Calibration and Validation of MODIS-Derived Ground-Level Air Temperature Models by Means of Ground Measurements
<p>Location of the Study Area in the province of Pavia and the Lombardy Region (<b>a</b>), with a focus on the Digital Terrain Model (DTM) to highlight altitude variations across the Oltrepò Pavese (<b>b</b>).</p> "> Figure 2
<p>ARPA Weather Stations distribution in the Lombardy Region.</p> "> Figure 3
<p>ARPA weather stations within the study area and its vicinity, along with the corresponding sensor IDs.</p> "> Figure 4
<p>Series of the average hourly air temperature measured by the Fortunago Monitoring Station—ID 8007.</p> "> Figure 5
<p>MODIS data in the study area: raster with 1 km<sup>2</sup> tiles depicting the daily average daytime temperature, captured by the Aqua satellite on 30 March 2018.</p> "> Figure 6
<p>MODIS data in the study area: raster with 1 km<sup>2</sup> tiles depicting the 8-day average daytime temperature, captured by the Aqua satellite from 30 March to 6 April 2018.</p> "> Figure 7
<p>Workflow diagram illustrating the sequential process for the analysis of MODIS Land Surface Temperature (LST) and ARPA Monitoring Stations’ air temperature (Tair) data, to estimate Tair from satellite data.</p> "> Figure 8
<p>Excerpt of the stacked structure of the MODIS raster images, the <span class="html-italic">white</span> pixels represent an example of missing values (NaN).</p> "> Figure 9
<p>Example of horizontal fill for missing values. In order to retrieve the value of the selected no-value pixel, we performed an interpolation by computing the mean of the pixels within a 5 × 5 window centered on the red pixel.</p> "> Figure 10
<p>Example of vertical fill for missing values: after performing the horizontal fill, the selected pixel still has no value. To retrieve its value, we perform an interpolation considering the column of 3 layers of pixels aligned with the red one and computing the mean.</p> "> Figure 11
<p>Comparison between daytime and nighttime temperatures detected from MODIS Aqua and Terra satellites, interpolated at the Fortunago ARPA Monitoring Station coordinates (ID 8007).</p> "> Figure 12
<p>Time-series of the 8-day average air temperature of the ARPA Monitoring Station in Fortunago, and of the LST detected by the MODIS sensors, interpolated at the location coordinates.</p> "> Figure 13
<p>Comparison between MODIS-derived (dotted line) and ARPA-measured (continuous line) Tair at the coordinates of Fortunago Monitoring Station (ID 8007), while the gray line depicts their difference (ΔT).</p> "> Figure 14
<p>Data images related to the 8-day data 20/07/2022–28/07/2022. (<b>a</b>) From the combination of the four 8-day MODIS LST images (Aqua day, Aqua night, Terra day and Terra night) with their respective coefficients—deduced from the linear regression—we obtained (<b>b</b>) the estimated air temperature.</p> "> Figure A1
<p>Comparison between daytime and nighttime temperatures detected from MODIS Aqua and Terra satellites, interpolated to the Varzi Nivione ARPA Monitoring Station coordinates (ID 2082).</p> "> Figure A2
<p>Comparison between daytime and nighttime temperatures detected from MODIS Aqua and Terra satellites, interpolated to the Varzi v. Mazzini ARPA Monitoring Station coordinates (ID 8002).</p> "> Figure A3
<p>Comparison between daytime and nighttime temperatures detected from MODIS Aqua and Terra satellites, interpolated to the Voghera v. Cambiaso ARPA Monitoring Station coordinates (ID 8191).</p> "> Figure A4
<p>Comparison between daytime and nighttime temperatures detected from MODIS Aqua and Terra satellites, interpolated to the Santa Margherita di Staffora Casanova ARPA Monitoring Station coordinates (ID 8202).</p> "> Figure A5
<p>Comparison between daytime and nighttime temperatures detected from MODIS Aqua and Terra satellites, interpolated to the Canevino ARPA Monitoring Station coordinates (ID 9019).</p> "> Figure A6
<p>Comparison between daytime and nighttime temperatures detected from MODIS Aqua and Terra satellites, interpolated to the Broni ARPA Monitoring Station coordinates (ID 17432).</p> "> Figure A7
<p>Time-series of the 8-day average air temperature of the ARPA Monitoring Station in Varzi Nivione, and of the LST detected by the MODIS sensors, interpolated at the location coordinates.</p> "> Figure A8
<p>Time-series of the 8-day average air temperature of the ARPA Monitoring Station in Varzi v. Mazzini, and of the LST detected by the MODIS sensors, interpolated at the location coordinates.</p> "> Figure A9
<p>Time-series of the 8-day average air temperature of the ARPA Monitoring Station in Voghera v. Cambiaso, and of the LST detected by the MODIS sensors, interpolated at the location coordinates.</p> "> Figure A10
<p>Time-series of the 8-day average air temperature of the ARPA Monitoring Station in Santa Margherita di Staffora Casanova, and of the LST detected by the MODIS sensors, interpolated at the location coordinates.</p> "> Figure A11
<p>Time-series of the 8-day average air temperature of the ARPA Monitoring Station in Canevino, and of the LST detected by the MODIS sensors, interpolated at the location coordinates.</p> "> Figure A12
<p>Time-series of the 8-day average air temperature of the ARPA Monitoring Station in Broni, and of the LST detected by the MODIS sensors, interpolated at the location coordinates.</p> "> Figure A13
<p>Comparison between MODIS-derived (dotted line) and ARPA-measured (continuous line) Tair at the coordinates of Varzi Nivione Monitoring Station (ID 2082), while the gray line depicts their difference (ΔT).</p> "> Figure A14
<p>Comparison between MODIS-derived (dotted line) and ARPA-measured (continuous line) Tair at the coordinates of Varzi via Mazzini Monitoring Station (ID 8002), while the gray line depicts their difference (ΔT).</p> "> Figure A15
<p>Comparison between MODIS-derived (dotted line) and ARPA-measured (continuous line) Tair at the coordinates of Voghera via Cambiaso Monitoring Station (ID 8191), while the gray line depicts their difference (ΔT).</p> "> Figure A16
<p>Comparison between MODIS-derived (dotted line) and ARPA-measured (continuous line) Tair at the coordinates of Santa Margherita di Staffora Casanova Monitoring Station (ID 8202), while the gray line depicts their difference (ΔT).</p> "> Figure A17
<p>Comparison between MODIS-derived (dotted line) and ARPA-measured (continuous line) Tair at the coordinates of Canevino Monitoring Station (ID 9019), while the gray line depicts their difference (ΔT).</p> "> Figure A18
<p>Comparison between MODIS-derived (dotted line) and ARPA-measured (continuous line) Tair at the coordinates of Broni Monitoring Station (ID 17432), while the gray line depicts their difference (ΔT).</p> ">
Abstract
:1. Introduction
1.1. NODES Project
- VINO (VIneyard management for viNeprOduction);
- FORMIDABILÆ (Forage system to make resilient Maize, Dairy, and Biogas supply chains for a Lasting Agricultural Ecosystem).
1.2. Flagship Project VINO
1.3. Suitability Map
- Land morphology, including elevation, slope, and aspect;
- Soil characteristics and pedology;
- Land-use models;
- Historical and forecast climate data.
1.4. Bioclimatic Indices
Winkler Index
2. Materials
2.1. Study Area
2.2. ARPA Monitoring Stations
2.3. MODIS Land Surface Temperature Data
3. Methods
- Day Temperature;
- Night Temperature;
- Time day (time of acquisition of the day temperature);
- Time night (time of acquisition of the night temperature).
- Task 1—Harmonization of downloaded data;
- Task 2—Data stack of raster images;
- Task 3—Fill-missing of the voids in the raster images;
- Task 4—Interpolation of MODIS LST data at the geographic coordinates of ARPA Monitoring Stations;
- Task 5—Creation of a table containing MODIS LST data and ARPA Monitoring Stations Tair data averaged over 8-days;
- Task 6—Comparison of MODIS LST and Monitoring Stations Tair data;
- Task 7—Linear regression for the estimation of Tair from MODIS satellite data.
3.1. Task 1—Harmonization of Downloaded Data
3.2. Task 2—Data Stack of Raster Images
3.3. Task 3—Fill-Missing of the Voids in the Raster Images
3.4. Task 4—Interpolation of MODIS LST Data at the Geographic Coordinates of ARPA Monitoring Stations
3.5. Task 5—Creation of a Table Containing MODIS LST Data and ARPA Monitoring Stations Tair Data Averaged over 8-Days
3.6. Task 6—Comparison of MODIS LST and Monitoring Stations Tair Data
3.7. Task 7—Linear Regression for the Estimation of Tair from MODIS Satellite Data
4. Results
- = LST day temperature from MODIS—Aqua,
- = LST night temperature from MODIS—Aqua,
- = LST day temperature from MODIS—Terra,
- = LST night temperature from MODIS—Terra.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mihăilă, D.; Bistricean, P.-I.; Sfîcă, L.; Horodnic, V.-D.; Prisăcariu, A.; Amihăesei, V.-A. Summer Discrepancies between 2 m Air Temperature and Landsat LST in Suceava City, Northeastern Romania. Remote. Sens. 2024, 16, 2967. [Google Scholar] [CrossRef]
- ARPA Lombardia Agenzia Regionale per La Protezione Dell’Ambiente. Available online: https://www.arpalombardia.it (accessed on 14 November 2024).
- Magarreiro, C.; Gouveia, C.M.; Barroso, C.M.; Trigo, I.F. Modelling of Wine Production Using Land Surface Temperature and FAPAR—The Case of the Douro Wine Region. Remote. Sens. 2019, 11, 604. [Google Scholar] [CrossRef]
- HUB NODES, S.c.a.r.l. NODES—Nord Ovest Digitale e Sostenibile. Available online: https://www.ecs-nodes.eu/ (accessed on 14 November 2024).
- Mihailescu, E.; Soares, M.B. The Influence of Climate on Agricultural Decisions for Three European Crops: A Systematic Review. Front. Sustain. Food Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Pastore, V.; Arous, A.; Palese, A.M.; Persiani, A.; Celano, G. Tecnologie avanzate in viticoltura e enologia per un vino innovativo ottenuto dal vitigno Aglianicone. In Carta Di Attitudine Della Produzione Viticola Nell’Area Cilento, Alburni e Vallo Di Diano; Celano, G., Palese, A.M., Piccolo, A., Eds.; Chapter VII; ATS De Conciliis: Potenza, Italy, 2015; pp. 107–112. [Google Scholar]
- Cristóbal, J.; Ninyerola, M.; Pons, X. Modeling air temperature through a combination of remote sensing and GIS data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Passarella, G.; Bruno, D.; Lay-Ekuakille, A.; Maggi, S.; Masciale, R.; Zaccaria, D. Spatial and temporal classification of coastal regions using bioclimatic indices in a Mediterranean environment. Sci. Total. Environ. 2020, 700, 134415. [Google Scholar] [CrossRef]
- Massano, L.; Fosser, G.; Gaetani, M.; Bois, B. Assessment of climate impact on grape productivity: A new application for bioclimatic indices in Italy. Sci. Total. Environ. 2023, 905, 167134. [Google Scholar] [CrossRef]
- Alba, V.; Gentilesco, G.; Tarricone, L. Climate change in a typical Apulian region for table grape production: Spatialisation of bioclimatic indices, classification and Future Scenarios. OENO One 2021, 55, 317–336. [Google Scholar] [CrossRef]
- Comte, V.; Schneider, L.; Calanca, P.; Rebetez, M. Effects of climate change on bioclimatic indices in vineyards along Lake Neuchatel, Switzerland. Theor. Appl. Clim. 2022, 147, 423–436. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.; Andrade, J.; Feliciano, M.; et al. Climate change impact on a wine-producing region using a dynamical downscaling approach: Climate parameters, bioclimatic indices and extreme indices. Int. J. Clim. 2019, 39, 5741–5760. [Google Scholar] [CrossRef]
- Ferroni, F. Grape Ripening Indices for Smart Vineyard Management. Available online: https://www.agricolus.com/en/grape-ripening-indices-for-smart-vineyard-management/ (accessed on 5 July 2024).
- del Río, M.S.; Raventós, L.; Garza, V. Zoning of the Querétaro Wine Region. In Proceedings of the BIO Web of Conferences, Cádiz/Jerez, Spain, 5–9 June 2023; EDP Sciences: Les Ulis, France, 2023; Volume 68. [Google Scholar]
- Shabam, P.L. The Limitations of the Winkler Index. Available online: https://winebusinessanalytics.com/sections/printout_article.cfm?article=feature&content=208245 (accessed on 12 July 2024).
- Guzzon, F.; Ardenghi, N.M.G.; Bodino, S.; Tazzari, E.R.; Rossi, G. Guida All’Agrobiodiversità Vegetale Della Provincia Di Pavia; Pavia University Press: Pavia, Italy, 2019. [Google Scholar]
- Regione Lombardia—Open Data Mappa Stazioni Meteorologiche Lombardia. Available online: https://www.dati.lombardia.it/Ambiente/Mappa-Stazioni-Meteorologiche/8ux9-ue3c (accessed on 12 July 2024).
- ARPA Form Richiesta Dati. Available online: https://www.arpalombardia.it/temi-ambientali/meteo-e-clima/form-richiesta-dati/ (accessed on 12 July 2024).
- Diego Díaz, M.; Luis Morales, S.; Giorgio Castellaro, G.; Fernando Neira, R. Topoclimatic Modeling of Thermopluviometric Variables for the Bío Bío and La Araucanía Regions, Chile. Chil. J. Agric. Res. 2010, 70, 604–615. [Google Scholar] [CrossRef]
- Morales-Salinas, L.; Castellaro, G.; Frederiksen, N.; Oosrio, L.F.R.; Roman, J.N.; Jaque, G.F.; Avaria, C.E.; Morales, F. Spatial characterization of climatic variables for Arica-Parinacota and Tarapacá, Chile using topoclimatic analysis. Cuad. Investig. Geogr. 2023, 49, 39–53. [Google Scholar] [CrossRef]
- Njoku, E.A.; Akpan, P.E.; Effiong, A.E.; Babatunde, I.O. The effects of station density in geostatistical prediction of air temperatures in Sweden: A comparison of two interpolation techniques. Resour. Environ. Sustain. 2023, 11, 100092. [Google Scholar] [CrossRef]
- Hofstra, N.; New, M.; McSweeney, C. The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim. Dyn. 2010, 35, 841–858. [Google Scholar] [CrossRef]
- Naserikia, M.; Hart, M.A.; Nazarian, N.; Bechtel, B.; Lipson, M.; Nice, K.A. Land surface and air temperature dynamics: The role of urban form and seasonality. Sci. Total. Environ. 2023, 905, 167306. [Google Scholar] [CrossRef]
- NASA Official MODIS—MODerate Resolution Imaging Spectroradiometer. Available online: https://modis.gsfc.nasa.gov/about/ (accessed on 17 July 2024).
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061 [Data Set]. Available online: https://lpdaac.usgs.gov/products/mod11a2v061/ (accessed on 19 April 2024).
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061 [Data Set]. Available online: https://lpdaac.usgs.gov/products/myd11a2v061/.
- Galdón-Ruíz, A.; Fuentes-Jaque, G.; Soto, J.; Morales-Salinas, L. A simple method for the estimation of minimum and maximum air temperature monthly mean maps using MODIS images in the region of Murcia, Spain. Rev. Teledeteccion 2023, 2023, 59–71. [Google Scholar] [CrossRef]
- Hereher, M.E.; El Kenawy, A. Extrapolation of daily air temperatures of Egypt from MODIS LST data. Geocarto Int. 2022, 37, 214–230. [Google Scholar] [CrossRef]
- Benali, A.; Carvalho, A.; Nunes, J.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote. Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote. Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Guo, Y.; Unger, J.; Khabibolla, A.; Tian, G.; He, R.; Li, H.; Gál, T. Modeling urban air temperature using satellite-derived surface temperature, meteorological data, and local climate zone pattern—A case study in Szeged, Hungary. Theor. Appl. Clim. 2024, 155, 3841–3859. [Google Scholar] [CrossRef]
- Qin, Y.; Ren, G.; Huang, Y.; Zhang, P.; Wen, K. Application of geographically weighted regression model in the estimation of surface air temperature lapse rate. J. Geogr. Sci. 2021, 31, 389–402. [Google Scholar] [CrossRef]
- Mutiibwa, D.; Strachan, S.; Albright, T. Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 4762–4774. [Google Scholar] [CrossRef]
Regions | Heat Summation (GDD) [°C] | Area | Wine Type |
---|---|---|---|
Region 1 | <1370 | Chablis, Champagne, Burgundy. | Light-bodied white wines. e.g., Pinot Noir and Gris. |
Region 2 | 1370–1650 | Bordeaux, northern Rhone. | Medium-bodied red wines. e.g., Chardonnay, Pinot Noir, Merlot. |
Region 3 | 1650–1930 | Sonoma Valley, southern Rhone. | Full-bodied red wines. e.g., Sauvignon Blanc, Grenache. |
Region 4 | 1930–2200 | Napa and Barossa Valley Tuscany. | Fortified wines. e.g., Barbera, Porto, Zinfadel. |
Region 5 | >2200 | Jerez, Madera, Lodi. | Bulk wines, table and drying grapes. e.g., Muscat, Nero d’Avola. |
Sensor ID | Monitoring Station’s Name | MSL [m] | Data Availability |
---|---|---|---|
2082 | Varzi Nivione | 500 | From 15 May 2011 |
8002 | Varzi Via Mazzini | 485 | From 01 January 1998 to 19 September 2018 |
8007 | Fortunago | 501 | From 01 January 1998 |
8191 | Voghera Via Cambiaso | 95 | From 04 March 2003 |
8202 | Santa Margherita di Staffora Casanova | 575 | From 01 January2003 to 30 June 2023 |
9019 | Canevino | 455 | From 01 January 2004 |
17432 | Broni | 77 | From 22 March 2018 |
Satellite | Sensor | Version | Bands | Spatial Resolution | Temporal Resolution | Pass Time |
---|---|---|---|---|---|---|
MODIS | Terra | MOD11A2 6.1 | LST_Day LST_Night Day_view_time Night_view_time | 1 km | 8 days | 9:06–12:18 18.30–23:48 |
MODIS | Aqua | MYD11A2 6.1 | 1 km | 8 days | 9:42–15:12 0:18–5:30 |
Sensor ID | Lat [DD] | Lon [DD] | MODIS Date | Tday MODIS Aqua [°C] | Tnight MODIS Aqua [°C] | Tday MODIS Terra [°C] | Tnight MODIS Terra [°C] | Tair ARPA (8-Day Avg) [°C] |
---|---|---|---|---|---|---|---|---|
8007 | 44.9125 | 9.1950 | 30/03/2018 | 20.86 | 4.68 | 20.43 | 6.25 | 10.27 |
8007 | 44.9125 | 9.1950 | 07/04/2018 | 19.57 | 6.11 | 17.46 | 5.11 | 10.39 |
8007 | 44.9125 | 9.1950 | 15/04/2018 | 26.75 | 10.86 | 25.34 | 11.52 | 17.53 |
8007 | 44.9125 | 9.1950 | 23/04/2018 | 24.61 | 10.63 | 24.46 | 12.92 | 17.59 |
8007 | 44.9125 | 9.1950 | 01/05/2018 | 24.99 | 8.47 | 22.46 | 12.42 | 14.49 |
8007 | 44.9125 | 9.1950 | 09/05/2018 | 20.90 | 8.48 | 20.20 | 10.13 | 14.44 |
8007 | 44.9125 | 9.1950 | 17/05/2018 | 23.25 | 8.69 | 21.69 | 11.84 | 15.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocca, M.T.; Franzini, M.; Casella, V.M. Calibration and Validation of MODIS-Derived Ground-Level Air Temperature Models by Means of Ground Measurements. Appl. Sci. 2025, 15, 184. https://doi.org/10.3390/app15010184
Rocca MT, Franzini M, Casella VM. Calibration and Validation of MODIS-Derived Ground-Level Air Temperature Models by Means of Ground Measurements. Applied Sciences. 2025; 15(1):184. https://doi.org/10.3390/app15010184
Chicago/Turabian StyleRocca, Marica Teresa, Marica Franzini, and Vittorio Marco Casella. 2025. "Calibration and Validation of MODIS-Derived Ground-Level Air Temperature Models by Means of Ground Measurements" Applied Sciences 15, no. 1: 184. https://doi.org/10.3390/app15010184
APA StyleRocca, M. T., Franzini, M., & Casella, V. M. (2025). Calibration and Validation of MODIS-Derived Ground-Level Air Temperature Models by Means of Ground Measurements. Applied Sciences, 15(1), 184. https://doi.org/10.3390/app15010184