UWB-Based Real-Time Indoor Positioning Systems: A Comprehensive Review
<p>UWB and other RF technologies’ frequencies and power spectral densities.</p> "> Figure 2
<p>Flowchart of the selection process.</p> "> Figure 3
<p>Triangulation IPS positioning technique.</p> "> Figure 4
<p>Trilateration IPS positioning technique.</p> "> Figure 5
<p>Multilateration positioning technique in a 3D environment.</p> "> Figure 6
<p>SDS-TWR tag–anchor signal propagation times.</p> "> Figure 7
<p>Topology of the TDoA positioning algorithm.</p> "> Figure 8
<p>PDoA positioning algorithm.</p> "> Figure 9
<p>Signal propagation path for UWB IPSs in (<b>a</b>) LoS and (<b>b</b>) NLoS.</p> "> Figure 10
<p>TWR IPS topologies: (<b>a</b>) anchor-based; (<b>b</b>) tag-based.</p> "> Figure 11
<p>TDoA IPS topologies: (<b>a</b>) TDoA; (<b>b</b>) RTDoA.</p> "> Figure 12
<p>IPS: (<b>a</b>) real-time testing environment; (<b>b</b>) 2D simulated environment with real-time object tracking using Python [<a href="#B80-applsci-14-11005" class="html-bibr">80</a>].</p> "> Figure 13
<p>Distribution of the used UWB modules.</p> "> Figure 14
<p>Distribution of the used UWB topologies.</p> "> Figure 15
<p>Distribution of the sensors and supporting technologies besides the UWB.</p> "> Figure 16
<p>Distribution of the used algorithms and filters.</p> "> Figure 17
<p>The main applications of the proposed references.</p> "> Figure 18
<p>The percentage range of errors for the included systems.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
- Inclusion criteria
- -
- Real-time systems, positioning algorithms, and filters for a real-time system.
- -
- Systems for indoor application.
- -
- Can be used for mobile object tracking (robots, UAVs, etc.).
- -
- Complete IPS/RTLS system including hardware, software, and monitoring server (object coordinates, tracking, and positioning can be monitored).
- Exclusion criteria
- -
- Simulation, theoretical research, and algorithms; UWB manufacturing research.
- -
- Systems for outdoor environments.
- -
- Systems cannot be used for mobile object applications.
- -
- Partial work (incomplete system; cannot implement real-time tracking and monitoring; work for solving a partial issue).
- -
- Works that do not include any information about the UWB components used.
3. UWB Positioning System
3.1. UWB Positioning Techniques and Algorithms
3.1.1. Triangulation Technique
3.1.2. Trilateration Technique
3.2. UWB IPS Topologies
3.2.1. Two-Way Ranging (TWR)
3.2.2. Time Difference of Arrival (TDoA)
3.2.3. Phase Difference of Arrival (PDoA)
3.3. Optimization Filters and Fusion-Based Algorithms for IPSs
3.3.1. Least Squares Algorithm (LS)
3.3.2. Kalman Filters (KFs)
3.3.3. Particle Filter (PF)
4. Commercial UWB Modules and Chips for IPSs
4.1. Qorvo DW1000 UWB Family
4.2. Qorvo DW3000 UWB Family
4.3. NXP Trimension UWB Chips Family
4.4. Microchip ATA8350/ATA8352 UWB Transceivers
4.5. Infineon 3DB6830 UWB IC
4.6. SPARK SR1010/SR1020 UWB Transceiver
4.7. B-UWB-MOD1
4.8. Summary of the Commercial UWB Modules and Chips for IPSs
4.9. Commercial UWB-Based IPSs
5. Real-Time UWB Indoor Positioning Systems (RTIPSs)
5.1. Obstacles and Non-Line-of-Sight Obstructions
5.2. Real-Time Implementation Ranging and Topologies
5.2.1. Two-Way Ranging-Based Indoor Positioning Systems
5.2.2. Time Difference of Arrival (TDoA)-Based Indoor Positioning Systems
5.2.3. Phase Difference of Arrival (PDoA)-Based Indoor Positioning Systems
5.3. Indoor Positioning Systems for Robotics Applications
5.4. Indoor Positioning Systems for Unmanned Aerial Vehicle Applications
6. Results
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARPF | Adaptive robust particle filtering |
ANN | Artificial neural network |
BLE | Bluetooth Low Energy |
CRLB | Cramér–Rao lower bounds |
CNN | Convolutional neural network |
DF | Debiasing filter |
ECA | Efficient channel attention |
FNN | Fuzzy neural network |
GPS | Global Positioning System |
BYOPS | Bring Your Own Positioning System |
AltDS-TWR | Alternative double-sided two-way ranging |
SDS-TWR | Symmetric double-sided two-way ranging |
EDS-TWR | Extended double-sided two-way ranging |
EFIR-RTS | Extended finite-impulse response-based Rauch–Tung–Striebel smoother |
DS-TWR | Double-sided two-way ranging |
DBLD | Dynamic best link discovery |
DNN | Deep neural network |
FLA | Five-line approximate |
IPS | Indoor positioning system |
ISAR | Inverse synthetic-aperture radar |
IGN | Iterative Gauss–Newton |
RF | Radio frequency |
KF | Kalman filter |
CKF | Cubature Kalman filter |
KNN | k-Nearest neighbors |
LoS | Line-of-sight |
LS | Least squares |
LSTM | Long short-term memory |
LinHPS | Linear hyperbolic positioning system |
ML | Machine learning |
MAL | Multi-algorithm |
MPGA | Multi-population genetic algorithm |
MCC-VC | Maximum correntropy criterion with variable center |
MCA | Multipath component analysis |
NLoS | Non-line-of-sight |
NN | Neural network |
PF | Particle filter |
REKF | Robust extended Kalman filter |
RFID | Radio frequency identification |
RSSI | Received signal strength indicator |
RNN | Recurrent neural network |
SAR | Synthetic-aperture radar |
SWF | Sliding window filtering |
STVBF-DO | Skew-t variational Bayes filter-disturbance observer |
TDoA | Time difference of arrival |
ToF | Time of flight |
TWR | Two-way ranging |
UWB | Ultra-wideband |
UAV | Unmanned aerial vehicle |
PAAL | Passive anchor-assisted localization |
PDoA | Phase difference of arrival |
PZS | Predictive zone selection |
PDoP | Position dilution of precision |
GDoP | Geometric dilution of precision |
CWCS | Cascaded wireless clock synchronization |
KF | Kalman filter |
ROS | Robot operating system |
WAKF | Weighted adaptive Kalman filter |
WIP | Weighted indoor positioning |
UKF | Unscented Kalman filter |
UCAS | UWB control and analysis suite |
EKF | Extended Kalman filter |
TDMA | Time-division multiple access |
TDoA | Time difference of arrival |
SMA | Slime mold algorithm |
VGICP | Voxelized generalized iterative closest point |
WHFFA | Weighted hybrid filter following algorithm |
References
- Indoor Positioning: Technologies and Performance|IEEE eBooks|IEEE Xplore. Available online: https://ieeexplore.ieee.org/book/8786839 (accessed on 26 March 2024).
- Lee, C.K.M.; Ip, C.M.; Park, T.; Chung, S.Y. A Bluetooth Location-based Indoor Positioning System for Asset Tracking in Warehouse. In Proceedings of the 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Macao, China, 15–18 December 2019; pp. 1408–1412. [Google Scholar]
- Chan, P.Y.; Chao, J.-C.; Wu, R.-B. A Wi-Fi-Based Passive Indoor Positioning System via Entropy-Enhanced Deployment of Wi-Fi Sniffers. Sensors 2023, 23, 1376. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-G.; Zhu, H.; You, S.-Z.; Tang, C.-Q. UWB-Based Localization System Aided With Inertial Sensor for Underground Coal Mine Applications. IEEE Sens. J. 2020, 20, 6652–6669. [Google Scholar] [CrossRef]
- Kloock, M.M.; Scheffe, P.; Maczijewski, J.; Alrifaee, B.; Kowalewski, S.; Tülleners, I. Vision-Based Real-Time Indoor Positioning System for Multiple Vehicles; Elsevier: Amsterdam, The Netherlands, 2020; Volume 53, p. 15446. [Google Scholar]
- Höflinger, F.; Hoppe, J.; Zhang, R.; Ens, A.; Reindl, L.; Wendeberg, J.; Schindelhauer, C. Acoustic indoor-localization system for smart phones. In Proceedings of the 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Castelldefels-Barcelona, Spain, 11–14 February 2014; pp. 1–4. [Google Scholar]
- Khan, S.I.; Ray, B.R.; Karmakar, N.C. RFID localization in construction with IoT and security integration. Autom. Constr. 2024, 159, 105249. [Google Scholar] [CrossRef]
- White Papers—Qorvo. Available online: https://www.qorvo.com/resources/d/qorvo-getting-back-to-basics-with-ultra-wideband-uwb-white-paper (accessed on 11 July 2024).
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef]
- Pierlot, V.; Van Droogenbroeck, M. A New Three Object Triangulation Algorithm for Mobile Robot Positioning. IEEE Trans. Robot. 2014, 30, 566–577. [Google Scholar] [CrossRef]
- Indoor Positioning Based on Time of Flight and Kalman Filtering Using Ultra-Wideband Sensors. Available online: https://ieeexplore.ieee.org/document/10488216 (accessed on 19 June 2024).
- Asaad, S.M.; Maghdid, H.S. A Comprehensive Review of Indoor/Outdoor Localization Solutions in IoT era: Research Challenges and Future Perspectives. Comput. Netw. 2022, 212, 109041. [Google Scholar] [CrossRef]
- Monica, S.; Ferrari, G. UWB-based localization in large indoor scenarios: Optimized placement of anchor nodes. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 987–999. [Google Scholar] [CrossRef]
- Sundin, O. UWB-TWR Performance Comparison in a Hybrid Node Network. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2021. Available online: https://ltu.diva-portal.org/smash/record.jsf?pid=diva2%3A1602910&dswid=-59 (accessed on 25 June 2024).
- Zhao, K.; Zhao, T.; Zheng, Z.; Yu, C.; Ma, D.; Rabie, K.; Kharel, R. Optimization of Time Synchronization and Algorithms with TDOA Based Indoor Positioning Technique for Internet of Things. Sensors 2020, 20, 6513. [Google Scholar] [CrossRef]
- Synchronization of Anchors in a TDoA Based Ultra-Wide Band Localization System. Available online: https://research.tue.nl/en/studentTheses/synchronization-of-anchors-in-a-tdoa-based-ultra-wide-band-locali (accessed on 4 April 2024).
- Friedrich, J.; Tiemann, J.; Wietfeld, C. Accurate Multi-Zone UWB TDOA Localization utilizing Cascaded Wireless Clock Synchronization. In Proceedings of the 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021; pp. 1–8. [Google Scholar]
- Djaja-Josko, V.; Kolakowski, J. A new method for wireless synchronization and TDOA error reduction in UWB positioning system. In Proceedings of the 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, Poland, 9–11 May 2016; pp. 1–4. [Google Scholar]
- Chen, H.; Ballal, T.; Saeed, N.; Alouini, M.-S.; Al-Naffouri, T.Y. A Joint TDOA-PDOA Localization Approach Using Particle Swarm Optimization. IEEE Wirel. Commun. Lett. 2020, 9, 1240–1244. [Google Scholar] [CrossRef]
- Wolf, F.; Berg, V.; Dehmas, F.; Mannoni, V.; De Rivaz, S. Multi-Frequency Phase Difference of Arrival for Precise Localization in Narrowband LPWA Networks. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Li, J.; Lv, S.; Lv, L.; Wu, S.; Liu, Y.; Nie, J.; Jin, Y.; Wang, C. Joint TDOA, FDOA and PDOA Localization Approaches and Performance Analysis. Remote Sens. 2023, 15, 915. [Google Scholar] [CrossRef]
- Margiani, T.; Cortesi, S.; Keller, M.; Vogt, C.; Polonelli, T.; Magno, M. Angle of Arrival and Centimeter Distance Estimation on a Smart UWB Sensor Node. IEEE Trans. Instrum. Meas. 2023, 72, 9508110. [Google Scholar] [CrossRef]
- Shah, S.; Chaiwong, K.; Kovavisaruch, L.-O.; Kaemarungsi, K.; Demeechai, T. Antenna Delay Calibration of UWB Nodes. IEEE Access 2021, 9, 63294–63305. [Google Scholar] [CrossRef]
- Elsanhoury, M.; Mäkelä, P.; Koljonen, J.; Välisuo, P.; Shamsuzzoha, A.; Mantere, T.; Elmusrati, M.; Kuusniemi, H. Precision Positioning for Smart Logistics Using Ultra-Wideband Technology-Based Indoor Navigation: A Review. IEEE Access 2022, 10, 44413–44445. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar]
- Yang, C.; Shi, W.; Chen, W. Comparison of Unscented and Extended Kalman Filters with Application in Vehicle Navigation. J. Navig. 2017, 70, 411–431. [Google Scholar] [CrossRef]
- Elfring, J.; Torta, E.; van de Molengraft, R. Particle Filters: A Hands-On Tutorial. Sensors 2021, 21, 438. [Google Scholar] [CrossRef]
- Navigine All about Particle Filter for Indoor Navigation and Positioning. Available online: https://navigine.com/blog/particle-filter/ (accessed on 2 October 2024).
- An Overview of DecaWave’s DW1000 UWB Wireless Transceiver for Precise Indoor Positioning. Available online: https://www.symmetryelectronics.com/blog/an-overview-of-decawave-s-dw1000-uwb-wireless-transceiver/ (accessed on 15 July 2024).
- DW1000—Qorvo. Available online: https://www.qorvo.com/products/p/https//www.qorvo.com/products/p/DW1000 (accessed on 15 July 2024).
- Pelka, M.; Goronzy, G.; Hellbrück, H. Iterative approach for anchor configuration of positioning systems. ICT Express 2016, 2, 1–4. [Google Scholar] [CrossRef]
- DWM3000—Qorvo. Available online: https://www.qorvo.com/products/p/https//www.qorvo.com/products/p/DWM3000 (accessed on 23 April 2024).
- IEEE Std 802.15.4-2011 Revis. IEEE Std 802154-2006; IEEE Standard for Local and Metropolitan Area Networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE: New York, NY, USA, 2011; pp. 1–314. [CrossRef]
- IEEE Std 802.15.4z-2020 Amend. IEEE Std 802154-2020; IEEE Standard for Low-Rate Wireless Networks–Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated Ranging Techniques. IEEE: New York, NY, USA, 2020; pp. 1–174. [CrossRef]
- Trimension SR150. Available online: https://www.nxp.com/products/wireless-connectivity/trimension-uwb/trimension-sr150-secure-uwb-solution-for-iot-devices:SR150 (accessed on 15 July 2024).
- Ultra-Wideband (UWB). Available online: https://www.nxp.com/applications/enabling-technologies/connectivity/ultra-wideband-uwb:UWB (accessed on 15 July 2024).
- Ultra-Wideband Solutions|Microchip Technology. Available online: https://www.microchip.com/en-us/products/wireless-connectivity/specialty/ultra-wideband (accessed on 15 July 2024).
- IEEE Std 802.15.4f-2012 Amend. IEEE Std 802154-2011; IEEE Standard for Local and Metropolitan Area Networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 2: Active Radio Frequency Identification (RFID) System Physical Layer (PHY). IEEE: New York, NY, USA, 2012; pp. 1–72. [CrossRef]
- Infineon Technologies Switzerland AG—Technology. Available online: https://www.3db-access.com/technology (accessed on 15 July 2024).
- Home. Available online: https://www.sparkmicro.com/ (accessed on 16 July 2024).
- B-UWB-MOD1—Ultra-Wideband Module for High-Precision Indoor Location—STMicroelectronics. Available online: https://www.st.com/en/wireless-connectivity/b-uwb-mod1.html?ecmp=tt9470_gl_link_feb2019&rt=db&id=DB4404#documentation (accessed on 2 October 2024).
- DWM1000—Qorvo. Available online: https://www.qorvo.com/products/p/https//www.qorvo.com/products/p/DWM1000 (accessed on 12 November 2024).
- DW3110—Qorvo. Available online: https://www.qorvo.com/products/p/https//www.qorvo.com/products/p/DW3110 (accessed on 12 November 2024).
- DW3120—Qorvo. Available online: https://www.qorvo.com/products/p/https//www.qorvo.com/products/p/DW3120 (accessed on 12 November 2024).
- DW3220—Qorvo. Available online: https://www.qorvo.com/products/p/https//www.qorvo.com/products/p/DW3220 (accessed on 12 November 2024).
- Trimension SR040. Available online: https://www.nxp.com/products/wireless/secure-ultra-wideband-uwb/trimension-sr040-secure-uwb-solution-for-iot-tags:SR040 (accessed on 12 November 2024).
- ATA8350. Available online: https://www.microchip.com/en-us/product/ATA8350 (accessed on 15 July 2024).
- ATA8352. Available online: https://www.microchip.com/en-us/product/ata8352 (accessed on 12 November 2024).
- SR1010 & SR1020 TRANSCEIVERS. SPARK Microsystems. Available online: https://www.sparkmicro.com/product/sr1010-sr1020-transceivers/ (accessed on 12 November 2024).
- Inpixon Inpixon: Real-Time Location Systems for Industrial IoT. Available online: https://www.inpixon.com/ (accessed on 17 July 2024).
- Eliko UWB RTLS—The Most Accurate and Reliable Tracking. Available online: https://eliko.tech/uwb-rtls-ultra-wideband-real-time-location-system/ (accessed on 17 July 2024).
- Employee Tracking System with RTLS|Litum. Available online: https://litum.com/rtls-rfid-employee-tracking/ (accessed on 17 July 2024).
- Product-Woxu Wireless. Available online: https://uwb.woxuwireless.com/views/product/productTag.html (accessed on 17 July 2024).
- Real-Time Location System (RTLS) for Indoor Tracking|Sewio RTLS. Available online: https://www.sewio.net/ (accessed on 17 July 2024).
- KKM|IoT Devices ODM & OEM Solutions Manufacturer. Available online: https://www.kkmcn.com (accessed on 17 July 2024).
- Ultra-Wideband Technology » Products » KINEXON. Available online: https://kinexon.com/products/uwb-technology (accessed on 17 July 2024).
- Pozyx’s UWB RTLS Hardware Tracks Anything Ultra Accurate. Available online: https://www.pozyx.io/products/pozyx-uwb-rtls (accessed on 17 July 2024).
- Ultra Wideband (UWB) Technology|Zebra. Available online: https://www.zebra.com/content/zebra1/gb/en/products/location-technologies/ultra-wideband.html (accessed on 17 July 2024).
- Admin Product. Tsingoal. Available online: https://www.tsingoal.com/en/product_ (accessed on 17 July 2024).
- Manifold, S. Ubisense—Ultra-Wideband Real-Time Location System (RTLS). Available online: https://ubisense.com/ (accessed on 17 July 2024).
- Kathrein Solutions—Your Partner in RFID, AutoID, IoT, EVR & AVI. Available online: https://www.kathrein-solutions.com/ (accessed on 17 July 2024).
- Ubudu Hybrid Hardware|Track the Location of Assets. Available online: https://ubudu.com/products/hardware (accessed on 17 July 2024).
- Available online: https://tracktio.com/ (accessed on 17 July 2024).
- UWB RTLS Solutions for Engineering & Commercial Vehicles Tracking. Available online: https://leisureautosafety.com/products-leisure-auto/uwb-rtls/ (accessed on 17 July 2024).
- UWB, UWB Kit, UWB Solutions, RTLS, NFC, Contactless, Mobile and MIFARE Solutions. Available online: https://www.themobileknowledge.com/ (accessed on 18 July 2024).
- BeSpoon’s RTLS Solutions: Transforming Smart Industries—Bespoon 2024. Available online: https://tracktio.com/uwb-rtls/ (accessed on 25 July 2024).
- Shankar, P.M. Overview. In Fading and Shadowing in Wireless Systems; Shankar, P.M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–7. ISBN 978-3-319-53198-4. [Google Scholar]
- Agrawal, A.; Kshetrimayum, R.S. Analysis of UWB communication over IEEE 802.15.3a channel by superseding lognormal shadowing by Mixture of Gamma distributions. AEU-Int. J. Electron. Commun. 2015, 69, 1795–1799. [Google Scholar] [CrossRef]
- Liu, A.; Lin, S.; Wang, J.; Kong, X. A Succinct Method for Non-Line-of-Sight Mitigation for Ultra-Wideband Indoor Positioning System. Sensors 2022, 22, 8247. [Google Scholar] [CrossRef]
- Ni, Z.; Zhou, H.; Zhang, G.; Xu, W. UWB Non-Line-of-Sight Recognition and Suppression Methodology. In Proceedings of the 2023 15th International Conference on Communication Software and Networks (ICCSN), Shenyang, China, 21–23 July 2023; pp. 313–318. [Google Scholar]
- Yang, J.; Feng, D.; Chu, Y.; Guo, C.; Zhuang, Y. An Efficient Cooperative Positioning Scheme in Non-Line-of-Sight Environments. In Proceedings of the 2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Beijing, China, 5–7 September 2022; pp. 1–8. [Google Scholar]
- He, J.; Zhao, W.; Liu, Y.; Han, F. Non-line-of-sight ultra-wideband signal recognition using DWT-CNN. In Proceedings of the Fourth International Conference on Sensors and Information Technology (ICSI 2024), Xiamen, China, 5–7 January 2024; SPIE; Volume 13107, pp. 633–639. [Google Scholar]
- Qin, Z.; Meng, Z.; Li, Z.; Gao, N.; Zhang, Z.; Meng, Q.; Zhen, D. Compensating the NLoS Occlusion Errors of UWB for Pedestrian Localization With MIMU. IEEE Sens. J. 2023, 23, 12146–12158. [Google Scholar] [CrossRef]
- Su, C.; Zhang, F.; Jin, B.; Ma, J.; Ni, J.; Li, S.; Wang, Z. UWBLoc: NLoS Mitigation for Practical UWB Localization. In Proceedings of the 2023 IEEE Smart World Congress (SWC), Portsmouth, UK, 28–31 August 2023; pp. 1–8. [Google Scholar]
- Sang, C.L.; Steinhagen, B.; Homburg, J.D.; Adams, M.; Hesse, M.; Rückert, U. Identification of NLOS and Multi-Path Conditions in UWB Localization Using Machine Learning Methods. Appl. Sci. 2020, 10, 3980. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, Z.; Zhao, Y.; Wu, Z.; Wu, M. UWB LOS/NLOS identification in multiple indoor environments using deep learning methods. Phys. Commun. 2022, 52, 101695. [Google Scholar] [CrossRef]
- Stahlke, M.; Kram, S.; Mutschler, C.; Mahr, T. NLOS Detection using UWB Channel Impulse Responses and Convolutional Neural Networks. In Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; pp. 1–6. [Google Scholar]
- Hua, C.; Zhao, K.; Dong, D.; Zheng, Z.; Yu, C.; Zhang, Y.; Zhao, T. Multipath Map Method for TDOA Based Indoor Reverse Positioning System with Improved Chan-Taylor Algorithm. Sensors 2020, 20, 3223. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Tang, Z. An UWB Positioning Algorithm Based on Clock Compensation and Filtering. In Proceedings of the 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Guilin, China, 10–13 November 2023; pp. 1–3. [Google Scholar]
- Al-Okby, M.F.R.; Roddelkopf, T.; Burgdorf, S.-J.; Thurow, K. Multi-Tag UWB-based Indoor Positioning System for Objects Tracking. In Proceedings of the 2024 IEEE 22nd Jubilee International Symposium on Intelligent Systems and Informatics (SISY), Pula, Croatia, 19–21 September 2024; pp. 415–422. [Google Scholar]
- Cheng, J.; Jin, J.; Huang, Y.; Yu, P. Design of Positioning System for Underground Personnel and Electromechanical Equipment Using WSN. In Proceedings of the 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 16–18 October 2020; pp. 1–2. [Google Scholar]
- Minh, T.L.; Xuan, D.T. Applying Kalman filter to UWB positioning with DS-TWR method in LOS/NLOS scenarios. In Proceedings of the 2021 International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh, Vietnam, 15–16 April 2021; pp. 95–99. [Google Scholar]
- Qi, M.; Xue, B.; Wang, W. Calibration and Compensation of Anchor Positions for UWB Indoor Localization. IEEE Sens. J. 2024, 24, 689–699. [Google Scholar] [CrossRef]
- Sidorenko, J.; Schatz, V.; Scherer-Negenborn, N.; Arens, M.; Hugentobler, U. Error Corrections for Ultrawideband Ranging. IEEE Trans. Instrum. Meas. 2020, 69, 9037–9047. [Google Scholar] [CrossRef]
- Laadung, T.; Ulp, S.; Alam, M.M.; Moullec, Y.L. Novel Active-Passive Two-Way Ranging Protocols for UWB Positioning Systems. IEEE Sens. J. 2022, 22, 5223–5237. [Google Scholar] [CrossRef]
- Van Herbruggen, B.; Van Leemput, D.; Van Landschoot, J.; De Poorter, E. Real-Time Anchor Node Selection for Two-Way-Ranging (TWR) Ultra-Wideband (UWB) Indoor Positioning Systems. IEEE Sens. Lett. 2024, 8, 6002404. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, R.; Liu, J.; Fan, Y.; Li, L.; Zhang, Q. Research on the Positioning Method of Autonomous Mobile Robot in Structure Space Based on UWB. In Proceedings of the 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), Shenzhen, China, 9–11 May 2019; pp. 278–282. [Google Scholar]
- Tiemann, J.; Wietfeld, C. Scalability, Real-Time Capabilities, and Energy Efficiency in Ultra-Wideband Localization. IEEE Trans. Ind. Inform. 2019, 15, 6313–6321. [Google Scholar] [CrossRef]
- Van Herbruggen, B.; Luchie, S.; Wilssens, R.; De Poorter, E. Single Anchor Localization by Combining UWB Angle-of-Arrival and Two-Way-Ranging: An Experimental Evaluation of the DW3000. In Proceedings of the 2024 International Conference on Localization and GNSS (ICL-GNSS), Antwerp, Belgium, 25–27 June 2024; pp. 1–7. [Google Scholar]
- Zhou, Y.; Wang, Y.; Zhong, Z. Study of Mobile Robot positioning based on Ultra-Wideband System. In Proceedings of the 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), Hefei, China, 21–23 August 2022; pp. 595–598. [Google Scholar]
- Ali, R.; Liu, R.; Nayyar, A.; Qureshi, B.; Cao, Z. Tightly Coupling Fusion of UWB Ranging and IMU Pedestrian Dead Reckoning for Indoor Localization. IEEE Access 2021, 9, 164206–164222. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Wang, Y.; Gong, Q.; Wei, Z.; Zhang, X.; Yuan, X.; Yan, X.; Liu, Y.; Dong, L. Ultra-wideband High Precision Positioning System Based on EDS-TWR and EKF Algorithm. In Proceedings of the 2024 IEEE 14th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 24–25 May 2024; pp. 1–6. [Google Scholar]
- Molnár, M.; Luspay, T. Development of an UWB based Indoor Positioning System. In Proceedings of the 2020 28th Mediterranean Conference on Control and Automation (MED), Saint-Raphaël, France, 16–19 June 2020; pp. 820–825. [Google Scholar]
- Zhang, H.; Lu, S.; Zhou, Z.; Wang, H.; Yan, B.; Si, X. Downhole robot positioning system based on UWB. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 2444–2449. [Google Scholar]
- Wei, L.; Jian, W.; Lei, Y.; Ziyang, S. Optimization of Outdoor Long-Range Localization Algorithm Based on DS-TWR. In Proceedings of the 2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP), Chengdu, China, 19–21 May 2023; pp. 1113–1117. [Google Scholar]
- Dai, P.; Wang, S.; Xu, T.; Li, M.; Gao, F.; Xing, J.; Yao, L. Efficient Localization Algorithm With UWB Ranging Error Correction Model Based on Genetic Algorithm-Ant Colony Optimization-Backpropagation Neural Network. IEEE Sens. J. 2023, 23, 29906–29918. [Google Scholar] [CrossRef]
- Li, K.; Ni, W.; Wei, B.; Guizani, M. An Experimental Study of Two-way Ranging Optimization in UWB-based Simultaneous Localization and Wall-Mapping Systems. In Proceedings of the 2022 International Wireless Communications and Mobile Computing (IWCMC), Dubrovnik, Croatia, 30 May–3 June 2022; pp. 871–876. [Google Scholar]
- Shyam, S.; Juliet, S.; Ezra, K. A UWB System Model for Patient Tracking and Monitoring for Smart Healthcare. In Proceedings of the 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 21–22 April 2022; pp. 32–37. [Google Scholar]
- Liu, Q.; Shi, M.; Hu, W.; Jiang, H.; Xu, Z.; Qiao, S. Design of high-precision wireless UWB indoor positioning system. In Proceedings of the 2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Haidian, China, 17–18 December 2022; pp. 1–3. [Google Scholar]
- Xue, Y.; Su, W.; Wang, H.; Yang, D.; Jiang, Y. DeepTAL: Deep Learning for TDOA-Based Asynchronous Localization Security with Measurement Error and Missing Data. IEEE Access 2019, 7, 122492–122502. [Google Scholar] [CrossRef]
- Cho, J.; Jeong, S.; Lee, B. A Study on Anchor Placement and 3D Positioning Algorithm for UWB Application in Small Sites. KSCE J. Civ. Eng. 2024, 28, 4575–4587. [Google Scholar] [CrossRef]
- Cho, J.; Lee, B. Optimal layout of four anchors to improve accuracy of Ultra-Wide band based indoor positioning. Expert Syst. Appl. 2024, 255, 124808. [Google Scholar] [CrossRef]
- Pătru, G.-C.; Flueratoru, L.; Vasilescu, I.; Niculescu, D.; Rosner, D. FlexTDOA: Robust and Scalable Time-Difference of Arrival Localization Using Ultra-Wideband Devices. IEEE Access 2023, 11, 28610–28627. [Google Scholar] [CrossRef]
- Bottigliero, S.; Milanesio, D.; Saccani, M.; Maggiora, R. A Low-Cost Indoor Real-Time Locating System Based on TDOA Estimation of UWB Pulse Sequences. IEEE Trans. Instrum. Meas. 2021, 70, 5502211. [Google Scholar] [CrossRef]
- Pérez-Solano, J.J.; Ezpeleta, S.; Claver, J.M. Indoor localization using time difference of arrival with UWB signals and unsynchronized devices. Ad Hoc Netw. 2020, 99, 102067. [Google Scholar] [CrossRef]
- Chiasson, D.; Lin, Y.; Kok, M.; Shull, P.B. Asynchronous Hyperbolic UWB Source-Localization and Self-Localization for Indoor Tracking and Navigation. IEEE Internet Things J. 2023, 10, 11655–11668. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, P.; Qian, G.; Feng, S. An Improved Two-Step Weighted Least Squares Aided UWB High-Precision Indoor Positioning System for Moving Targets. In Proceedings of the 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 10–11 December 2021; pp. 1–7. [Google Scholar]
- Leng, J.; Ma, G.; Zhu, J.; Ma, H. Improved TDOA Two-Stage UWB Localization Algorithm For Indoor Mobile Robot. In Proceedings of the 2021 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), Tainan, Taiwan, 7–10 November 2022; pp. 1–5. [Google Scholar]
- Kim, H.J.; Xie, Y.; Yang, H.; Lee, C.; Song, T.L. An Efficient Indoor Target Tracking Algorithm Using TDOA Measurements with Applications to Ultra-Wideband Systems. IEEE Access 2019, 7, 91435–91445. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, L. A phase-difference-of-arrival assisted ultra-wideband positioning method for elderly care. Measurement 2021, 170, 108689. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, L. Toward Elderly Care: A Phase-Difference-of-Arrival Assisted Ultra-Wideband Positioning Method in Smart Home. IEEE Access 2020, 8, 139387–139395. [Google Scholar] [CrossRef]
- Botler, L.; Gashi, M.; Diwold, K.; Römer, K. Poster Abstract: Machine Learning-based Models for Phase-Difference-of-Arrival Measurements Using Ultra-Wideband Transceivers. In Proceedings of the 2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Virtual Conference, 4–6 May 2022; pp. 517–518. [Google Scholar]
- Ge, F.; Shen, Y. Single-Anchor Ultra-Wideband Localization System Using Wrapped PDoA. IEEE Trans. Mob. Comput. 2022, 21, 4609–4623. [Google Scholar] [CrossRef]
- Petukhov, N.I.; Korogodin, I.V.; Serov, S.A.; Masalkova, N.V.; Malyshev, A.P.; Efremov, M. Analysis of Measurements of UWB PDoA Local Navigation System with Different Baselines. In Proceedings of the 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM), Altai, Russia, 30 June–4 July 2022; pp. 223–227. [Google Scholar]
- Krška, J.; Gentner, C.; Navrátil, V. Angle of Arrival Measurements with Ultra-wide Band Transceivers: Design and Evaluation. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–5. [Google Scholar]
- Luo, J.; Zhang, J.; Yang, H.; Guan, Y. All-Directional DOA Estimation for Ultra-Wideband Regular Tetrahedral Array Using Wrapped PDoA. Sensors 2022, 22, 1532. [Google Scholar] [CrossRef] [PubMed]
- Diagne, S.; Val, T.; Farota, A.K.; Diop, B.; Assogba, O. Performances Analysis of a System of Localization by Angle of Arrival UWB Radio. Int. J. Commun. Netw. Syst. Sci. 2020, 13, 15–27. [Google Scholar] [CrossRef]
- Sippel, E.; Hehn, M.; Koegel, T.; Gröschel, P.; Hofmann, A.; Brückner, S.; Geiss, J.; Schober, R.; Vossiek, M. Quasi-Coherent Phase-Based Localization and Tracking of Incoherently Transmitting Radio Beacons. IEEE Access 2021, 9, 133229–133239. [Google Scholar] [CrossRef]
- Zhang, K.; Shen, C.; Bao, M.; Vaniushkina, D.; Kumushai, K.; Zang, L. Research on Optimization Algorithm Based on PDOA. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021; pp. 1427–1430. [Google Scholar]
- Müller, M.; Röhrig, C. Angle of Arrival Estimation in the Presence of Phase Difference Ambiguities. In Proceedings of the 2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Beijing, China, 5–7 September 2022; pp. 1–7. [Google Scholar]
- Chen, S.; Yin, D.; Niu, Y. A Survey of Robot Swarms’ Relative Localization Method. Sensors 2022, 22, 4424. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Zhao, B.; Yang, B. An Extensible Positioning System for Locating Mobile Robots in Unfamiliar Environments. Sensors 2019, 19, 4025. [Google Scholar] [CrossRef]
- Cano, J.; Ding, Y.; Pages, G.; Chaumette, E.; Le Ny, J. A Robust Kalman Filter Based Approach for Indoor Robot Positionning with Multi-Path Contaminated UWB Data. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Ranjan, R.; Shin, D.; Jung, Y.; Kim, S.; Yun, J.-H.; Kim, C.-H.; Lee, S.; Kye, J. Comparative Analysis of Integrated Filtering Methods Using UWB Localization in Indoor Environment. Sensors 2024, 24, 1052. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, B.; Zhong, X.; Liu, X.; Li, Q. Enhanced indoor positioning through human-robot collaboration. Urban Info 2024, 3, 7. [Google Scholar] [CrossRef]
- Alghuraid, A.; Almalki, A.; Alnaim, A.; Almubarak, A.; Alhuwaidi, S.; Hussain, A.A.; Alsubaie, M. Development of Ultra-Wide-Band Indoor Positioning System Designed to Control The Position of a Grid Confined Robotic Platform. In Proceedings of the 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Alkhobar, Saudi Arabia, 6–8 December 2021; pp. 1–5. [Google Scholar]
- Pichler-Scheder, M.; Pendl, K.; Schmidt, R.; Petruzelka, M.; Mühlberger, G. 3D Performance Analysis of a UWB Positioning System in a Dynamic Robotic Scenario. In Proceedings of the 2019 16th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 23–24 October 2019; pp. 1–6. [Google Scholar]
- Wang, Y.-X.; Chang, C.-L. ROS-base Multi-Sensor Fusion for Accuracy Positioning and SLAM System. In Proceedings of the 2020 International Symposium on Community-centric Systems (CcS), Hachioji, Japan, 23–26 September 2020; pp. 1–6. [Google Scholar]
- Cano, J.; Le Ny, J. Ranging-Based Localizability Optimization for Mobile Robotic Networks. IEEE Trans. Robot. 2023, 39, 2842–2860. [Google Scholar] [CrossRef]
- Bostanci, B.; Tekkok, S.; Soyunmez, E.; Oguz-Ekim, P.; Yeganli, F. The LiDAR and UWB based Source Localization and Initialization Algorithms for Autonomous Robotic Systems. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 900–904. [Google Scholar]
- Cao, Z.; Liu, R.; Yuen, C.; Athukorala, A.; Kiat Ng, B.K.; Mathanraj, M.; Tan, U.-X. Relative Localization of Mobile Robots with Multiple Ultra-WideBand Ranging Measurements. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 5857–5863. [Google Scholar]
- Clark, L.; Andre, C.; Galante, J.; Krishnamachari, B.; Psounis, K. TEAM: Trilateration for Exploration and Mapping with Robotic Networks. In Proceedings of the 2021 18th International Conference on Ubiquitous Robots (UR), Gangneung, Repubic of Korea, 12–14 July 2021; pp. 539–546. [Google Scholar]
- Rezende, A.M.C.; Júnior, G.P.C.; Fernandes, R.; Miranda, V.R.F.; Azpúrua, H.; Pessin, G.; Freitas, G.M. Indoor Localization and Navigation Control Strategies for a Mobile Robot Designed to Inspect Confined Environments. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 1427–1433. [Google Scholar]
- Wegner, T.E.; Gedschold, J.; Kropp, G.; Trabert, J.; Kmec, M.; Del Galdo, G. Descending Staircase Detection for Service Robots based on M-Sequence UWB Radar. In Proceedings of the 2021 18th European Radar Conference (EuRAD), London, UK, 5–7 April 2022; pp. 29–32. [Google Scholar]
- Lima, J.; Pinto, A.F.; Ribeiro, F.; Pinto, M.; Pereira, A.I.; Pinto, V.H.; Costa, P. Data Fusion Using Ultra Wideband Time-of-Flight Positioning for Mobile Robot Applications. In Proceedings of the 2023 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Tomar, Portugal, 26–27 April 2023; pp. 251–256. [Google Scholar]
- Kefferpütz, K.; McGuire, K. Error-State Unscented Kalman-Filter for UAV Indoor Navigation. In Proceedings of the 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 4–7 July 2022; pp. 1–8. [Google Scholar]
- Wang, W.; Marelli, D.; Fu, M. Multiple-Vehicle Localization Using Maximum Likelihood Kalman Filtering and Ultra-Wideband Signals. IEEE Sens. J. 2021, 21, 4949–4956. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, P.; Ma, T.; Gao, S. On-Demand Precise Tracking for Energy-Constrained UAVs in Underground Coal Mines. IEEE Trans. Instrum. Meas. 2022, 71, 5500814. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, J.; Wu, C.; Liu, Y.; Pu, J. Indoor UAV Formation System Based on UWB Positioning. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 8545–8550. [Google Scholar]
- Lin, H.-Y.; Zhan, J.-R. GNSS-denied UAV indoor navigation with UWB incorporated visual inertial odometry. Measurement 2023, 206, 112256. [Google Scholar] [CrossRef]
- Niculescu, V.; Palossi, D.; Magno, M.; Benini, L. Energy-Efficient, Precise UWB-Based 3-D Localization of Sensor Nodes with a Nano-UAV. IEEE Internet Things J. 2023, 10, 5760–5777. [Google Scholar] [CrossRef]
- Lee, J.; Moon, J.; Kim, S. UWB-based Multiple UAV Control System for Indoor Ground Vehicle Tracking. In Proceedings of the 2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS), Virtual Conference, 30–31 August 2021; pp. 1–5. [Google Scholar]
- Xu, H.; Wang, L.; Zhang, Y.; Qiu, K.; Shen, S. Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 8776–8782. [Google Scholar]
- Queralta, J.P.; Martínez Almansa, C.; Schiano, F.; Floreano, D.; Westerlund, T. UWB-based System for UAV Localization in GNSS-Denied Environments: Characterization and Dataset. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 4521–4528. [Google Scholar]
- Ochoa-de-Eribe-Landaberea, A.; Zamora-Cadenas, L.; Peñagaricano-Muñoa, O.; Velez, I. UWB and IMU-Based UAV’s Assistance System for Autonomous Landing on a Platform. Sensors 2022, 22, 2347. [Google Scholar] [CrossRef] [PubMed]
- Brunacci, V.; De Angelis, A. Fusion of UWB and Magnetic Ranging Systems for Robust Positioning. IEEE Trans. Instrum. Meas. 2024, 73, 7500712. [Google Scholar] [CrossRef]
- Deliparaschos, K.M.; Loizou, S.G.; Zolotas, A.C. A Modular UAV Hardware Platform for Aerial Indoor Navigation Research and Development. In Proceedings of the 2024 International Conference on Unmanned Aircraft Systems (ICUAS), Chania, Greece, 4–7 June 2024; pp. 398–404. [Google Scholar]
- Meng, Q.; Song, Y.; Li, S.; Zhuang, Y. Resilient tightly coupled INS/UWB integration method for indoor UAV navigation under challenging scenarios. Def. Technol. 2023, 22, 185–196. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, C.; Wei, Z.; Jiang, H. Research on adaptive positioning system: A simplified base station scheme based on UWB-PDOA technology. In Proceedings of the 2023 4th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Guangzhou, China, 25–27 August 2023; pp. 295–301. [Google Scholar]
- Zhang, F.; Hong, S.; Ding, Y.; Yang, S.-H. Ultrawideband-Based Real-Time Positioning With Cascaded Wireless Clock Synchronization Method. IEEE Internet Things J. 2024, 11, 16731–16745. [Google Scholar] [CrossRef]
- Pham, N.H.H.; Nguyen, M.A.; Sun, C.-C. Indoor Positioning System using UWB and Kalman filter to increase the accuracy of the Localization System. In Proceedings of the 2022 IEEE International Conference on Consumer Electronics—Taiwan, Taipei, Taiwan, 6–8 July 2022; IEEE: Taipei, Taiwan, 2022; pp. 339–340. [Google Scholar]
- Lu, H.; Wang, T.; Ge, F.; Shen, Y. A robust UWB array localization scheme through passive anchor assistance. China Commun. 2021, 18, 1–13. [Google Scholar] [CrossRef]
- Chen, H.; Dhekne, A. Spoofing Evident and Spoofing Deterrent Localization Using Ultrawideband (UWB) Active–Passive Ranging. IEEE J. Indoor Seamless Position. Navig. 2024, 2, 12–24. [Google Scholar] [CrossRef]
- Marti, S.; Diethelm, H.; Mathis, H.; Lang, H.-D. Aperture-Coupled Patch Antennas for UWB Indoor Localization Systems in the 4 and 6 GHz Bands. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 950–951. [Google Scholar]
- Phoojaroenchanachai, C.; Suwatthikul, C.; Maneerat, K.; Hormsup, K.; Chinda, K.; Wisadsud, S.; Demeechai, T.; Kovavisaruch, L.; Kaemarungsi, K. An Extendable Auto-Position for UWB-based Indoor Positioning Systems. In Proceedings of the 2021 25th International Computer Science and Engineering Conference (ICSEC), Chiang Rai, Thailand, 18–20 November 2021; pp. 334–339. [Google Scholar]
- Vecchia, D.; Corbalán, P.; Istomin, T.; Picco, G.P. TALLA: Large-scale TDoA Localization with Ultra-wideband Radios. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar]
- Sang, C.L.; Adams, M.; Korthals, T.; Hörmann, T.; Hesse, M.; Rückert, U. A Bidirectional Object Tracking and Navigation System using a True-Range Multilateration Method. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar]
- Sung, S.; Kim, H.; Jung, J.-I. Accurate Indoor Positioning for UWB-Based Personal Devices Using Deep Learning. IEEE Access 2023, 11, 20095–20113. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, L.; Liu, J.; Cao, Z.; Chen, J.; Mu, Z. A Real-Time UWB Location and Tracking System Based on TWR-TDOA Estimation and a Simplified MPGA Layout Optimization. Mob. Inf. Syst. 2022, 2022, 1194169. [Google Scholar] [CrossRef]
- Van Herbruggen, B.; Fontaine, J.; Poorter, E.D. Anchor Pair Selection for Error Correction in Time Difference of Arrival (TDoA) Ultra Wideband (UWB) Positioning Systems. In Proceedings of the 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021; pp. 1–8. [Google Scholar]
- Wang, W.; Wang, G.; Ho, K.C.; Huang, L. Robust TDOA localization based on maximum correntropy criterion with variable center. Signal Process. 2023, 205, 108860. [Google Scholar] [CrossRef]
- Lu, Y.-M.; Sheu, J.-P.; Kuo, Y.-C. Deep Learning for Ultra-Wideband Indoor Positioning. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1260–1266. [Google Scholar]
- Zhou, X.; Xu, C.; He, J.; Wan, J. A Cross-region Wireless-synchronization—based TDOA Method for Indoor Positioning Applications. In Proceedings of the 2019 28th Wireless and Optical Communications Conference (WOCC), Beijing, China, 9–10 May 2019; pp. 1–4. [Google Scholar]
- Kolakowski, J. A Method for TDOA Errors Mitigation in UWB Positioning System. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 5–7 October 2020; pp. 148–151. [Google Scholar]
- Cao, H.; Liu, J.; Zhu, C.; Jing, L.; Chen, T.; Wang, T. A Novel Data Fusion Method For Indoor Navigation Using IMU Aided UWB. In Proceedings of the 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT), Harbin, China, 20–22 January 2019; pp. 100–105. [Google Scholar]
- Martalò, M.; Perri, S.; Verdano, G.; De Mola, F.; Monica, F.; Ferrari, G. Improved UWB TDoA-Based Positioning Using a Single Hotspot for Industrial IoT Applications. IEEE Trans. Ind. Inform. 2022, 18, 3915–3925. [Google Scholar] [CrossRef]
- Schmickmann, F.; Haferkamp, M.; Tiemann, J.; Wietfeld, C. Bring Your Own Positioning System: An Infrastructure-free and Omnidirectional UWB-based Localization Approach. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–7. [Google Scholar]
- Divya, B.; Veeramakali, T.; Revathi, S.; Harisharajan, R.R.; Adhirooban, D.; Ebishdon, G.V. Indoor Navigation Using Ultra Wide Band. In Proceedings of the 2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS), Chennai, India, 14–15 December 2023; pp. 1–9. [Google Scholar]
- Bhattacharya, S.; Choi, J. RNN-Based Robust Smartphone Indoor Localization on Ultra-Wideband DL-TDOA. In Proceedings of the 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 28 May–1 June 2023; pp. 500–505. [Google Scholar]
- Tian, D.; Xiang, Q. Research on Indoor Positioning System Based on UWB Technology. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 662–665. [Google Scholar]
- Lou, X.; Zhao, Y. High-Accuracy Positioning Algorithm Based on UWB. In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Dublin, Ireland, 17–19 October 2019; pp. 71–75. [Google Scholar]
- Malyshev, A.; Chugunov, A.; Chernyh, S. Investigation of a Novel Architecture for a One-Way Ranging UWB Local Navigation System. In Proceedings of the 2024 International Russian Smart Industry Conference (SmartIndustryCon), Sochi, Russia, 24–30 March 2024; pp. 333–338. [Google Scholar]
- Pudlovskiy, V.; Chugunov, A.; Kulikov, R. Investigation of Impact of UWB RTLS Errors on AGV Positioning Accuracy. In Proceedings of the 2019 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 8–14 September 2019; pp. 1–5. [Google Scholar]
- Blake, K.; Huey, R.; Menezes, D.; Root, J.; Tran, L.; Chen, H. Robot Navigation Using Ultra-Wideband Indoor Localization and Dead Reckoning Algorithms. In Proceedings of the 2022 Opportunity Research Scholars Symposium (ORSS), Atlanta, GA, USA, 27 April 2022; pp. 12–15. [Google Scholar]
- Huang, L.; Chen, R.; Chen, Y.; Guo, G.; Ye, F.; Liu, Z.; Chen, L. Robust TDOA-Based Indoor Localization Using Improved Clock-Sync-Scheme and Multilevel Constrained ARPF. IEEE Sens. J. 2023, 23, 10633–10643. [Google Scholar] [CrossRef]
- Shyam, S.; Juliet, S.; Ezra, K. Vehicle Monitoring and Localization using UWB in Complex Parking Lot. In Proceedings of the 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India, 7–9 April 2022; pp. 937–943. [Google Scholar]
- Chen, H.; Dhekne, A. UnSpoof: Distance Spoofing-Evident Localization using UWB. In Proceedings of the 2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nuremberg, Germany, 25–28 September 2023; pp. 1–6. [Google Scholar]
- Zhang, F.; Yang, L.; Liu, Y.; Ding, Y.; Yang, S.-H.; Li, H. Design and Implementation of Real-Time Localization System (RTLS) Based on UWB and TDoA Algorithm. Sensors 2022, 22, 4353. [Google Scholar] [CrossRef]
- Grasso, P.; Innocente, M.S.; Tai, J.J.; Haas, O.; Dizqah, A.M. Analysis and Accuracy Improvement of UWB-TDoA-Based Indoor Positioning System. Sensors 2022, 22, 9136. [Google Scholar] [CrossRef]
- Krška, J.; Navrátil, V. Utilization of Carrier-Frequency Offset Measurements in UWB TDoA Positioning with Receiving Tag. Sensors 2023, 23, 2595. [Google Scholar] [CrossRef]
- Djosic, S.; Stojanovic, I.; Jovanovic, M.; Djordjevic, G.L. Multi-algorithm UWB-based localization method for mixed LOS/NLOS environments. Comput. Commun. 2022, 181, 365–373. [Google Scholar] [CrossRef]
- Waqar, A.; Ahmad, I.; Habibi, D.; Phung, Q.V. Analysis of GPS and UWB positioning system for athlete tracking. Meas. Sens. 2021, 14, 100036. [Google Scholar] [CrossRef]
- Hindermann, P.; Nüesch, S.; Früh, D.; Rüst, A.; Gygax, L. High precision real-time location estimates in a real-life barn environment using a commercial ultra wideband chip. Comput. Electron. Agric. 2020, 170, 105250. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhou, Y.; Zhao, Z. Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization. CMES 2024, 139, 2673–2703. [Google Scholar] [CrossRef]
- Sagar, A.S.; Kim, T.; Park, S.; Lee, H.; Kim, H. Relative-Position Estimation Based on Loosely Coupled UWB–IMU Fusion for Wearable IoT Devices. CMC 2023, 75, 1941–1961. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, Z.; Zhang, Z.; Liu, P.; Lu, M. An Online Multi-Robot SLAM System Based on Lidar/UWB Fusion. IEEE Sens. J. 2022, 22, 2530–2542. [Google Scholar] [CrossRef]
- Zayets, A.; Gentner, C.; Steinbach, E. High-Precision Multipath-Based Indoor Localization Scheme With User Privacy Protection for Dynamic NLoS Environments. IEEE Access 2021, 9, 116033–116049. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, A.; Sui, X.; Wang, C.; Wang, S.; Gao, J.; Shi, Z. Improved-UWB/LiDAR-SLAM Tightly Coupled Positioning System with NLOS Identification Using a LiDAR Point Cloud in GNSS-Denied Environments. Remote Sens. 2022, 14, 1380. [Google Scholar] [CrossRef]
- Yang, H.; Kuang, Y.; Wang, M.; Bao, X.; Yang, Y. Indoor Mobile Localization Based on A Tightly Coupled UWB/INS Integration. In Proceedings of the 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, 13–15 December 2020; pp. 1354–1359. [Google Scholar]
- Zhao, W.; Panerati, J.; Schoellig, A.P. Learning-Based Bias Correction for Time Difference of Arrival Ultra-Wideband Localization of Resource-Constrained Mobile Robots. IEEE Robot. Autom. Lett. 2021, 6, 3639–3646. [Google Scholar] [CrossRef]
- Tu, C.; Li, J.; Fu, D.; Wang, X. Multi-robot Positioning and Anti-interference Based on Ultra Wide Band. In Progressive and Integrative Ideas and Applications of Engineering Systems Under the Framework of IOT and AI, Proceedings of the 2nd International Conference on Intelligent Systems Design and Engineering Applications, Okayama, Japan, 12–14 May 2023; Ma, Y., Ed.; Springer Nature: Singapore, 2024; pp. 43–51. [Google Scholar]
- Slovák, J.; Kurčová, P.; Vachálek, J.; Fiťka, I. Navigation of the mobile robots using the RTLS technology implemented in the ROS. In Proceedings of the 2020 Cybernetics & Informatics (K&I), Velke Karlovice, Czech Republic, 29 January–1 February 2020; pp. 1–5. [Google Scholar]
- Chengbo, K.; Huibin, Y.; Juan, Y.; Wenchao, L. Research on Wheeled Mobile Robot Positioning Based on EKF Multi-sensor Data Fusion. In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019; pp. 457–460. [Google Scholar]
- Zhang, H.; Zhang, Z.; Gao, N.; Xiao, Y.; Meng, Z.; Li, Z. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU. Sensors 2020, 20, 344. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, C.; Li, R.; Knoll, A.; Beltrame, G. Accurate position tracking with a single UWB anchor. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, May 31–August 31 2020; pp. 2344–2350. [Google Scholar]
- Liu, F.; Zhang, J.; Wang, J.; Han, H.; Yang, D. An UWB/Vision Fusion Scheme for Determining Pedestrians’ Indoor Location. Sensors 2020, 20, 1139. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Li, Z.; Lu, M.; Zheng, Y.; Fang, T. System and Method for Reducing NLOS Errors in UWB Indoor Positioning. Appl. Sci. 2024, 14, 5123. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, W.; Cao, J.; Qu, J. Range-Only UWB SLAM for Indoor Robot Localization Employing Multi-Interval EFIR Rauch-Tung-Striebel Smoother. CMES 2021, 130, 1221–1237. [Google Scholar] [CrossRef]
- Kolakowski, M.; Djaja-Josko, V.; Kolakowski, J. Static LiDAR Assisted UWB Anchor Nodes Localization. IEEE Sens. J. 2022, 22, 5344–5351. [Google Scholar] [CrossRef]
- Marković, L.; Kovač, M.; Milijas, R.; Car, M.; Bogdan, S. Error State Extended Kalman Filter Multi-Sensor Fusion for Unmanned Aerial Vehicle Localization in GPS and Magnetometer Denied Indoor Environments. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 184–190. [Google Scholar]
- Santoro, L.; Brunelli, D.; Fontanelli, D. On-Line Optimal Ranging Sensor Deployment for Robotic Exploration. IEEE Sens. J. 2022, 22, 5417–5426. [Google Scholar] [CrossRef]
- Chen, S.; Xing, A.; Li, X.; Wang, Y.; Liu, W. Robust UWB Navigation System for UAV Swarm. In Proceedings of the 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE), Shenzhen, China, 10–12 February 2023; pp. 101–105. [Google Scholar]
- Zhan, J.-R.; Lin, H.-Y. Improving Visual Inertial Odometry with UWB Positioning for UAV Indoor Navigation. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 4189–4195. [Google Scholar]
- Pourjabar, M.; AlKatheeri, A.; Rusci, M.; Barcis, A.; Niculescu, V.; Ferrante, E.; Palossi, D.; Benini, L. Land & Localize: An Infrastructure-free and Scalable Nano-Drones Swarm with UWB-based Localization. In Proceedings of the 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), Pafos, Cyprus, 19–21 June 2023; pp. 654–660. [Google Scholar]
- Jia, J.; Guo, K.; Li, W.; Yu, X.; Guo, L. Composite Filtering for UWB-Based Localization of Quadrotor UAV With Skewed Measurements and Uncertain Dynamics. IEEE Trans. Instrum. Meas. 2022, 71, 1002313. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, Y.; Li, X.; Xu, H. The positioning system use for autonomous navigation of unmanned aerial vehicles. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 5064–5069. [Google Scholar]
- Cao, Y.; Beltrame, G. VIR-SLAM: Visual, inertial, and ranging SLAM for single and multi-robot systems. Auton. Robot. 2021, 45, 905–917. [Google Scholar] [CrossRef]
- Kao, P.-Y.; Chang, H.-J.; Tseng, K.-W.; Chen, T.; Luo, H.-L.; Hung, Y.-P. VIUNet: Deep Visual–Inertial–UWB Fusion for Indoor UAV Localization. IEEE Access 2023, 11, 61525–61534. [Google Scholar] [CrossRef]
- Yang, B.; Yang, E.; Yu, L.; Loeliger, A. High-Precision UWB-Based Localisation for UAV in Extremely Confined Environments. IEEE Sens. J. 2022, 22, 1020–1029. [Google Scholar] [CrossRef]
- Santoro, L.; Nardello, M.; Brunelli, D.; Fontanelli, D. UWB-Based Indoor Positioning System With Infinite Scalability. IEEE Trans. Instrum. Meas. 2023, 72, 1005711. [Google Scholar] [CrossRef]
- Chen, C.; Kia, S.S. OptiTrack-Aided Supervised Learning for Neural Network-Based Ultra-Wideband Ranging Bias Correction. IEEE Sens. J. 2024, 24, 8484–8492. [Google Scholar] [CrossRef]
- Morón, P.T.; Salimpour, S.; Fu, L.; Yu, X.; Queralta, J.P.; Westerlund, T. Benchmarking UWB-Based Infrastructure-Free Positioning and Multi-Robot Relative Localization: Dataset and Characterization. In Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, ON, Canada, 18–20 July 2023; pp. 1–6. [Google Scholar]
- Chen, H.; Dhekne, A. PnPLoc: UWB Based Plug & Play Indoor Localization. In Proceedings of the 2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Beijing, China, 5–7 September 2022; pp. 1–8. [Google Scholar]
- Santoro, L.; Nardello, M.; Brunelli, D.; Fontanelli, D. Scale up to infinity: The UWB Indoor Global Positioning System. In Proceedings of the 2021 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Virtual Conference, 28–29 October 2021; pp. 1–8. [Google Scholar]
- Mayer, P.; Magno, M.; Benini, L. Self-Sustaining Ultrawideband Positioning System for Event-Driven Indoor Localization. IEEE Internet Things J. 2024, 11, 1272–1284. [Google Scholar] [CrossRef]
- Plangger, J.; Govindasamy Ravichandran, H.; Rodin, S.C.; Atia, M. System Design and Performance Analysis of Indoor Real-time Localization using UWB Infrastructure. In Proceedings of the 2023 IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, 17–20 April 2023; pp. 1–8. [Google Scholar]
- Kim, D.-H.; Farhad, A.; Pyun, J.-Y. UWB Positioning System Based on LSTM Classification With Mitigated NLOS Effects. IEEE Internet Things J. 2023, 10, 1822–1835. [Google Scholar] [CrossRef]
- Barbieri, L.; Brambilla, M.; Pitic, R.; Trabattoni, A.; Mervic, S.; Nicoli, M. UWB Real-Time Location Systems for Smart Factory: Augmentation Methods and Experiments. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August–3 September 2020; pp. 1–7. [Google Scholar]
- Adame, T.; Igual, J.; Catalan, M. Fast Deployment of a UWB-Based IPS for Emergency Response Operations. Sensors 2023, 23, 4193. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Assaad, R.H. A BIM-enabled digital twin framework for real-time indoor environment monitoring and visualization by integrating autonomous robotics, LiDAR-based 3D mobile mapping, IoT sensing, and indoor positioning technologies. J. Build. Eng. 2024, 86, 108901. [Google Scholar] [CrossRef]
- Niu, Z.; Yang, H.; Zhou, L.; Farag Taha, M.; He, Y.; Qiu, Z. Deep learning-based ranging error mitigation method for UWB localization system in greenhouse. Comput. Electron. Agric. 2023, 205, 107573. [Google Scholar] [CrossRef]
- Song, Y.; Hsu, L.-T. Tightly coupled integrated navigation system via factor graph for UAV indoor localization. Aerosp. Sci. Technol. 2021, 108, 106370. [Google Scholar] [CrossRef]
- Cheng, L.; Zhao, Z.; Shi, Y.; Lu, Y. Implicit unscented particle filter based indoor fusion positioning algorithms for sensor networks. Alex. Eng. J. 2024, 94, 104–119. [Google Scholar] [CrossRef]
- Wei, J.; Wang, H.; Su, S.; Tang, Y.; Guo, X.; Sun, X. NLOS identification using parallel deep learning model and time-frequency information in UWB-based positioning system. Measurement 2022, 195, 111191. [Google Scholar] [CrossRef]
- Guan, M.; Wen, C. Autonomous exploration using UWB and LiDAR. J. Autom. Intell. 2023, 2, 51–60. [Google Scholar] [CrossRef]
- Djosic, S.; Stojanovic, I.; Jovanovic, M.; Nikolic, T.; Djordjevic, G.L. Fingerprinting-assisted UWB-based localization technique for complex indoor environments. Expert Syst. Appl. 2021, 167, 114188. [Google Scholar] [CrossRef]
- Zang, L.; Jiao, J.; Wang, J.; Ding, N.; Wang, Z.; Min, X. Angle-Weighted trilateration method fusing multi-data processing technologies in indoor scene. Digit. Signal Process. 2024, 147, 104417. [Google Scholar] [CrossRef]
- Li, C.-H.; Lai, A.I.-C.; Wu, R.-B. Accuracy enhancement of Wi-Fi positioning by ranging in dense UWB networks. Comput. Commun. 2024, 213, 179–187. [Google Scholar] [CrossRef]
- Qian, L.; Chan, A.; Cai, J.; Lewicke, J.; Gregson, G.; Lipsett, M.; Rios Rincón, A. Evaluation of the accuracy of a UWB tracker for in-home positioning for older adults. Med. Eng. Phys. 2024, 126, 104155. [Google Scholar] [CrossRef] [PubMed]
- Shyam, S.; Devaraj, S.J.; Ezra, K.; Delattre, J.; Lynus, G.K. Chapter 10—Design and implementation of UWB-based cyber-physical system for indoor localization in an industry environment. In Intelligent Edge Computing for Cyber Physical Applications; Hemanth, D.J., Gupta, B.B., Elhoseny, M., Shinde, S.V., Eds.; Intelligent Data-Centric Systems; Academic Press: New York, NY, USA, 2023; pp. 167–185. ISBN 978-0-323-99412-5. [Google Scholar]
- Morawska, B.; Lipinski, P.; Lichy, K.; Adamkiewicz, K. Transfer learning-based UWB indoor localization using MHT-MDC and clusterization-based sparse fingerprinting. J. Comput. Sci. 2022, 61, 101654. [Google Scholar] [CrossRef]
- Bregar, K. Indoor UWB Positioning and Position Tracking Data Set. Sci. Data 2023, 10, 744. [Google Scholar] [CrossRef] [PubMed]
- Kia, G.; Ruotsalainen, L.; Talvitie, J. Toward Accurate Indoor Positioning: An RSS-Based Fusion of UWB and Machine-Learning-Enhanced WiFi. Sensors 2022, 22, 3204. [Google Scholar] [CrossRef]
- Lou, P.; Zhao, Q.; Zhang, X.; Li, D.; Hu, J. Indoor Positioning System with UWB Based on a Digital Twin. Sensors 2022, 22, 5936. [Google Scholar] [CrossRef]
- Zeng, Y.; Shen, S. Eliminating UWB Self Positioning Error Based on Kalman Filter Algorithm. In Proceedings of the Proceedings of the 2022 2nd International Conference on Bioinformatics and Intelligent Computing, Harbin, China, 21–23 January 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 217–222. [Google Scholar]
- Zhang, B.; Shen, L.; Yao, J.; Tang, S.-K.; Mirri, S. UWB Hybrid Filtering-Based Mobile IoT Device Tracking. In Proceedings of the Proceedings of the 2023 ACM Conference on Information Technology for Social Good, Lisbon, Portugal, 6–8 September 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 471–476. [Google Scholar]
- Zhang, B.; Zhan, H.; Hou, Y.; Chen, X. Ultra-wideband/BDS Indoor and Outdoor Seamless Positioning Algorithm Based on FNN-WCF. In Proceedings of the Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition, Chengdu, China, 19–21 August 2022; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1120–1125. [Google Scholar]
- Neuhold, D.; Fakhreddine, A.; Bettstetter, C. HiPR+: A Protocol for Centimeter 3D Localization based on UWB. In Proceedings of the Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems, Montreal, QC, Canada, 24–28 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 181–188. [Google Scholar]
- Zhao, J.; Hou, Q.; Xu, Z.; Lu, D.; Yang, G.; Shi, H. Design and Implementation of Indoor Positioning System Based on STM32F103C8T6. In Proceedings of the International Conference on Frontiers of Electronics, Information and Computation Technologies, Changsha, China, 21–23 May 2021; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]
- Großwindhager, B.; Stocker, M.; Rath, M.; Boano, C.A.; Römer, K. SnapLoc: An ultra-fast UWB-based indoor localization system for an unlimited number of tags. In Proceedings of the Proceedings of the 18th International Conference on Information Processing in Sensor Networks, Montreal, QC, Canada, 15–18 April 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 61–72. [Google Scholar]
- Yang, J.; Dong, B.; Wang, J. VULoc: Accurate UWB Localization for Countless Targets without Synchronization. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–25. [Google Scholar] [CrossRef]
- Zhao, M.; Chang, T.; Arun, A.; Ayyalasomayajula, R.; Zhang, C.; Bharadia, D. ULoc: Low-Power, Scalable and cm-Accurate UWB-Tag Localization and Tracking for Indoor Applications. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies; Association for Computing Machinery: New York, NY, USA, 2021; Volume 5, pp. 1–31. [Google Scholar] [CrossRef]
- Polonelli, T.; Schläpfer, S.; Magno, M. Performance Comparison between Decawave DW1000 and DW3000 in low-power double side ranging applications. In Proceedings of the 2022 IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 1–3 August 2022; pp. 1–6. [Google Scholar]
Vendor | Chip/Module | Estimation Method | LoS Accuracy (± cm/°) | Operation Range (m) | Frequency Range (GHz) | UWB Channels | Application | Reference |
---|---|---|---|---|---|---|---|---|
Qorvo | DWM1000 | TWR, TDoA | 15 in 2D, 30 in 3D | 300 | 3.5–6.5 | 1–5, 7 | IPS, asset, employer | [42] |
Qorvo | DW3110, DW3210 | TWR, TDoA | 15 in 2D, 30 in 3D | 50 | 6.5, 8 | 5, 9 | IPS, asset, employer | [32,43] |
Qorvo | DW3120, DW3220 | TWR, TDoA, PDoA | 15 in 2D, 30 in 3D | 50 | 6.5, 8 | 5, 9 | IPS, asset, employer | [44,45] |
NXP | SR150 | AoA, TWR, TDoA | 10/3 | 50 | 6.24–8.24 | 5, 6, 8, 9 | Industrial IoT, RTLS | [35] |
NXP | SR40 | TWR, TDoA | 10 | 50 | 6.24–8.24 | 5, 6, 8, 9 | IoT battery-based, IPS | [46] |
Microchip | ATA8350 | TDoA | 15 | - | 6.2–7.8 | 5–8 | IoT battery-based | [47] |
Microchip | ATA8352 | TDoA | 4 | - | 6.2–8.3 | 5–9 | IoT battery-based | [48] |
Infineon | 3DB6830 | TWR | 10 | 120 | 6-8 | 5–9 | Industrial IoT | [39] |
Spark | SR1010 | TWR | 30 | 100 | 3.1–6 | 1–5 | IoT applications, Asset and individual tracking | [49] |
Spark | SR1020 | TWR | 30 | 100 | 6–9.3 | 6–9 | Industrial IoT | [49] |
STM | MOD1 | TWR | 10 | 600 | 3.25–4.75 | 1, 2, 3, 4 | RTLS, asset, employer | [41] |
Vendor | Algorithm/Topology | Accuracy (± cm) | Operation Range (m) | Frequency Range (GHz) | Application | Reference |
---|---|---|---|---|---|---|
Inpixon | TWR/AoA | 40 | 50 | 6.4 | Asset, employer | [50] |
Eliko | TWR/TDoA | 50 | 70 | NA | RTLS | [51] |
Litum | TWR/TDoA | NA | 70 | 3.25–6.75 | Asset, employer, forklift | [52] |
WOXU | ToF/TDoA | 10 | NA | 3.24–6.74 | RTLS | [53] |
Sewio | TDoA | 30 | 50 | 3–7 | Asset, employer, forklift | [54] |
KKM | TDoA | 30 | NA | NA | Asset | [55] |
Kinexon | TDoA/AoA | 20 | NA | 6.25–6.75 | RTLS | [56] |
Pozyx | ToF | 30 | 50 | 3.5–6.5 | People, assets, vehicles | [57] |
Zebra | ToF | 30 | 200 | 6.35–6.75 | Transportation, warehouse | [58] |
Tsingoal | ToF/TDoA | 30 | NA | NA | RTLS | [59] |
Ubisense | TDoA/AoA | 30 | 65 | 6–7 | Asset | [60] |
Kathrein | ToF/TDoA | 10 | 40 | 3–10 | Vehicle, forklift | [61] |
Ubudu | TDoA/TWR | 20 | NA | NA | Portable tracking device | [62] |
Tracktio | TDoA | 30 | 150 | 3–7 | Worker, warehouse | [63] |
Leisure | ToF/TDoA | 1 | 100 | 3.1–10.6 | Vehicles | [64] |
MK | TDoA/AoA | 7 | NA | 6.5–8 | RTLS | [65] |
BeSpoon | TWR | 10 | 880 | 3.99 | RTLS | [66] |
Topology | UWB Chip/Module | Multi-Sensor | UWB Frequency/Channel | Optimization Algorithm/Filter | Application | Improvement (%)/ Accuracy (cm) | Monitoring | Reference No., Year |
---|---|---|---|---|---|---|---|---|
SS-TWR | DW1000 | UWB | 5 GHz | KF, PF | IPS | 13 cm | MATLAB | [79], 2023 |
DS-TWR | DW3000 | UWB | 6.5 GHz, CH5 | Trilateration, LSM | IPS, Robotic | 50 cm | Python | [80], 2024 |
SS-TWR | DW1000 | UWB | 3.5–6.5 GHz | Trilateration | IPS | 14 cm | Custom | [81], 2020 |
DS-TWR | DW1000 | UWB | 3.5–6.5 GHz | KF | IPS | 8% | Custom | [82], 2021 |
TWR | DW1000 | UWB+IMU | 3.5–6.5 GHz | DUKF, RMSE | IPS | 6 cm | MATLAB | [83], 2024 |
AltDS-TWR, TDoA | DW-EVK1000 | UWB | 3.5–6.5 GHz | Multilateration | IPS | - | Custom | [84], 2020 |
SDS-TWR, AltDS-TWR | ElikoUWB-RTLS | UWB | 3.5–6.5 GHz | Active–passive method | RTTS | 20% | R Language | [85], 2022 |
TWR | Wi-Pos UWB | UWB | CH5, 6.5 GHz | KF | IPS | 50%, 15 cm | Custom | [86], 2024 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | Trilateration | RTTS | 9 cm | Web-based application | [98], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | Taylor algorithm | IPS | 10 cm | Custom | [99], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | LSTM, DeepTAL | IPS | 20 cm | Custom | [100], 2019 |
TWR, TDoA | DW3000 | UWB | CH5, 6.5 GHz | EKF | IPS | 38%, 22 cm | Custom | [103], 2023 |
TDoA | Custom | IR, UWB | 7.25 GHz | Multilateration, median, mean F. | RTLS | 10 cm | Custom | [104], 2021 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | - | IPS | 15 cm | Custom | [105], 2020 |
PDoA | Custom | UWB, IMU, GPS | 6.5 GHz | Chan andconvex method | IPS | 45 cm | Custom | [110,111], 2021 |
AoA, PDoA | DecaWave Beta-PDoA | UWB | 3.5–6.5 GHz | Triangulation | IPS | - | KDE plots | [112], 2022 |
wrapped PDoA | DW1000 | UWB | 3.5–6.5 GHz | GMM | RTLS | 8 cm | Custom | [113], 2022 |
TWR | DW1000 | UWB, IMUCamera | 3.5–6.5 GHz | MCKF | Robotics, RTLS | 13.7 cm | SLAM | [122], 2019 |
TWR | P440 | UWB, IMU | 4.3 GHz | ESKF | Robotics, RTLS | 20 cm | Custom | [4], 2020 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | M-RKF | IPS, robotics | 31%, 30 cm | Custom | [123], 2023 |
TDoA | Pozyx UWB | UWB, LiDAR | CH5, 6.5 GHz | MVG, EKF, LPF | RTLS, robotics | 6.16%, 8 cm | Python | [124], 2024 |
TWR | Custom | UWB, LiDAR | – | EKF, PDR | IPS, robotics | 47.8 cm | Custom | [125], 2024 |
TWR | MDEK1001 | UWB LiDAR | 3.5–6.5 GHz | Trilateration | IPS, robotics | 7 cm | Custom | [126], 2021 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | UKF | IPS, UAV | 15 cm | Custom | [136], 2022 |
TWR | Custom | UWB | CH1, 3.5 GHz | MLKF | RTLS, UAV | 60%, 22.4 cm | Custom | [137], 2021 |
TWR | P440 | UWB, IMU | 4.3 GHz | ET-EKF | IPS, UAV | 10.3%, | Gazebo platform | [138], 2022 |
TDoA | LinkTrack-P | UWB, IMU | 3.5 –6.5 GHz | LSTM-RNN, EKF | IPS, UAV, robotics | 5 cm | Custom | [139], 2023 |
TDoA | LinkTrack-S | UWB, IMU, camera | 3.5–6.5 GHz | Custom | IPS, UAV, robotics | 41.4 cm | SLAM | [140], 2023 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | Multilateration | RTLS, IPS, UAV | 25% | Custom | [141], 2023 |
PDoA | DW3000 | UWB | CH5, 6.5 GHz | Distance adaptive weighting | IPS | 36 cm | Custom | [149], 2023 |
TDoA | LinkTrack | UWB, IMU, camera | 3.5–6.5 GHz | - | IPS, UAV | 5 cm | Custom | [143], 2020 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | CWCS | IPS, robotics | 20 cm | Custom | [150], 2024 |
TDoA | DW1000 | UWB, IMU | 3.5–6.5 GHz | Trilateration, Kalman F. | IPS, RTLS | 94.7%, 8.25 cm | Custom | [151], 2022 |
AoA, TDoA | DW1000 | UWB, IMU | 3.5–6.5 GHz | PAAL, UKF | RTLS | 12%, 12.5 cm | Custom | [152], 2021 |
TWR, TDoA | DW1000 | UWB | 3.5–6.5 GHz | Spoofing detection | RTLS | 30 cm | Custom | [153], 2024 |
TDoA | DW1000 | UWB | 4 GHz, 6 GHz | Aperture-coupled patch | IPS, RTLS, UAV | Size of an apple | Custom | [154], 2022 |
DS-TWR | MDEK1001 | UWB | 3.5–6.5 GHz | Trilateration | RTLS | 23.76 cm | Custom | [155], 2021 |
TDoA | EVK1000 | UWB | 3.5–6.5 GHz | TDMA | RTLS, Robotic | <30 cm | Python | [156], 2019 |
AltDS-TWR | TREK1000 | UWB | 3.5–6.5 GHz | Multilateration, KF | RTLS | <28 cm | Custom | [157], 2019 |
SDS-TWR | MAX2000/ DW1000 | UWB, IMU | 3.5–6.5 GHz | EKF | RTLS, IPS | 38.24%, 11 cm | Custom | [91], 2021 |
DS-TWR, TDoA | DW1000 | UWB | 3.5–6.5 GHz | KF | IPS | 10 cm | MATLAB | [90], 2022 |
SS-TWR | DW3000 | UWB | CH5, 6.5 GHz | Trilateration, WAKF | IPS | 20.84%, 25 cm | Custom | [158], 2023 |
EDS-TWR | DW1000 | UWB | 3.5–6.5 GHz | EKF | IPS | 80.53%, 51.8 cm | Custom | [92], 2024 |
TWR-TDoA | DW1000 | UWB | 3.5–6.5 GHz | MPGA | RTLS | 11.21 cm | Python | [159], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | ML | IPS | 29%, 46.6 cm | Custom | [160], 2021 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | MCC-VC | IPS | 42 cm | MATLAB | [161], 2023 |
TDoA | Trimension NXP SR040 | UWB, Bluetooth | 6–8.5 GHz | Trilateration, LS | IPS | 35 cm | Samsung’s app | [101,102], 2024 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | WIP, DNN, LSTM | IPS | 8.1 cm | Custom | [162], 2021 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | - | IPS | 26 cm | Custom | [163], 2019 |
TDoA | DW1000 | UWB | CH5, 6.5 GHz | EKF | IPS | <50 cm | Custom | [164], 2020 |
TDoA | DW1000 | UWB, IMU | 3.5–6.5 GHz | UKF | IPS | 34 cm | Custom | [165], 2019 |
TDoA | MDEK1001 | UWB | 3.5–6.5 GHz | LS, KF | IPS | 15 cm | SLAM | [97], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | LinHPS | IPS | 10 cm | Custom | [166], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | PZS, DBLD | IPS | ≈27 cm | SLAM | [17], 2021 |
TDoA, FDoA | DW1000 | UWB | 3.5–6.5 GHz | WLS, KF | IPS | ≈60 cm | Custom | [107], 2021 |
SS-TWR, TDoA, FDoA | Custom | UWB | CH5, 6.5 GHz | BYOPS | IPS, robotics | 40 cm | UCAS | [167], 2023 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | - | IPS, robotics | 30 cm | Custom | [108], 2021 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | Trilateration | IPS | 10 cm | Python | [168], 2023 |
TDoA | NXP-SR100T, | UWB | 6–8.5 GHz, CH5, CH9 | KF, RNN | IPS | 31% | Custom | [169], 2023 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | EKF | RTLS | 17 cm | C language | [109], 2019 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | SWF | IPS | 20 cm | Custom | [170], 2020 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | FLA | IPS | 17.6 cm | Custom | [171], 2019 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | LS | IPS | 8 cm | Custom | [172], 2024 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | EKF | RTLS | 19 cm | Custom | [173], 2019 |
TDoA | DW1000 | UWB, IMU | 3.5–6.5 GHz | Dead Reckoning, KF | IPS, robotics | 10 cm | Custom | [174], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | ARPF, | IPS | 50% | Custom | [175], 2023 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | Triangulation | IPS | 9 cm | Custom | [176]. 2022 |
TWR, TDoA | DW1000 | UWB | 3.5–6.5 GHz | - | IPS | 30 cm | Custom | [177], 2023 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | EKF | IPS | 30 cm | Custom | [178], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | Multilateration, DF, EKF | IPS | 15.8 cm | Custom | [179], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | EKF | IPS | 30.3 cm | Custom | [180], 2023 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | MAL | IPS | 20 cm | Custom | [181], 2022 |
TWR | DW1000 | UWB, GPS | 3.5–6.5 GHz | Trilateration | IPS | 11.8 cm | Custom | [182], 2021 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | IGN | RTLS | 50 cm | Custom | [183], 2020 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | UKF | IPS | 50.28%, 48.7 cm | Custom | [184], 2024 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | Trilateration, EKF | RTLS | 31 cm | Unity software | [185], 2023 |
TWR | DW1000 | UWB, LiDAR | 3.5–6.5 GHz | VGICP | IPS, robotics | 40 cm | SLAM | [186], 2022 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | MCA | IPS, robotics | 30 cm | Custom | [187], 2021 |
TWR | P440 | UWB, IMU | 4.3 GHz | REKF | IPS | 56 cm | Custom | [188], 2022 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | EKF | IPS | 60.61%, 10 cm | Custom | [189], 2020 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | EKF | IPS, robotics, UAV | 42.09%, 14.1 cm | Custom | [190], 2021 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | KF | IPS, robotics | 16 cm | Custom | [191], 2024 |
TWR | Pozyx UWB | UWB | 3.5–6.5 GHz | EKF | RTLS, robotics | 20 cm | ROS | [192], 2020 |
TWR | Mini 3s | UWB, LiDAR | 3.5–6.5 GHz | EKF | IPS, robotics | <40 cm | SLAM-ROS | [193], 2019 |
DS-TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | KF | IPS | 7.58 cm | Custom | [194], 2020 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | EKF | IPS, robotics, UAV | 60%, 48 cm | Custom | [195], 2020 |
TWR | Samsung UM100 | UWB, camera | 3.1–8.976 GHz | EKF | IPS | 20 cm | SLAM | [196], 2020 |
TWR | Pozyx UWB | UWB, encoder | 3.5–6.5 GHz | EKF | RTLS, robotics | 6 cm | Custom | [135], 2023 |
TWR | Pozyx UWB | UWB, LiDAR, IMU | 3.5–6.5 GHz | EKF | RTLS, robotics | 10 cm | SLAM-ROS | [128], 2020 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | CRLB | IPS, robotics | 12 cm | Custom | [129], 2023 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | EKF | IPS, robotics | 54 cm | Custom | [133], 2020 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | NN | IPS, robotics | 89.2 cm | Custom | [197], 2024 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | EFIR-RTS | IPS, robotics | 25.35%, 16 cm | SLAM | [198], 2022 |
TWR | DW1000 | UWB, LiDAR | 3.5–6.5 GHz | UKF | IPS, robotics, UAV | 34 cm | SLAM | [199], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | - | IPS, robotics, UAV | 34.6 cm | Custom | [142], 2021 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | Multilateration | IPS, UAV | 28 cm | Custom | [141], 2023 |
TWR | Pozyx UWB | UWB, LiDAR, IMU | 3.5–6.5 GHz | EKF | IPS, UAV | 39 cm | SLAM | [200], 2022 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | EKF | IPS, UAV | 32%, 6.9 cm | Custom | [146], 2024 |
SS-TWR | DW1000 | UWB | 3.5–6.5 GHz | Multilateration, GDoP | IPS, robotics, UAV | 15 cm | SLAM | [201], 2022 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | EKF | RTLS, UAV | 15 cm | Custom | [202], 2023 |
TDoA | LinkTrack-S | UWB, IMU, camera | 3.5–6.5 GHz | UWB odometryconstraint | IPS, UAV | 43.4 cm | SLAM | [203], 2022 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | EKF | IPS, UAV | 20.8 cm | Custom | [145], 2022 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | EKF | IPS, UAV | 27.8 cm | Custom | [204], 2023 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | Multilateration | IPS, UAV | 10 cm | Custom | [144], 2020 |
TDoA | LinkTrack-S | UWB, IMU | 3.5–6.5 GHz | EKF | IPS, UAV | 3.8 cm | Custom | [148], 2023 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | STVBF | IPS, UAV | 42.0%, 40 cm | Custom | [205], 2022 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | Trilateration, KF | IPS, UAV | 10 cm | C++ | [206], 2021 |
TWR | DW1000 | UWB, IMU, camera | 3.5–6.5 GHz | Outlier rejection algorithm | IPS, UAV | 20%, 14 cm | SLAM | [207], 2021 |
TDoA | LinkTrack-S | UWB, IMU, camera | 3.5 –6.5 GHz | CNN, LSTM | IPS, UAV | 42 cm | Custom | [208], 2023 |
TWR | Pozyx UWB | UWB | 3.5–6.5 GHz | GDoP | IPS, UAV | 20 cm | Custom | [209], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | Multilateration | IPS, UAV | 30 cm | Custom | [210], 2023 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | ANN | RTLS | 26 cm | Custom | [211], 2024 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | LS | IPS, robotics | 20 cm | Custom | [212], 2023 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | DoP | IPS | 44 cm | Custom | [213], 2022 |
TDoA | LinkTrack | UWB, LiDAR | 3.5–6.5 GHz | PF | IPS, robotics | 31.2 cm | Custom | [131], 2021 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | PDoP | IPS | 20 cm | Custom | [214], 2021 |
DS-TWR | DW1000, DW3000 | UWB | 3.5–6.5 GHz | Multilateration | IPS | 40 cm | MATLAB | [215], 2024 |
SDS-TWR | DW1000 | UWB | 3.5–6.5 GHz | Trilateration | RTLS | 10 cm | Custom | [216], 2023 |
DS-TWR | DW1000 | UWB | 3.5–6.5 GHz | EKF, LSTM | IPS | 50%, 37 cm | MATLAB | [217], 2023 |
AoA, TDoA | DW1000, Ubisense D4 | UWB | 3.5–6.5 GHz | EKF, PF | RTLS | 40 cm | Custom | [218], 2020 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | Multilateration | RTLS | 53 cm | Python | [219], 2023 |
TWR | DW1000 | UWB LiDAR | 3.5–6.5 GHz | Trilateration, LS | IPS, robotics | 16.34 cm | Python | [220], 2024 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | LS, ECA | IPS | 17 cm | Python | [221], 2023 |
TWR | LinTrack | UWB, IMU | 3.5–6.5 GHz | EKF | IPS, UAV | 51 cm | Custom | [222], 2021 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | ANN | IPS | 88.45% | Custom | [76], 2022 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | PF, EKF | IPS | 36.15%, 71.5 cm | MATLAB | [223], 2024 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | CNN | IPS | 7.35 cm | Custom | [224], 2022 |
TWR | DW1000 | UWB LiDAR | 3.5–6.5 GHz | EKF, PF | IPS, robotics | 7.2 cm | SLAM | [225], 2023 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | Trilateration, KNN | IPS | 4.71 cm | Custom | [226], 2021 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | Trilateration, UKF | IPS | 4 cm | Custom | [227], 2024 |
TWR | DW1000 | UWB, Wi-Fi | CH12, 3.993 GHz | KNN | IPS | 69.8%, 30 cm | Custom | [228], 2024 |
TWR | Pozyx UWB | UWB | 3.5–6.5 GHz | Trilateration | IPS | 30 cm | Python | [229], 2024 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | Triangulation, KF | IPS | 68%, 10 cm | Web/mobile application | [230], 2023 |
TWR | Pozyx UWB | UWB | 3.5–6.5 GHz | ANN, KNN | IPS | 34%, 31.6 cm | Python | [231], 2022 |
ADS-TWR | DW1000 | UWB | 3.5–6.5 GHz | Multilateration, EKF | IPS | - | Python | [232], 2023 |
TWR | Pozyx UWB | UWB, Wi-Fi | 3.5–6.5 GHz | Trilateration | IPS | 87 cm | Python | [233], 2022 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | SMA | IPS | 6.69 cm | Custom | [234], 2022 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | Trilateration, KF | IPS, robotics | 38%, 12.4 cm | Custom | [235], 2022 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | WHFFA | IPS | 4 cm | Custom | [236], 2023 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | FNN | IPS | 25 cm | Custom | [237], 2023 |
DS-TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | Multilateration, LS, EKF | IPS | 20 cm | Custom | [238], 2022 |
TWR | DW1000 | UWB, IMU | 3.5–6.5 GHz | Trilateration | IPS | 20 cm | Custom | [239], 2022 |
TDoA | DW1000 | UWB | 3.5–6.5 GHz | Trilateration | IPS | 33.4 cm | Custom | [240], 2019 |
TWR | DW1000 | UWB | 3.5–6.5 GHz | LS, Chan | IPS | 57.6%, 15.7 cm | Python | [241], 2022 |
AoA, PDoA | DW1000 | UWB, IMU | 3.5–6.5 GHz | Triangulation | IPS | 10 cm | Custom | [242], 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Okby, M.F.R.; Junginger, S.; Roddelkopf, T.; Thurow, K. UWB-Based Real-Time Indoor Positioning Systems: A Comprehensive Review. Appl. Sci. 2024, 14, 11005. https://doi.org/10.3390/app142311005
Al-Okby MFR, Junginger S, Roddelkopf T, Thurow K. UWB-Based Real-Time Indoor Positioning Systems: A Comprehensive Review. Applied Sciences. 2024; 14(23):11005. https://doi.org/10.3390/app142311005
Chicago/Turabian StyleAl-Okby, Mohammed Faeik Ruzaij, Steffen Junginger, Thomas Roddelkopf, and Kerstin Thurow. 2024. "UWB-Based Real-Time Indoor Positioning Systems: A Comprehensive Review" Applied Sciences 14, no. 23: 11005. https://doi.org/10.3390/app142311005
APA StyleAl-Okby, M. F. R., Junginger, S., Roddelkopf, T., & Thurow, K. (2024). UWB-Based Real-Time Indoor Positioning Systems: A Comprehensive Review. Applied Sciences, 14(23), 11005. https://doi.org/10.3390/app142311005