687–694. [Google Scholar] [CrossRef]
- Samanta, M.; Punetha, P.; Sharma, M. Effect of roughness on interface shear behavior of sand with steel and concrete surface. Geomech. Eng. 2018, 14, 387–398. [Google Scholar] [CrossRef]
- Wu, Y.; Hyodo, M.; Aramaki, N. Undrained cyclic shear characteristics and crushing behaviour of silica sand. Geomech. Eng. 2018, 14, 1–8. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, G.; Kamai, T.; McSaveney, M.J. Effect of particle size and shear speed on frictional instability in sheared granular materials during large shear displacement. Eng. Geol. 2016, 210, 93–102. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, J. A dynamic-induced direct-shear model for dynamic triggering of frictional slip on simulated granular gouges. Exp. Mech. 2014, 54, 605–613. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, M.; Jian, F.; Chai, H. Mechanical behaviors of a sandstone and mudstone under loading and unloading conditions. Environ. Earth Sci. 2019, 78, 30. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, W.; Zhao, Z. Unloading-induced rock fracture activation and maximum seismic moment prediction. Eng. Geol. 2019, 262, 105352. [Google Scholar] [CrossRef]
- Duan, K.; Ji, Y.; Wu, W.; Kwok, C.Y. Unloading-induced failure of brittle rock and implications for excavation-induced strain burst. Tunn. Undergr. Space Technol. 2019, 84, 495–506. [Google Scholar] [CrossRef]
- Zhu, T.; Huang, D. Experimental investigation of the shear mechanical behavior of sandstone under unloading normal stress. Int. J. Rock Mech. Min. Sci. 2019, 114, 186–194. [Google Scholar] [CrossRef]
- Yin, S.; Liu, P.; Yan, P.; Li, X. Analysis of undrained shear characteristics and structural damage of granite residual soil. KSCE J. Civ. Eng. 2023, 27, 3753–3764. [Google Scholar] [CrossRef]
- Sonnekus, M.C.H.; Smith, J.V. Comparing shear strength dispersion characteristics of the triaxial and direct shear methods for undisturbed dense sand. KSCE J. Civ. Eng. 2022, 26, 1560–1568. [Google Scholar] [CrossRef]
- Lu, Z.; Yao, A.; Su, A.; Ren, X.; Liu, Q.; Dong, S. Re-recognizing the impact of particle shape on physical and mechanical properties of sandy soils: A numerical study. Eng. Geol. 2019, 253, 36–46. [Google Scholar] [CrossRef]
- Li, Y.; Dang, J.; Zhang, S.; Shen, B.; Zheng, D.; Zhang, H.; Hou, J. Shear mechanical properties and surface damage characteristics of granite fractures treated by real-time high temperature. J. Cent. South Univ. 2023, 30, 2004–2017. [Google Scholar] [CrossRef]
d10 (mm) | d10 (mm) | d10 (mm) | Uniformity Coefficient (Cu) | Coefficient of Curvature (Cc) |
---|---|---|---|---|
0.11 | 0.22 | 0.84 | 7.64 | 0.524 |
Tests | No. | Unloading Rate (kN/s) | Shear Force (kN) | Initial Shear Force (kN) | Maximum Sliding Velocity (mm/s) |
---|---|---|---|---|---|
Group A | A1 | 0.08 | 10 | 20 | 3.7 |
A2 | 0.16 | 10 | 20 | ||
A3 | 0.32 | 10 | 20 | ||
A4 | 0.4 | 10 | 20 | ||
A5 | 0.48 | 10 | 20 | ||
A6 | 0.56 | 10 | 20 | ||
A7 | 0.72 | 10 | 20 | ||
A8 | 0.8 | 10 | 20 | ||
Group B | B1 | 0.24 | 8 | 20 | 3.7 |
B2 | 0.24 | 9 | 20 | ||
B3 | 0.24 | 11 | 20 | ||
B4 | 0.24 | 12 | 20 | ||
B5 | 0.24 | 14 | 20 |
Tests | No. | Start Time (s) | End Time (s) |
---|---|---|---|
Group A | A1 | 152.2 | 221.2 |
A2 | 137.4 | 194.6 | |
A3 | 127.5 | 160.3 | |
A4 | 125.6 | 151.8 | |
A5 | 125.1 | 147.4 | |
A6 | 125.1 | 143.3 | |
A7 | 123.1 | 139.0 | |
A8 | 123.3 | 139.6 | |
Group B | B1 | 134.0 | 191.1 |
B2 | 134.9 | 183.5 | |
B3 | 132.9 | 172.0 | |
B4 | 131.2 | 168.2 | |
B5 | 127.6 | 136.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, W.; Tao, K.; Fu, J.; Wu, B. Experimental Investigation on Unloading-Induced Sliding Behavior of Dry Sands Subjected to Constant Shear Force. Appl. Sci. 2025, 15, 401. https://doi.org/10.3390/app15010401
Dang W, Tao K, Fu J, Wu B. Experimental Investigation on Unloading-Induced Sliding Behavior of Dry Sands Subjected to Constant Shear Force. Applied Sciences. 2025; 15(1):401. https://doi.org/10.3390/app15010401
Chicago/Turabian StyleDang, Wengang, Kang Tao, Jinyang Fu, and Bangbiao Wu. 2025. "Experimental Investigation on Unloading-Induced Sliding Behavior of Dry Sands Subjected to Constant Shear Force" Applied Sciences 15, no. 1: 401. https://doi.org/10.3390/app15010401
APA StyleDang, W., Tao, K., Fu, J., & Wu, B. (2025). Experimental Investigation on Unloading-Induced Sliding Behavior of Dry Sands Subjected to Constant Shear Force. Applied Sciences, 15(1), 401. https://doi.org/10.3390/app15010401