Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks
<p>Proposed methodology based on Kendall’s Life Cycle Management [<a href="#B22-applsci-15-00306" class="html-bibr">22</a>].</p> "> Figure 2
<p>Ishikawa diagram for methotrexate toxicity manifestation in ALL patients.</p> "> Figure 3
<p>Normalized clinical data objectives.</p> "> Figure 4
<p>Patient data.</p> "> Figure 5
<p>Backpropagation neural network design.</p> "> Figure 6
<p>Intelligent diagnosis in pediatric patients with acute lymphoblastic leukemia to predict intoxication by methotrexate.</p> "> Figure 7
<p>Mean square error.</p> "> Figure 8
<p>Gradient learning curves and neural network validation.</p> "> Figure 9
<p>Linear regression graphic.</p> "> Figure 10
<p>The graph depicts the results generated by the neural network in the processing of the pediatric patient data sheet.</p> "> Figure 11
<p>AUC curve.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Problem Identification
2.2. Determine Necessary Requirements
2.3. Needs Analysis
- = is the normalized value.
- x = is the original data value
- = is the minimum value in the dataset
- = is the maximum value in the dataset.
2.4. System Design
2.5. Development and Documentation
3. Results
3.1. Graphical Interface for Data Registration
3.2. Neuronal Methotrexate Validation Network
- t=xlsread(‘baseDatosRnafinal.xlsx’, ‘Hoja8’, ‘A3:BG1’);
- msgbox(“Data have been loaded correctly”);
- net=newff(minmax(p),[25,15,10,1], ‘logsig’, ‘tansig’, ‘tansig’, ‘purelin’, ‘trainlm’);
- net.trainparam.show = 10;
- net.trainparam.lr = 0.05;
- net.trainparam.epochs = 50;
- net.trainparam.goal = 1 ;
- net=train(net, p, t);
- net=init(net);
- net, tr=train(net, p, t);
- a=sim(net, p);
3.3. Performance Evaluation: TP, TN, FP, and FN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALL | Acute Lymphoblastic Leukemia |
MTX | Methotrexate |
HD-MTX | High-Dose Methotrexate |
C677T | Polymorphism |
A129C | Polymorphism |
MTHFR | Methylenetetrahydrofolate Reductase |
MTXPG | Methotrexate Polyglutamate |
SLCO1B1, SLC19A1, SLC22A8 and MTHFD1 | Genes were shown to be associated with the |
development of acute toxicity after | |
HD-MTX treatment | |
MTHFR C677T | Common changes in MTHFR |
MTHFR, ABCB1, ABCC2, and TYMS | Variants in four genes (MTHFR, ABCB1, ABCC2, and |
TYMS) were shown to be associated with toxicity; | |
they also found a statistically significant association | |
between MTHFR rs1801133 and anemia | |
in the consolidation phase | |
MTHFR rs1801133 | Frequency of the c677t polymorphism |
SLCO1B1 rs4149056 | Polymorphism |
C_24h, AUC_48h | MTX pharmacokinetic parameters |
RFC1 | Reduce Folate Carrier |
MTRR | Methionine Synthase Reductase |
DFR | Enzyme Di-Hydrofolate Reductase |
ANN | Artificial Neural Network |
Matlab GUIDE | Matlab Graphical User Interface |
GUIDE | Graphical User Interface |
WHO | World Health Organization (WHO) |
GUI | Graphical User Interface |
References
- Jaime-Fagundo, J.C.; Forrellat-Barrios, M.; Arencibia-Núñez, A. Urgencias hematológicas. III. Toxicidad por metotrexato. Rev. Cuba. Hematol. Inmunol. Hemoter. 2012, 28, 246–252. [Google Scholar]
- Pérez, L.; Shirley, R. Identificación de Alteraciones Biocelulares en la Mucosa Oral en Pacientes con Leucemia Linfoblástica Aguda Post Tratamiento Poliquimioterápico en el Instituto de Oncohematologia Paolo Belli Mediante Estudios Citológicos. Ph.D. Thesis, Universidad Mayor de San Andrés, Ciudad de La Paz, Estado Plurinacional de Bolivia, 2016. [Google Scholar]
- Mandal, P.; Samaddar, S.; Chandra, J.; Parakh, N.; Goel, M. Adverse effects with intravenous methotrexate in children with acute lymphoblastic leukemia/lymphoma: A retrospective study. Indian J. Hematol. Blood Transfus. 2020, 36, 498–504. [Google Scholar] [CrossRef]
- Di Francia, R.; Crisci, S.; De Monaco, A.; Cafiero, C.; Re, A.; Iaccarino, G.; De Filippi, R.; Frigeri, F.; Corazzelli, G.; Micera, A.; et al. Response and Toxicity to Cytarabine Therapy in Leukemia and Lymphoma: From Dose Puzzle to Pharmacogenomic Biomarkers. Cancers 2021, 13, 966. [Google Scholar] [CrossRef]
- Karpa, V.; Kalinderi, K.; Fidani, L.; Tragiannidis, A. Association of microRNA Polymorphisms with Toxicities Induced by Methotrexate in Children with Acute Lymphoblastic Leukemia. Hematol. Rep. 2023, 15, 634–650. [Google Scholar] [CrossRef] [PubMed]
- Vora, A. Childhood leukaemia: An update. Paediatr. Child Health 2016, 26, 51–56. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, O.; Zeng, Q.; Lu, X.; Wang, W.; Li, Y.; Wang, Q. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp. Hematol. Oncol. 2020, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Zazuli, Z.; Irham, L.M.; Adikusuma, W.; Sari, N.M. Identification of Potential Treatments for Acute Lymphoblastic Leukemia through Integrated Genomic Network Analysis. Pharmaceuticals 2022, 15, 1562. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Henz, P.; Pinhatti, A.V.; Gregianin, L.J.; Martins, M.; Curra, M.; de Araújo, B.V.; Dalla Costa, T. Population Pharmacokinetic Model of Methotrexate in Brazilian Pediatric Patients with Acute Lymphoblastic Leukemia. Pharm. Res. 2023, 40, 1777–1787. [Google Scholar] [CrossRef] [PubMed]
- Csordas, K.; Lautner-Csorba, O.; Semsei, A.F.; Harnos, A.; Hegyi, M.; Erdelyi, D.J.; Eipel, O.T.; Szalai, C.; Kovacs, G.T. Associations of novel genetic variations in the folate-related and ARID5B genes with the pharmacokinetics and toxicity of high-dose methotrexate in paediatric acute lymphoblastic leukaemia. Br. J. Haematol. 2017, 166, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Nie, J.; Xu, X.J.; Zhang, J.Y.; Xu, W.Q.; Song, H.; Tang, Y.M. The effect of the plasma methotrexate concentration during high-dose methotrexate therapy in childhood acute lymphoblastic leukemia. Leuk. Lymphoma 2024, 65, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wu, S.; Wang, Y.; Zhao, Y.; Wang, X.; Wei, C.; Liu, X.; Hao, F.; Hu, C. Association between high-dose methotrexate-induced toxicity and polymorphisms within methotrexate pathway genes in acute lymphoblastic leukemia. Front. Pharmacol. 2022, 13, 1003812. [Google Scholar] [CrossRef]
- Zhan, M.; Sun, Y.; Zhou, F.; Wang, H.; Chen, Z.; Yan, L.; Li, X. Population pharmacokinetics of methotrexate in paediatric patients with acute lymphoblastic leukaemia and malignant lymphoma. Xenobiotica 2022, 52, 265–273. [Google Scholar] [CrossRef]
- Zhou, Y.; He, H.; Ding, L.; Wang, T.; Liu, X.; Zhang, M.; Fu, J. Effects of gene polymorphisms on delayed MTX clearance, toxicity, and metabolomic changes after HD-MTX treatment in children with acute lymphoblastic leukemia. Eur. J. Pediatr. 2024, 183, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, R.; Kaur, H.; Scott, J.X.; Sneha, L.M.; Arunkumar, G.; Srinivasan, A.; Paul, S.F. Evaluation of cytogenetic and molecular markers with MTX-mediated toxicity in pediatric acute lymphoblastic leukemia patients. Cancer Chemother. Pharmacol. 2022, 89, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Al-Sheikh, A.; Yousef, A.M.; Alshamaseen, D.; Farhad, R. Effects of thymidylate synthase polymorphisms on toxicities associated with high-dose methotrexate in childhood acute lymphoblastic leukemia. Cancer Chemother. Pharmacol. 2021, 87, 379–385. [Google Scholar] [CrossRef]
- Zgheib, N.K.; Akra-Ismail, M.; Aridi, C.; Mahfouz, R.; Abboud, M.R.; Solh, H.; Muwakkit, S.A. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet. Genom. 2014, 24, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Radtke, S.; Zolk, O.; Renner, B.; Paulides, M.; Zimmermann, M.; Möricke, A.; Stanulla, M.; Schrappe, M.; Langer, T. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 2013, 121, 5145–5153. [Google Scholar] [CrossRef] [PubMed]
- Niedzielska, E.; Węcławek-Tompol, J.; Matkowska-Kocjan, A.; Chybicka, A. The influence of genetic RFC1, MS and MTHFR polymorphisms on the risk of acute lymphoblastic leukemia relapse in children and the adverse effects of methotrexate. Adv. Clin. Exp. Med. 2013, 22, 579–584. [Google Scholar]
- Mohar, A.; Frías-Mendivil, M.; Suchil-Bernal, L.; Mora-Macías, T.; Garza, J.G. Descriptive epidemiology of cancer at the Instituto Nacional de Cancerología of Mexico. Salud Publica Mex. 1997, 39, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Martínez, B.; Sánchez, C.; Torres, L.; Sánchez, V. Relevancia de la morfología a través del tiempo en el diagnóstico de la leucemia linfoide aguda. Rev. Colomb. Cancerol. 2006, 10, 291–294. [Google Scholar]
- Espinoza Yovera, M. Implementación de un Sistema Informático para Mejorar la Gestión de Operaciones en la Empresa GRN MAQUINARIAS SAC en el año 2021. 2022. Available online: https://repositorio.upci.edu.pe/handle/upci/548 (accessed on 21 December 2024).
- Faganel Kotnik, B.; Grabnar, I.; Bohanec Grabar, P.; Dolžan, V.; Jazbec, J. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur. J. Clin. Pharmacol. 2011, 67, 993–1006. [Google Scholar] [CrossRef] [PubMed]
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
File | 21,864 | 22,097 | 22,443 | 18,940 | 18,941 | 20,544 | 20,508 | 21,302 | 20,455 | 21,057 |
Entry Date | 15/08/2014 | 23/09/2014 | 03/11/2014 | 11/07/2013 | 20/06/2013 | 17/02/2014 | 17/02/2014 | 04/06/2014 | 11/02/2014 | 18/05/2014 |
Exit Date | 28/08/2014 | 29/10/2014 | 06/11/2014 | 11/08/2013 | 29/06/2013 | 20/03/2014 | 18/03/2014 | 09/07/2014 | 24/03/2014 | 01/06/2014 |
Date of Birth | 24/01/2010 | 26/02/2009 | 04/11/2009 | 30/12/2011 | 05/10/2011 | 14/09/2011 | 21/12/2011 | 1/08/2011 | 27/06/2010 | 27/01/2010 |
Today/Date | 02/09/2017 | 02/09/2017 | 02/09/2017 | 02/09/2017 | 02/09/2017 | 02/09/2017 | 02/09/2017 | 02/09/2017 | 02/09/2017 | 02/09/2017 |
Age | 7 | 8 | 7 | 5 | 5 | 5 | 5 | 6 | 7 | 7 |
Gender | M | F | F | F | M | M | M | M | F | M |
Last Name | FR | RL | GL | GL | AL | PG | SP | SG | AL | PM |
Names | AG | SD | D | E | JH | NR | IL | S | SS | AE |
Child Number | 1 | 4 | 1 | 1 | 6 | 2 | 1 | 1 | 5 | 2 |
Municipality | T | M | O | B | M | C | C | O | C | T |
Father’s Occupation | Driver | Farmer | Farmer | Farmer | Farmer | Employee | security guard | Employee | Mechanic | Merchant |
Mother’s Occupation | Housewife | Deceased | Housewife | Housewife | Farmer | Housewife | Housewife | Housewife | Merchant | Merchant |
Total Number of Children | 7 | 2 | 1 | 5 | 2 | 2 | 1 | 5 | 2 | 2 |
Subjective Clinical Data | |||||||
---|---|---|---|---|---|---|---|
Age of the Father | Age of the Mother | Fever | Bleeding | Cephalea or Paleness or Anemic Cor | Abdominal Pain and Hypereosinophilia | Bone Pain or Increase in Volume | Weight (kg) |
31 | 31 | Yes | Yes | Yes | No | No | 14 |
24 | 19 | Yes | No | Yes | No | No | 17.5 |
55 | 46 | Yes | Yes | Yes | No | No | 18 |
31 | 31 | Yes | Yes | Yes | No | No | 9.5 |
30 | 22 | Yes | No | No | No | Yes | 9.5 |
27 | 23 | Yes | No | Yes | No | No | 11 |
20 | 20 | Yes | No | No | No | Yes | 11.5 |
43 | 36 | Yes | Yes | Yes | No | Yes | 10.6 |
34 | 28% | Yes | No | Yes | No | No | 9 |
43 | 40 | Yes | No | Yes | No | No | 16 |
Clinical Data That determine Symptoms of Acuate Lymphoblastic Leukemia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Waterlow Index (weigth) | 74% | 102% | 107% | 90% | 90% | 87% | 100% | 100% | 98% | 97% |
Weight Percentile (WHO) | 1.65 (−) DE | 0.73 (−) DE | 0.08 (−) DE | 0.70 (−) DE | 1.57 (−) DE | 1.57 (−) DE | 0.77 (−) DE | 2.15 (−) DE | 3.26 (−) DE | 0.47 (−) DE |
Size (cm) | 111.4 | 115 | 95 | 79 | 80 | 90 | 85 | 79.7 | 75 | 104 |
Waterlow Index (size) | 104% | 102% | 95% | 98% | 94% | 99% | 96% | 85% | 75% | 98% |
Percentile (size) WHO | 0.96 (+) DE | 0.46 (+) DE | 0.94 (−) DE | 0.72 (−) DE | 1.70 (−) DE | 0.46 (−) DE | 1.19 (−) DE | 4.0 (−) DE | 6.1 (−) DE | 0.33 (−) DE |
Sup. Corp. (F. simplified) | 0.61 | 0.72 | 0.72 | 0.45 | 0.45 | 0.5 | 0.52 | 0.49 | 0.43 | 0.67 |
Sup. Corp Haycock | 0.65 | 0.74 | 0.73 | 0.46 | 0.46 | 0.52 | 0.53 | 0.49 | 0.44 | 0.68 |
IMC | 11.28 | 12.85 | 16.33 | 15.2 | 14.8 | 13.5 | 15.9 | 16.66 | 16 | 14.7 |
IMC [22] | P 1 | P 10 | P 70 | P 13 | P 7 | P 5 | P 35 | P 66 | P 51 | P 28 |
Nutritional Index (Shukla) | 77% | 89% | 103% | 87% | 88% | 85% | 96% | 91% | 79% | 96% |
Weigh–length–size relationship (WHO 06-07) | 3.1 (−) DE | 1.68 (−) DE | 0.75 (−) DE | 0.5 (−) DE | 1.13 (−) DE | 1.9 (−) DE | 0.22 (−) DE | 0.07 (−) DE | 0.38 (−) DE | 0.38 (−) DE |
Nutritional Assessment | Moderate Malnutrition | Mild Malnutrition | Eutrophic | Mild Malnutrition | Mild Malnutrition | Moderate Malnutrition | Eutrophic | Eutrophic | Moderate Malnutrition | Eutrophic |
Max. Temp. First 24 h | 36.7 | 37.9 | 37.1 | 36.6 | 38.5 | 38.5 | 38.5 | 38 | 37.5 | 38 |
Adenomegaly | No | No | Inguinal | Inguinal | Inguinal, Axillary | Cervicals, Inguinal | Cervicals | Retroauricular; Cervicals | Retroauricular; Cervicals | Cervicals |
Hepatomegaly | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Splenomegaly | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes |
Hemorrhagic Manifestations | Gingivorrhagia | Gingivorrhagia | Epistaxis | Wet, Purple | No | No | No | Petechia | No | No |
Infection at Admission | Si | Si | No | No | Si | Si | Si | No | No | No |
Patient Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Waterlow Index (weight) | 0.22222222 | 0.00306306 | 0.32132132 | 0.27027027 | 0.27027027 | 0.26126126 | 0.3003003 | 0.3003003 |
Weight Percentile (WHO) | −0.125 | −0.05530303 | −0.00606061 | −0.0530303 | −0.11893939 | −0.11893939 | −0.05833333 | −0.16287879 |
Size (cm) | 0.68765432 | 0.70987654 | 0.64814815 | 0.48765432 | 0.49382716 | 0.55555556 | 0.52469136 | 0.49197531 |
Waterlow Index (size) | 0.80620155 | 0.79069767 | 0.73643411 | 0.75968992 | 0.72868217 | 0.76744186 | 0.74418605 | 0.65891473 |
Percentile (size) WHO | 0.11566265 | 0.05542169 | −0.11325301 | −0.08674699 | −0.20481928 | −0.05542169 | −0.14337349 | −0.48192771 |
Sup.Corp (F.simplicada) | 0.37888199 | 0.44720497 | 0.44720497 | 0.27950311 | 0.27950311 | 0.31055901 | 0.32298137 | 0.30434783 |
Sup.Corp Haycock | 0.41139241 | 0.46835443 | 0.46202532 | 0.29113924 | 0.29113924 | 0.32911392 | 0.33544304 | 0.31012658 |
IMC | 0.18989899 | 0.21632997 | 0.27491582 | 0.25589226 | 0.24915825 | 0.22727273 | 0.26767677 | 0.27946128 |
IMC [23] | 0.01010101 | 0.1010101 | 0.70707071 | 0.13131313 | 0.07070707 | 0.05050505 | 0.35353535 | 0.66666667 |
Nutritional Index (Shukla) | 0.39487179 | 0.45641026 | 0.52820513 | 0.44615385 | 0.45128205 | 0.43589744 | 0.49230769 | 0.46666667 |
Weight–length–size relationship (WHO 06-07) | −0.37214886 | −0.20168067 | 0.09003601 | −0.06002401 | −0.13565426 | −0.22809124 | −0.02641056 | 0.00840336 |
Nutritional Assessment | 1 | 1 | 1 | 1 | 1 | 0.5 | 1 | 1 |
Max. Temp. First 24 h | 0.9175 | 0.9475 | 0.9275 | 0.915 | 0.9625 | 0.9625 | 0.9625 | 0.95 |
Adenomegaly | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Hepatomegaly | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Splenomegaly | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
Hemorrhagic Manifestations | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
Infection at Admission | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago, A.M.; Rodríguez, J.I.B.; Torres, J.A.O.; Rabasa, J.A.G.; Izaguirre, J.M.V.; Alejandro, G.F. Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks. Appl. Sci. 2025, 15, 306. https://doi.org/10.3390/app15010306
Santiago AM, Rodríguez JIB, Torres JAO, Rabasa JAG, Izaguirre JMV, Alejandro GF. Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks. Applied Sciences. 2025; 15(1):306. https://doi.org/10.3390/app15010306
Chicago/Turabian StyleSantiago, Alejandro Medina, Jorge Iván Bermúdez Rodríguez, Jorge Antonio Orozco Torres, Julio Alberto Guzmán Rabasa, José Manuel Villegas Izaguirre, and Gladys Falconi Alejandro. 2025. "Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks" Applied Sciences 15, no. 1: 306. https://doi.org/10.3390/app15010306
APA StyleSantiago, A. M., Rodríguez, J. I. B., Torres, J. A. O., Rabasa, J. A. G., Izaguirre, J. M. V., & Alejandro, G. F. (2025). Detecting Methotrexate in Pediatric Patients Using Artificial Neural Networks. Applied Sciences, 15(1), 306. https://doi.org/10.3390/app15010306