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Abstract: Serious concerns exist that the increasing frequency of fires may delay the recovery of
ozone given increasing temperatures due to climate change. Australian bushfires from September
2019 to February 2020 were catastrophic. A random forest spatial-temporal (RF sp) analysis using
satellite data to detect an association between Australian bushfires and stratosphere ozone on the
local depletion of ozone in the vicinity of fires in three regions of Australia (Pacific Ocean, Victoria,
NSW) has shown a significant reduction in ozone attributable to aerosols from fires. By intervention
analysis, increases in aerosols in all three regions were shown to have a significant and ongoing
impact 1–5 days later on reducing ozone (p < 0.0001). Intervention analysis also gave similar periods
of aerosol exceedance to those found by Hidden Markov models (HMMs). HMMs established
a significant and quantifiable decline in ozone due to bushfire-induced aerosols, with significant
lags of 10–25 days between times of aerosol exceedance and subsequent ozone level decline in all
three regions.

Keywords: ozone; aerosol; Australian bushfires; spatial-temporal random forests; state space models;
hidden Markov models; multiple change-point analysis; intervention analysis

1. Introduction

The recent 2019–2020 bushfire season was one of the worst fire seasons ever recorded
in Australia. Human death tolls were less than the previous Black Saturday bushfires
in early 2009, where 173 people died; in fact, in the 2019–2020 bushfires, 34 confirmed
deaths were recorded. The fires, nonetheless, had devastating immediate effects on the
environment and the economy. Over 5900 buildings were destroyed and many billions
of dollars of property were damaged across a vast area, with estimates ranging from
24.3 million hectares to 33.8 million hectares, making it the most costly and damaging
bushfire season on record [1,2]. Environmentally, over one billion mammals, birds and
reptiles were killed and a further estimated 2 billion were displaced. In fact, the World
Wildlife Fund puts estimates of deaths of animals at nearly 3 billion [3]. It has been
suggested that entire species may have become extinct because of these fires [4], and many
threatened species are now facing extinction [5–7]. These are the readily measurable and
observable effects of bushfires.

Climate change [8] predictions anticipate increases both in the number and intensity
of bushfires in the future. It is widely known the overall effect of CO2 on the warming of
our climate but there is also evidence that aerosols from fires can also have an effect on the
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ozone layer. The two reports [9,10], alongside many other papers, present the evidence for
this. Accordingly, it is of vital importance to understand the relationship between bushfires-
induced emissions of aerosol and other pollutants they release into the atmosphere on
the one hand, and ozone depletion on the other. As illustrated in Figure 1 visible light is
essentially unaffected by the ozone layer, whereas with harmful UV light the ozone layer
scatters and absorbs it, significantly reducing the amount that reaches the surface.

There are other, less easily observed effects. In particular, fires are a major source of
pollutants originating from the land; specifically, particulate matter in the form of aerosols
and greenhouse gases (mainly CO2) released into the atmosphere after the combustion
of organic materials, i.e., plants. This plant matter is called biomass and when burned it
releases aerosols [11].

An image illustrating that aerosols are composed of a highly diverse mixture of
particles ranging in size from individual tiny particles no more than 10 nm in diameter to
large clustering aggregates containing hundreds of particles up to 2 µm wide, is displayed
in Figure 2.

Figure 1. (left) NASA measurements of aerosols optical thickness over April 2019. (right) NASA
measurements of aerosols’ optical thickness over December 2020.

Figure 2. (A) Ammonium sulfate particles containing soot (marked by the small arrows) and fly-
ash spheres (marked by the bold arrow in the lower-right corner). (B) In a typical branching soot
aggregate; the arrows point to a carbon film that connects individual spherules within the aggregate.
(C) Fly-ash spheres. Source: [12].

The aim of this study is to understand and quantify the spatiotemporal relationship
between bushfires and ozone levels in the atmosphere. To this end we undertake statistical
analysis, using modern empirical and spatiotemporal statistical techniques of bushfire and
ozone layer data to discover and measure correlations both geographically and over time
between the ozone and bushfire-induced aerosol datasets. We aim to analytically study
and provide evidence for or against the hypothesis that bushfires result in a localized effect
on the ozone layer in the vicinity of the bushfire or downwind of it.
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2. Research Area

Australia has regular bushfires throughout mid-to-late summer, and often earlier in
the season. Depending on global meteorological conditions, some seasons are worse than
others. A particularly bad season was the summer of 2019–2020. Devastating bushfires
spread through parts of New South Wales, Victoria and South Australia during the months
of December 2019 to February 2020. The 2019/2020 bushfire season was devastating and
destructive, releasing millions of tonnes of CO2, and creating much damage to the environ-
ment, property, wildlife, flora and fauna. These recent 2019–2020 ‘Black Summer’ bushfires
altogether put a serious burden on health systems, resulting in the loss of a considerable
number of lives; 34 in total as well as around 3500 hospitalizations estimated [13] nation-
wide. A devastating effect on the environment and economy was also recorded [14] and
millions of tonnes of CO2 were released [2] as a result of these fires. Climate change [8,15,16]
predictions anticipate increases both in the number and intensity of bushfires in the future.

Specifically in relation to Australia consider the left panel of Figure 1 which shows
constant and relatively low aerosol optical thickness levels over the month of April in
2019 when there were no bushfires in Australia. The right panel depicts the aerosol
optical thickness throughout December 2020 during the Black Summer bushfires. It shows
high aerosol optical thickness levels which are localized to the south-east of Victoria and
New South Wales where the majority of fires occurred. Figure 1 suggests that there is a
relationship between bushfires and aerosols.

Evidence substantiating these claims in the IPCC report concerning this increased
intensity and its consequences are presented in several papers. They show that the smoke re-
leased from bushfires during Australia’s Black Summer (2019–2020) could lead to persistent
stratospheric warming [15], and this could result in large disturbances in the composition
of the stratosphere [17], and serve as a potential predictor of the consequences of future
extreme bushfire events [16].

This study aims to undertake a statistical analysis using two different tree-based
techniques from geospatial statistics of bushfire and stratospheric ozone layer data to
discover and measure correlations, both geographically and over time, between these
datasets. The specific tree-based method that is used for this analysis will be random
forests for spatial-temporal data. We shall also model changing states over the 181-day
period covering September to February of ozone with respect to aerosol using Hidden
Markov models [18], where the variables analyzed are total sum ozone (TSO) and total
sum aerosol (TSA) which are defined in Section 3.1 on data. Our aim is that implementing
these methodologies will help establish whether and how ozone levels at high altitudes are
affected by bushfires.

It is expected that the distributional properties of the total cumulative sum of
ozone/aerosol values contained within a localized region must change over time. It
is unlikely that on days without bushfires, there will be a rise in local aerosol but on days
with bushfire, it is highly probable to observe a rise in local aerosol. The studies cited
above, [15,19,20], have established a relationship between aerosol and ozone; thus, changes
in aerosol levels would also result in changes in ozone but not necessarily in the same
locality and possibly with a time delay.

Several papers [15,21] examine the connections between specific bushfires (2017 west-
ern Canadian wildfires and the Australian 2019–2020 Black Summer bushfires) and the
subsequent depletion of ozone levels in the vicinities of the Antarctic and Arctic. These
papers, however, do not localize the effect bushfires have on the ozone levels. For example, it is
known that ozone depletion tends to accumulate in the Antarctic and Arctic regions [22]
where we would expect depletions to be seen, but we would also anticipate localized
depletion closer to the fire even possibly within a shorter time scale and the focus is to
test this in our study. Statistical evidence indicates that bushfires have been increasing in
frequency in Victoria since 1995 [23] and also nationally.

The Australian bushfires of 2019–2020 severely affected the air quality of the eastern
half of Australia. Vast plumes of smoke were projected high into the atmosphere and were
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transported around the world, even reaching across the Pacific Ocean into the continent of
South America [24]. Measurements taken from satellites have recorded that the smoke in
these plumes has caused noticeable changes in the composition of the upper atmosphere
and, more importantly, a decline in stratospheric levels of ozone [20,25]. But the mechanism
for how smoke from the fire might lead to, or exacerbate, ozone depletion is still uncertain.
Solomon et al. [19] suggested that the particulate matter of this smoke does contribute to
the destruction of stratospheric ozone contrary to the atmospheric warming hypothesis
suggested by Yu et al. [15,21].

The mechanism for ozone depletion from bushfires is depicted in Figure 3, taken
from [26]. Briefly, oxygenated organic compounds of the type found in aerosols from
bushfires can absorb hydrochloric acid and carry it into the stratosphere. Here, ultraviolet
light from the sun breaks down the hydrochloric acid to release atomic chlorine, which,
in turn, breaks down the ozone molecules.

Figure 3. Pathway for smoke particles from intense bushfires to enter the stratosphere and for those
same particles to, in turn, lead to ozone depletion. Source: [26].

Our study introduces new methods into this particular area of geospatial and temporal
ozone level prediction. Tree-based methods, specifically, random forests have been applied
in other areas of geophysical research (see [27]) but as far as we are aware, these methods
have not yet been applied in any work specific to bushfire-induced ozone level change
research. Furthermore, we apply State Space Models (SSMs) to the time series of Total
Sum Ozone and Total Sum Aerosol columns. SSMs provide a general framework for
analyzing deterministic and dynamical systems observed through a stochastic process [28].
The mathematical framework of SSMs includes latent processes and Hidden Markov
models (HMMs), as applied in this study. We refer the reader to a recent study [29]
that used a specific SSM, namely the Dynamic Linear Regression Model (but without
accommodating so-called intervention points) to study the impact of total ozone level
depletion on increased ultraviolet radiation associated with increased malignancy and
cancer events [30–33].

3. Methods
3.1. Data

Daily ozone and aerosol measurements observed by the ozone mapping and pro-
filer suite (OMPS) aboard the Suomi National Polar-orbiting Partnership (Suomi NPP)
satellite [34] were retrieved using the OPeNDAP framework. OPeNDAP stands for Open-
source Project for a Network Data Access Protocol. It provides a way to share data more easily
across the world. Documentation for how to use OPeNDAP can be accessed via the following
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link (https://www.opendap.org/support/user-documentation, accessed on 4 May 2022).
As a satellite passes along a polar orbit it traces out a swath, with the width depending on
the field of view of the measurement device.

An insufficient field of view results in coverage gaps between each swath where no
data are measured. The measurements accumulated along the swaths are converted into a
daily gridded map product: data that have been processed into a standard format and are
accessible to a user. This is conducted using a gridding algorithm [35]. The dataset used
contains measurements starting on 25 January 2012, while data for it are still being added.
The spatial coverage is global, but is incomplete where coverage gaps occur, particularly
for UV Aerosol index measurements because of a narrower field of view of the instrument.
The ozone values are measured in Dobson units (DU), but the UV Aerosol index has no
units attached. Importantly, Dobson units (DU) are a measure of the amount of a gas,
usually ozone, in a vertical column descending through the atmosphere; in the case of
ozone it is called total column ozone.

Konovalov 2011 [36] modeled the effect of bushfire emission on the near-surface
concentrations of ozone. In our study, we focus only on the effect on total column ozone
(i.e., ozone within a column of air from the Earth’s surface to the top of the atmosphere).
Figure 4, taken from https://csl.noaa.gov/assessments/ozone/2018/twentyquestions/,
accessed on 30 June 2023, provides a schematic of ozone levels at different heights in the
atmosphere. This particular ozone level diagram indicates how ozone varies with height in
the tropics. Notice that predominantly ozone is concentrated in the stratosphere, with its
distribution peaking at around 23 km.

Figure 4. Schematic of ozone levels ozone within a column of air from the Earth’s surface (0 km)
to the top of the atmosphere (>35 km). Taken from https://csl.noaa.gov/assessments/ozone/2018
/twentyquestions/, accessed on 30 June 2023.

The unit DU is defined per unit of area—the area that is occupied by the horizontal
cross-section of the total column—and is the thickness (in units of 10 µm) of the layer that
would be formed if the total column were subjected to standard pressure and temperature.
For example, the average for a given total column of ozone is about 300 DU, equivalent to
a layer with a thickness of 300 [10 µm], or 3 mm. Throughout this study, any mention of

https://www.opendap.org/support/user-documentation
https://csl.noaa.gov/assessments/ozone/2018/twentyquestions/
https://csl.noaa.gov/assessments/ozone/2018/twentyquestions/
https://csl.noaa.gov/assessments/ozone/2018/twentyquestions/
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ozone value means the total column ozone, unless explicitly specified. Ozone value data are
loaded into the R programming environment using the Terra package (https://github.com/
rspatial/terra, accessed on 22 May 2022).

The study area considered in this work is contained between −9.5 and −45.5 degrees
latitude, and 129.5 and 167.5 degrees longitude, covering the eastern portion of Australia,
including parts of SA, NT and of the Pacific Ocean; it is depicted by a checkerboard pattern
in Figure 5. This area will be referred to here as the study area. All the ozone/aerosol data
are from the 2019–2020 Australian bushfire period covering the dates from 1 September
2019 to 29 February 2020 and will be called the study time period. There is a total of
182 days between these two dates. On the 68th day (7 November 2019), the first sign
of bushfire aerosol emissions appears and the last relatively small emission of bushfire
aerosols occurs on the 159th day (6 February 2020). Total sum ozone (TSO) and total sum
aerosol (TSA) values are also computed. These total sum values are equal to the sum of all
cell values contained within the rectangular region.

We have defined three regions, located on or off the east coast of Australia, and they
will be referred to as Region 1, Region 2 and Region 3. The longitude (lon) and latitude (lat)
coordinates of their respective left/right and top/bottom edges, and a description of their
location on the map of these rectangular regions are as follows:

• Region 1—lon 160.5–165.5 and lat −29.5–−32.5, Pacific Ocean approximately 500 km
east of the midpoint between Sydney and Brisbane.

• Region 2—lon 146.5–151.5 and lat −36.5–−39.5, Coast of Victoria.
• Region 3—lon 148.5–153.5 and lat −31.5–−34.5, Coast of NSW.

The three regions are displayed in Figure 5.

Figure 5. Outline of the map of Australia showing the locations of the three regions. The regions in
order from top to bottom: Region 1 (Blue), Region 2 (Red) and Region 3 (Green). The checkerboard
shading pattern identifies the study area.

The choice of these three regions was guided by the following considerations:

1. The location of the source of the majority of aerosol emissions; which were associated
with the bushfires reported in Victoria and New South Wales (NSW).

2. The average wind direction during the time period; in a north-easterly direction
towards Region 3.

https://github.com/rspatial/terra
https://github.com/rspatial/terra
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3. These choices could potentially simplify the task of finding the correct day offset (the
time delay or day offset between the release of aerosol and the resultant changes
in ozone).

The location of Region 3 (NSW) was selected because, on a number of days, it had an
unusually high level of aerosol, and hence had a higher chance for interactions between
aerosol and ozone to occur and improved the ability of the methods to more accurately
detect that relationship. We are also interested in the time delay, or day offset, between the
release of aerosol and the resultant changes in ozone. Whatever the number of days offset
may be, say 3 days, aerosol disperses in the atmosphere and is transported by the wind
during these 3 days. From the visual inspection of the aerosol plot (see Figure 6), it is
observed that aerosol ends up spreading over a significant area around where Region 3
is located.

Figure 6. Observed from data of daily gridded aerosol values plot of entire study area over the
20 days from 3 November 2019.

For better causal modeling we have included additional parameters, the aerosol for
each grid cell within the study area, the cumulative number of days since 3 November 2019
(cdate) and the day of the year (doy) over the dates of the study time period.

From the visual inspection of the Ozone plot (see Figure 7), it is observed that the
ozone levels diminish, and these areas of decrease are observed over all the regions over
the 20 days post November 3. Also, as a comparison, Figures 8 and 9 display the time
series profiles for Total Sum Ozone and Total Sum Aerosol, respectively, over time and all
3 regions.
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Figure 7. Observed from data of daily gridded ozone values plot of entire study area over the 20 days
from 3 November 2019.

Figure 8. Time series plot of Total Sum Ozone for each region.
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Figure 9. Time series plot of Total Sum Aerosol for each region.

3.2. Methodology

Our methods include random forests, a technique that has been widely adopted by
the machine learning community, and proven effective in a large variety of classification
and regression problems where physical models are limited, and more recently has been
used successfully in modeling variables of a spatial and spatiotemporal nature. Also,
we analytically determine change-points by Binary Segmentation [37] and change-points
derived as times of change of states in ozone by HMM [18] analyses to further assist the
interpretation of our spatiotemporal maps predicted from RFsp.

The aim is to further elucidate the temporal and possibly lagged effects between levels
induced by bushfires and the depletion of ozone. We anticipate that this approach will
provide evidence for or against the hypothesis that bushfires can result in a localized change
in the ozone layer in the vicinity of the bushfire or downwind of it.

3.3. Random Forest for Spatial Data

Random Forests [38] is a method for classification and regression based on the idea of
bootstrapping, that is, randomly selecting with the replacement of multiple samples from
the data, applying a classifier/regression model, and then averaging over the samples—this
is called bagging. In a generic context, if x1, x2, . . . , xn are input measurements (independent
variable, which could be multi-dimensional) and y1, y2, . . . , yn are corresponding outcomes
(dependent variable), then a subset S of these data of size B is chosen randomly and a
classification or regression tree tS is computed, based on this subset S. The result of the
bagging is obtained by averaging tS over all such random selections. We emphasize that
this random selection is conducted with replacement. This methodology is known to
reduce variance while not increasing bias.

Recently there has been interest in applying RFs to geospatial temporal statistical
problems [27]. One important issue to overcome is that, in many ways, the standard ran-
dom forests approach is indifferent to the spatial nature of the data, specifically in relation to
what geographical location it represents and its attributes at each location. Hengl et al. [27]
extend the basic random forests model to overcome this defect. This was achieved by
introducing a measure of distance between observation points into a random forest model.
That is, for each point/location ℓ, with an accompanying observed value Yℓ, a covariate
made up of the distances to all other locations is given. In practice, in the model this
amounts to the distance matrix between all pairs of locations with a Yℓ. These are referred
to as buffer distances.
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Random Forests for spatial data (RFsp) as proposed by Hengl et al. [27] describes the
generic equation for an RFsp system, as follows, where

Zℓ = f (XGℓ
, XRℓ

, XPℓ), (1)

where Zℓ is the predicted value at location ℓ, XGℓ
contains the distances from location ℓ to ℓj

for all j ∈ {1, . . . , N}, XRℓ
and XPℓ represent possible additional covariates; two types—surface

reflectance and process based (e.g., wetness index).
The function f is learned by the random forest, thereby there is no covariance function

used. Hengl et al. [27] combine the methods of random forests with multiple linear
regression and kriging [39] to handle the spatial variation issues.

As delineated in Hengl et al. [27] the RF is a data-driven statistical method. The final
predictions are the average of predictions of individual trees [38,40,41]. Statistical issues of
RF estimation have been detailed recently in [41,42].

We also refer the reader to a recent study by Wong et al. [43] focused on an applied
comparison of four ‘fast’ geostatistical modeling methods and the software available to
implement them. Along with Spatial Random Forests (SpRF) three other methods were
Integrated Nested Laplace Approximation (INLA), tree boosting with Gaussian processes
and mixed effect models (GPBoost)) and Fixed Rank Kriging (FRK). This application
involved estimating malaria prevalence on two different spatial scales, at the country and
continent-scale, with the performance of the four methods on these data based on accuracy,
computation time, and ease of implementation.

As noted by Hengl et al. [27], amongst the suite of machine learning algorithms (MLA),
the RF has been confirmed to be efficient for spatial predictions. Additionally, RF is available
in R through several packages such as randomForest [44] or the computationally faster
alternative ranger [45], which is chosen in this study (see the results; Section 4.1). Complete
benchmarking of the prediction efficiency is documented in R code and is available via the
GitHub repository at https://github.com/thengl/GeoMLA, accessed on 30 August 2023.

A fundamental concept of much of the work on geospatial statistics is a Gaussian
process. These are assignments of Gaussian random variables Xℓ (which can be multi-
dimensional) to locations ℓ with a covariance structure, typically describing how Xℓ relates
to Xℓ′ for ℓ′ a neighbour of ℓ [39,46]. In more complicated situations the “neighbouring
locations” can be ascribed by a graph, as in the case of SPAM trees [47].

Kriging is a technique to utilize knowledge about spatial autocorrelation in modeling
and prediction [48]. Kriging [39] uses the Gaussian process model to estimate “missing
data” at locations where there are no measurements from locations using the covariance
structure. If measurements of a random variable Zℓ are known at locations ℓ1, ℓ2, . . . , ℓm,
then the missing data at a location ℓ can be inferred from these by a formula like

Ẑℓ =
m

∑
k=1

w(ℓ, ℓk)Zℓ+k, (2)

where w(ℓ, ℓk) is a weight obtained from the covariance matrices connecting ℓ with ℓk.
Kriging requires a rigid statistical structure for this “interpolation” of missing data.

The Random Forest spatial prediction method of Hengl et al. [27], however, provides an
alternative that avoids such rigid assumptions. We also refer the reader to Fixed Rank
Kriging (FrK) [49,50]. Fixed Rank Kriging is kriging with the class of non-stationary
covariance functions, which is a relaxation of the assumptions of Ordinary Kriging.

Implementation of Generalization of RFsp to Spatial-Temporal Data

In the previous section, we showed the generic equation of an RFsp (Equation (1)),
and we use this to formulate the model in this study. Following from Equation (1), the RFsp
model is

Zℓ = f (XGℓ
, Aℓ, Tℓ), (3)

https://github.com/thengl/GeoMLA
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where ℓ is now extended to a spatiotemporal domain, by adding a time dimension,
ℓ ∈ R

¯
2 ×

[
0, ∞

)
. We define Aℓ as the aerosol value at the spatiotemporal location ℓ ,Tℓ is

the time covariate, namely, the cumulative number of days since 1 January 1970 (cdate)
and day of the year (doy) over the dates of the study time period. XGℓ

denotes the distance
matrix; the distances between all pairs of locations ℓ within the defined study area; that is,
the ij entry is the distance between the ith and jth locations.

We follow the steps below in order to calculate the distances for all pairs of grid cells,
and then the resultant design matrix is used in the RFsp algorithm (implemented in the
ranger package).

Procedural steps via the ranger package using Equations (1)–(3):

1. Create an n × n matrix where n is the number of cells in the grid and each row of the
matrix corresponds to an individual cell. Each cell is dependent, not only spatially
with respect to surrounding cells, but also dependent on the amount of aerosols
contained in the cells.

2. For each row of the matrix, all of those aerosol values from each cell are included.
This step adds n columns to the design matrix.

3. Next, we repeat the above process for each day of the study period.
4. Also included in the model are cdate and doy for the number of days of observation,

which we denote by r.
5. As there are n cells of data for each day, all cdate and doy values are repeated n times,

then all together we have a (r × n)× (2n + 2) matrix.

These steps create a large matrix, which is the design matrix.

Quantile prediction intervals are used as a measure of the prediction error in the ozone
predictions obtained from the application of RFsp. These are defined (see [51]) in terms of
the cumulative conditional distribution function F(y|x) of the predictor Y = y conditioned
on the covariate X = x, where Y is a real-valued random variable. Then, the α-quantile
Qα(x) of Y conditioned on X = x is defined to satisfy

P(Y < Qα) = α; (4)

that is,
Qα(x) = inf{y : F(y|X = x) ≥ α}.

Now, the βth quantile prediction interval expressed in percentages of the total distribu-
tion, is the interval

[Qα(x), Qα′(x)], (5)

where
α = 0.5 × 1 − β

100
, α′ = 1 − α.

In this study, we perform quantile regression forests to obtain an estimate of these
conditional quantiles. Estimates of a lower β = 68.2% (α = 0.159) quantile, a middle
α = 0.5 quantile (a quantile which is symmetric around the mean containing half of the
distribution), and an upper (α = 0.841) quantile are used.

Models based on the RFsp generic framework for spatial and spatiotemporal prediction [27]
as a machine learning algorithm (MLA) discussed in Section 3.3 will be tested for model
accuracy, given by R2 and mean square error (MSE) using five-fold cross-validation [52];
where cross-validation is central to many statistical algorithms and workflows, in particular,
for predictive modeling frameworks in ecology [52,53].

3.4. Change Point Detection

Analytically, one approach for the determination of change-points (CPs) is by Binary
Segmentation. In addition, CPs can be determined as stochastic points of changing states
using Hidden Markov Models (see Section 3.5 on Methods for HMM). We use both of these
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methods to assist the interpretation of the ozone spatiotemporal maps predicted from RFsp.
Note, that HMMs can also provide a further complementary understanding of the temporal
and the lagged effect between elevated aerosol levels induced by bushfires and depletion
of ozone levels.

Change-point detection is a pivotal area in the statistical analysis of time series. A sin-
gle change-point detection problem is detailed in [54,55], assuming the model is Gaussian.
Various methods are available also for the detection of multiple change-points. Three of
them are available in the R package changepoint. We briefly describe only one of the three
methods here, namely Binary Segmentation. Binary Segmentation was first described in
the paper [56] by Edwards and Cavalli-Sforza in 1965.

Implementation of the Change Point Analysis

We have used the R package changepoint in our study, refer to [37]. The changepoint
package implements the methods described above for both single change-point and multi-
ple change-point detection. A standard approach to such problems is a generalized likelihood
ratio statistic. The method is described in [57]. This also serves as a reference for the R pack-
age changepoint (https://cran.r-project.org/web/packages/changepoint/index.html, ac-
cessed on 14 June 2022). The tests vary according to the families of distributions being
analyzed and the specific parameters being tested.

Several other R packages are available for change-point detection, including
strucchange (https://cran.r-project.org/package=strucchange, accessed on 25 June 2022),
cumSeg (https://cran.r-project.org/package=cumSeg, accessed on 14 June 2022), and stepR
(https://cran.r-project.org/package=stepR, accessed on 15 June 2022). These are discussed
in detail and their methodologies are compared both algorithmically and in terms of results
against specific problems in [58].

3.5. Hidden Markov Model Analytic Approach—A Discrete Valued State Process

The Hidden Markov Model is a probabilistic model proposed by Baum and Petrie [59]
to describe the statistical properties of random processes with parameters. A Hidden
Markov Model (HMM) generates a hidden sequence of states from an observable sequence
of observations. Mixture and hidden Markov models are statistical models that are useful
when an observed stochastic, dynamic system over time occupies a number of distinct
“regimes” or unobserved (hidden) states [60].

HMMs are widely used in a variety of fields, including environmental science, artificial
intelligence, biology, and psychology [61]. HMMs have been shown to be useful specifically
in weather prediction, robotics, detecting protein homologies and computer vision [60,62].
Hidden Markov Models (HMMs) are also extensively used in applications, such as natural
language processing (NLP) and finance [63]. Likewise, a recent utilization of HMMs has
been in earthquake prediction [64] and in computational biology, where an HMM may be
used to model the evolution of a protein or DNA sequence, and observations generally are
a sequence of amino acids or nucleotides [65]. In speech recognition, for example, an HMM
can be used to model the underlying sounds or phonemes that generate the speech signal,
and the observations generally are the features extracted from the speech signal [62].

Hidden Markov Models can be viewed as a generalization of two types of simpler
models. Firstly, HMMs are a generalization of simple Markov models, where the generaliza-
tion involves additional modeling of the error structure. Secondly, Hidden Markov models
can be viewed as an extension of mixture models, to model transitions between states over
time. Here, the generalization involves additional modeling of the sequential nature of
the data. In addition, recent advances in HMM theory [18,60] allow the easy incorporation
of time-dependent covariates into the model. This means that both the transition and the
emission probabilities can depend on a set of covariates, so that they can vary over time
and thereby the traditional and unrealistic stationarity assumptions need not be made.

HMM model sequences/series are either derived from continuous or discrete prob-
ability distributions. HMMs are related to state space and Gaussian mixture models

https://cran.r-project.org/web/packages/changepoint/index.html
https://cran.r-project.org/package=strucchange
https://cran.r-project.org/package=cumSeg
https://cran.r-project.org/package=stepR
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(GMMs) [66] where HMMs aim to estimate the state(s) which have given rise to the ob-
servations. The states are unknown or ‘hidden’ and HMMs attempt to estimate the states
similar to an unsupervised clustering procedure. Hidden Markov Models can classify
observable sequences into unobservable state sequences. State transitions refer to the
random change in states of the Markov process in discrete time. The Markov model thus
follows the concept of a memory-less property, i.e., the transition from one state to another
state depends only on the present state [67].

The HMM algorithm involves defining the state space, observation space, and the
parameters of the state transition probabilities and observation likelihoods. The training
of the model generally uses the Baum–Welch algorithm or the forward-backward algo-
rithm and decoding the most likely sequence of hidden states is performed by the Viterbi
algorithm [68], as well as evaluating the performance of the model. The Baum–Welch
algorithm is a version of the Estimation Maximization (EM) algorithm [60].

To date, HMM modeling has been used to analyze ozone levels by several authors.
Two examples of such research, specifically in predicting the maximum 8 h average
ozone concentration, are Zhang et al. [69] who use a Hidden Markov Model for measure-
ments assumed to come from a Gamma distribution, rather than a Gaussian distribution.
The other study is by Sun et al. [70] who use a supervised HMM combined with generalized
linear models.

Implementation of HMM Analysis

Here, we investigate the possible effects of bushfires-induced emissions of aerosols
on the levels of ozone in the total column. This is achieved by observing and analyzing
changes in states rather than by analyzing changes in actual observed values (e.g., ozone
values), as in traditional time series analysis [71].

We use the depmixS4 package in R [18]. DepmixS4 specifies and fits hidden Markov
models, optimized with the EM algorithm. Models can also fit multiple sets of observations
and covariates (e.g., aerosol levels). The performance of the HMM can be evaluated
using various metrics, such as AIC or BIC when using R depmixS4 by Visser et al. [18],
or accuracy, precision, recall, or F1 score when using Python hmmlearn—a set of algorithms
for unsupervised learning and inference of HMMs.

In modeling we add covariates to the HMM models as follows: Let S denote the states,
and N = T. The joint likelihood of observations O1:T and latent state S1:T = (S1, . . . , ST),
with model parameters θ and covariates z1:T = (z1, . . . , zT), can be written as:

P(O1:T , S1:T | θ, z1:T) = πi(z1)bS1(O1 | z1)
T−1

∏
t=1

aij(zt)bSt(Ot+1 | zt+1). (6)

Note, the following details:

1. St is an element of the set of n latent states.
2. π(zi) = P(S = i|z1), denotes the probability of state i at time t = 1 with covariate z1
3. aij(zt) = P(St+1 = j|St = i, zt), provides the probability of a transition from state i to

state j with covariate zt.
4. bSt is a vector of observation densities bk

j (zt) = P(Ok
t |St = j, zt), namely, the condi-

tional densities of observations Ok
t associated with latent class/state j and covariates

zt, j = 1, . . . , n; k = 1, . . . , m.
5. Specific analytic steps to model daily changes in ozone and aerosol levels by HMMs

are as follows:

(a) Compare the days when the ozone state changes with respect to the observed
daily aerosol levels.

(b) Compare the trends across the three geographical regions (i.e., Regions 1, 2
and 3).
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Figure 10 part (B) shows our paradigm for HMM modeling which entails adding
covariates (e.g., aerosol levels over time).

For modeling ozone, with and without aerosol as a covariate, we use function depmax
to create an S4 object of class depmix, which needs the fit function to fit and to optimise the
parameters. The output of the fit function comprises a transition probability matrix, mean
intercept and standard deviation table. The probabilities are the estimated probabilities of
transitions between states [18].

Figure 10. Graphical models associated with extensions to the basic HMM. (A) state sequence with
a memory order of 2. (B) influence of covariate z1, . . . , zT on state dynamics. (C) observations de-
pending on both states and previous observations. (D) bivariate observation sequence, conditionally
independent given the states. Source: [72].

3.6. A State Space Model (SSM) Incorporating an Intervention Analysis

Whilst HMMs apply to scenarios where the state process is discrete-valued, we also
apply an SSM allowing for interventions. Here, the state process is continuous-valued and
interventions are related to times/events of aerosol exceedances or declines. Intervention
analysis, initially proposed by Box and Tiao in 1975 [73], provides a structured approach
for evaluating the influence of an intervention on a given time series. An intervention is
considered to be an event that brings about a shift in the time series, affecting not only
its average behavior, but also potentially altering characteristics such as the conditional
variance and the properties of serial correlation [74].

For a time series Yt, this general intervention model is given by

Yt = mt + Nt, (7)

where mt is the change in the mean function and Nt is modeled as another process, such as
a seasonal or harmonic process or a trend model. The sequence Nt denotes the segment
without any intervention and is known as the inherent or unaffected process. This process
may exhibit features of stationarity or non-stationarity, seasonality, or lack thereof.

Assume the moment in time, T, marks the occurrence of the intervention. Prior to T,
mt is presumed to be consistently zero. The set Yt, t < T is termed as pre-intervention data
and is used to define the model for the unaffected process Nt.
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To delineate the impact of the intervention on the mean function the step function can
be determined as:

S(T)
t =

{
1, if t ≥ T
0, otherwise.

(8)

Hence the values of S(T)
t will be 0 during the pre-intervention period and 1 in the

post-intervention period. Then we define the pulse function as follows:

P(T)
t = S(T)

t − S(T)
t−1 (9)

The pulse function above is equal to 1 at the time point T and 0 elsewhere, indicating
the point where the intervention occurred.

Implementation of the Intervention Analysis

The intervention analysis is applied in this study with the dynlm package in R [75].
The dynlm package is a powerful tool for conducting dynamic linear modeling, and is
particularly well-suited for time series analysis and intervention studies. The package
primarily focuses on fitting dynamic linear models while preserving the characteristics
of time series data, with a single main function [76]. It provides a flexible framework
for modeling relationships in data that evolve over time, allowing for lagged effects and
dynamic dependencies. This package’s capabilities accommodate time-dependent variables
and interventions. By incorporating lagged terms, the temporal dependencies can be
captured. Furthermore, the inclusion of intervention variables enables the assessment of
the impact of specific events or interventions on the time series under investigation.

4. Results

This section presents the results of our analyses, using the range of techniques dis-
cussed in the Methods Section 3. The data analyzed have been described in Section 3.1. We
have applied various techniques to the data across the entire range of cells of the whole
area of study, and across the summed totals of ozone and aerosol over each of the three
specified regions (R1, R2, R3).

4.1. RFsp and Quantile Prediction Intervals Results

For the data across the entire area, we have applied the RFsp method [27]. It has been
trained on the data described in Section 3.1 on the ozone and aerosol data. This produces
a spatiotemporal model (see Section 3.3). We present the output of the model when test
data are passed into it and examine the statistical performance of the model using some
common tests that are widely applied in analyses where RF models are used; specifically,
we have applied k-fold cross-validation (CV), and out-of-bag (OOB), in each case yielding
an R2 and an MSE.

The RFsp methodology applied to all (r × n) data rows in the design matrix produces
a model predicting ozone level given all r predictor variables. Predicted values from the
RFsp algorithm are presented for gridded ozone in Figures 11–13, for the 20 consecutive
days starting on 3 November 2019, 1 December 2019 and 20 January 2020, respectively.
These predictions should be compared to the actual ozone level data shown in Figure 7
in Section 3.1. For ease of comparison, note that the figures such as Figure 7 should be
compared with Figure 11. The other two regions and their appropriate dates produce
similar comparisons; we refrain from showing these.

As well as predicted values, corresponding data relevant to quantile prediction in-
tervals covering the same set of days are presented in Figures 14–16. The choice of each
starting date in the above-mentioned figures, together with the 20 consecutive days there-
after, allows for effective coverage across most of the change-points in the data, as discussed
below. We investigate these change-points for both total sum ozone and total sum aerosol
time-series separately for each of the three regions.
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Figure 11. Spatial-temporal predictions of daily gridded ozone values over 20 days from
3 November 2019.

Figure 12. Spatial-temporal predictions of daily gridded ozone values over 20 days from
1 December 2019.
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Figure 13. Spatial-temporal predictions of daily gridded ozone values over 20 days from
20 January 2020.

Figure 14. Quantile prediction intervals of daily gridded ozone values over 20 days from
3 November 2019.
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Figure 15. Quantile prediction intervals of daily gridded ozone values over 20 days from
1 December 2019.

Figure 16. Quantile prediction intervals of daily gridded ozone values over 20 days from
20 January 2020.
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We anticipate that these quantile prediction intervals will be wider around the change-
points. The change-points in the total summed data, which are not represented in the above-
mentioned figures, serve to focus our subsequent investigation into the data, specifically, in
Region 1 (Ocean), Region 2 (Vic), and Region 3 (NSW).

It can be seen from Figures 11–13, that the parts of the map where the gradient of
the ozone value is large in absolute terms, typically correspond to a distinctive ridge-like
pattern in the quantile prediction interval plots. These ridge lines roughly follow the
contours of the three-dimensional surfaces of the predicted ozone levels. These predicted
ozone levels are represented by the colors in the ozone color bar (e.g., ‘Ozone (DU)’ legend;
RHS of Figure 11). The value of the quantile prediction interval also appears to be, at least
visually, closely correlated with the magnitude of these gradients of the predicted ozone
value maps. In the same vein, areas where the predicted ozone values have sharp high-value
peaks are associated with a higher concentration of wider quantile prediction intervals.
The darker blue areas, with values ranging between 380 and 420 DU of the ozone prediction
plots roughly match up with the purple areas within the range 12 to 15 on the color bar
such as in Figure 14.

4.2. RFsp Error Diagnostics

We now present the outputs created after passing the design matrix into the ranger
function in R and describe the results in terms of the model performance tests R2 and MSE.
The output produced by the ranger function is displayed in Table 1. The five-fold CV
produces results that show that the RFsp model performs well, giving very accurate ozone
predictions from aerosol measurements. The model OOB (Out Of Bag) R2 reported in
Table 1 is 0.996 and OOB mean-square-error is 4.32. The R2 with the predictions produced
during five-fold CV achieved very similar results, as did the average mean-square-error;
with values of 0.995 and 5.33, respectively.

Table 1. Error diagnostics and RF hyperparameters of the ranger function.

Type Regression

Number of trees 150
Sample size 248,976

Number of independent variables 2738
Mtry 52

Target node size 5
Variable importance mode impurity

Splitrule variance
OOB prediction error (MSE) 4.324842

R squared (OOB) 0.9960641

4.3. Quantile Prediction Intervals Examination

From Figure 14, there are 4 days that have particularly wide quantile prediction
intervals occurring in and around Region 1. The days in question are the 6, 9, 17 and 18
November 2019. Similarly, binary segmentation change-points for the total sum ozone
series in Region 1, were detected on 18 November 2019 which was notably 12 days after
the first of these wide quantile prediction intervals, see Figure 14.

Examining Region 2 in Figure 14, wide quantile prediction intervals are seen to occur
on 10 separate days: the 3rd, 4th, 6th, 7th, 8th, 9th, 12th, 14th, 17th and the 22nd of
November. Similarly, in Region 3 there are 4 days of wide quantile prediction intervals,
namely the 5th, 9th, 17th and 22nd of November.

In Figure 15 there were a total of 4 days, the 1, 2, 13 and 14 December with wide
quantile prediction intervals inside Region 1. Analogously there were 6 days, the 1, 2, 6, 7,
12 and 15 December inside Region 2. Also, there were 3 days, the 1, 11 and 13 December
inside Region 3.
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In Figure 16, the 3 days with wide quantile prediction intervals are the 3rd, 4th and
8th of February. For Region 2 the 10 days: 20, 21, 23 and 26–28 January and the 2, 3, 6 and
7 February. Lastly for Region 3 the 7 days of wide quantile prediction intervals were the 20
and 24–26 January and the 6–8 February.

4.4. Binary Segmentation Results

In this section, the change-points discussed are based on binary segmentation as
shown in Figures 17–19 for the three separate geographical regions. We use the acronyms
TSA and TSO to abbreviate Total Sum Aerosol and Total Sum Ozone in Figures 17–19.

The binary segmentation method applied to the total sum ozone and total sum aerosol
time series in Region 1 shows an interesting pattern, namely, that changes in aerosol can
induce a delayed effect on ozone of between 10 and 25 days.

This can be seen by comparing the dates on which change-points occur in the total
sum aerosol time series against the total sum ozone time series. The first total sum aerosol
change-point occurred on 7 November 2019, 11 days before the first total sum ozone
change-point occurred; specifically on 18 November 2019 (Figure 17).

This same pattern occurs at the second and third change-points of the total sum
aerosol occurring on 4 December 2019 and 8 January 2020 with the perceived effect on
ozone occurring 25 days later on 29 December 2019 for the second change-point and 10 days
later on 18 January 2020 for the third change-point.

This lag pattern also appears in Region 2, as the first total sum aerosol change-points
occur after the corresponding, second and third total sum ozone change-points in the same
region. However, the second and third total sum aerosol change-points occur after the last
total sum ozone change-point in Region 2 (Figure 18).

Region 1

Figure 17. CPs for TSA and TSO for Region 1 (Pacific Ocean) as shown by vertical grey dashed lines.
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For Region 3, a slightly different situation arises, as the binary segmentation method
only detected two change-points for the total sum ozone time series. The first occurring on
18 November 2019 and the second on the 2 January 2020 (Figure 19).

The first total sum aerosol change-point occurring on 5 November 2019, has a similar
lag pattern to those identified in Region 1, since the first total sum ozone change-point
occurred 13 days later, on 18 November 2019. Overall, there is a lag between change-points
in total sum aerosol levels and corresponding change-points in total sum ozone levels of 10
to 25 days.

It is difficult, on the basis of this change-point analysis alone, to definitively de-
tect a causal relationship between changes in aerosol levels and changes in ozone levels,
though there is some evidence of a pattern. An alternative approach is applied in this study
to statistically establish times at which the ozone states change, as determined by HMM
models, with adjustment of the aerosol levels as a covariate (as discussed in Section 4.5).

Region 2

Figure 18. CPs for TSA and TSO for Region 2 (Vic) as shown by vertical grey dashed lines.
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Region 3

Figure 19. CPs for TSA and TSO for Region 3 (NSW) as shown by vertical grey dashed lines.

4.5. HMM Analysis Results

In this section, the results of the HMM analysis for Region 3 are presented. The HMM
analyses on the total sum ozone time-series in each region are performed for two different
cases with aerosol as a covariate in the HMM. Outputs of AIC and BIC in testing for 2, 3, 4
and five state HMM model candidates are given, with the selection of the optimal model
based on the minimum AIC and BIC achieved. Also presented is the transmission matrix
of the transition probabilities, and the mean and standard deviation estimates for each state
means for both ozone and aerosol where an adjustment is made in the HMM for aerosol as
a covariate. This section reports the results of the intervention analysis for Region 3 (NSW).
The corresponding results for the optimal HMM models for Region 1 (Pacific Ocean) are
given in Appendix B.1 and for Region 2 (Vic) shown in Appendix B.2.

HMM Analysis of Ozone for Region 3 with Adjustment by Aerosol as a Covariate

Tables 2–4, and Figure 20 report the HMM models when aerosol levels are added as a
covariate (the so-called bivariate model) to better explain the ozone changes observed in
Region 3.

Table 2. AIC and BIC criteria for HMM model selection with differing number of states for total sum
ozone with total sum aerosol as a covariate in Region 3.

Model Name AIC BIC

HMM (with Aerosol)—with five states 3957.754 4098.487

HMM (with Aerosol)—with four States 4013.133 4112.286

HMM (with Aerosol)—with three States 4020.225 4084.195

HMM (with Aerosol)—with two States 4088.763 4123.947
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Table 3. Transmission matrix of all five states from HMM for total sum ozone with total sum aerosol
as a covariate in Region 3.

Transmission Matrix State 1 State 2 State 3 State 4 State 5

State 1 0.979 0 0 0.021 0

State 2 0.043 0.957 0 0 0

State 3 0 0 0.985 0.015 0

State 4 0 0 0 0.364 0.636

State 5 0 0.133 0 0.068 0.8

Table 4. Parameter estimates of all five states from HMM for total sum ozone and total sum aerosol
Region 3.

Ozone (DU) Aerosol

Mean Std. Deviation Mean Std. Deviation

State 1 6563.193 197.722 15.293 7.648

State 2 6802.999 181.552 36.726 18.652

State 3 7738.528 386.539 6.113 6.335

State 4 7624.158 407.595 14.421 2.57

State 5 7327.054 295.041 32.355 6.97

Figure 20. HMM bivariate state changes in total sum ozone time-series with respect to total sum
aerosol time-series as a covariate for Region 3.

According to the intercept of the parameters of the HMM model, the intercept value
of ozone of State 3 is the largest with an average mean ozone level of 7738.53 DU and
lowest aerosol = 6.11, and State 1 has the smallest average state-specific mean ozone level
of 6563.19 DU aligned with an increased aerosol of 15.29 (Table 4).

From the beginning of the series to day 66 (5 November 2019) the stochastic process is
identified as being in State 3, with the highest mean ozone intercept parameter = 7738.53 DU,
and lowest mean aerosol = 6.11. Then, after day 66 (5 November 2019) to day 82 (21
November 2019) ozone transitions between States 4 and 5, with State 5 (mean ozone
intercept of 7327.05 DU, aerosol level = 32.36).

Between day 82 (21 November 2019) and day 91 (30 November 2019), ozone levels
change between States 1 and 2. After day 91 (30 November 2019) to day 97 (6 December 2019),
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ozone levels then increase and the HMM system starts varying between States 4 and 5.
After day 97 (6 December 19) to day 137 (15 January 2020), ozone levels then decrease
again and the HMM system remains in State 2, with State 2 (mean of 6803.0 DU, aerosol
level = 36.73). From day 137 (15 January 2020) to the end of the time series the mean ozone
level then decreases again to the value in State 1 (mean of ozone level = 6563.19 DU, aerosol
level = 15.29).

The first observation over the study period of bushfire-induced aerosols occurs on the
68th day (7 November 2019). The first point of change in ozone levels, as demonstrated
by HMM, occurred approximately 1 day earlier at 67 days (6 November 2019). The last
relatively small emission of bushfire-induced aerosols occurs on the 159th day (6 February
2020), compared with the fifth state change-point, which occurs on day 137 (15 January
2020), 22 days earlier in Region 3 (see Figure 21).

Figure 21. Summary of the BinSeg CPs and the HMM derived CPs. In the RHS table, the O columns
show the ozone CP (day) based on HMM without covariate adjustment. The A columns show the
ozone CP (day) for HMMs with aerosol as a covariate.

4.6. HMM and Binary Segmentation Combined—Comparability Summary

The corresponding results for the optimal HMM models for Region 1 (Pacific Ocean)
are given in Appendix B.1 and for Region 2 (Vic) in Appendix B.2. Note that in Figure 21 the
O and A columns have a different meaning to the table reporting the Binary Segmentation
change-pointsin Section 4.4. Here, on the RHS of Figure 21, the O columns give the day on
which ozone states change according to HMM models which do not include aerosol as a
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covariate. The A columns report the day on which ozone states change for HMM analyses
with aerosol added as a covariate, the so-called covariate-adjusted HMM change-point.
On the LHS of Figure 21 we report the BinSeg change-points across the three regions.
For visual reference of the total sum aerosol and total sum ozone time-series across the
three regions, see Figure 9 and Figure 8, respectively.

From the combined HMM and Binary Segmentation change-points (CPs) summarized
in Figure 21 we observe the following.

In Region 1 (Pacific Ocean) the exceedance (CP) in Aerosol occurred around 7 Novem-
ber 2019. The associated subsequent decrease in Ozone then occurred around 12 days later
on the 19 November 2019. About 40 days later on the 18 January 2020 Ozone levels were
still significantly decreasing.

In Region 2 (VIC) the exceedance (CP) in Aerosol occurred around 13–17 November
2019. Then 18 days thereafter around 7–12 December 2019, there was a significant decrease
in ozone; about 25 days later, Ozone levels were still significantly decreasing.

In Region 3 (Pacific Ocean) the exceedance (CP) in Aerosol occurred around 5 Novem-
ber 2019, followed 13–16 days later by a decrease in ozone around the 30 November
2019. About 40–45 days later, ozone levels were still significantly decreasing around 15
January 2020.

4.7. Intervention Analysis Results for Region 3 (NSW)

This section reports the results of the intervention analysis for Region 3 (NSW). The cor-
responding results for the optimal intervention models for Region 1 (Pacific Ocean) and
Region 2 (Vic) are given in Appendices A.1 and A.2.

In Region 3, we note the HMM analysis based on five states showed early oscillatory
changes in states in ozone levels. This motivated our investigation as to whether an
alternative BinSeg routine could detect earlier change-points. This was achieved by using
the BinSeg method in the Package Rapture—[77]. These change-points (day 54, 79 and 124)
were used for the intervention analysis of Total Sum Ozone for Region 3 (NSW), as shown
in Figure 22.

Figure 22. Detected Change Points for Total Sum Ozone (Region 3).

In the first step of the intervention analysis, all three change-points were included
(denoted by S, P and Q) as different step functions to indicate the intervention points as the
baseline. For each intervention point, their first two lags (the first lag is denoted by S.t.1,
P.t.1 and Q.t.1 and the second lag is denoted by S.t.2, P.t.2, and Q.t.2) were also included.
In addition, the intercept was included, along with one lag of the actual observed time
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series (Total Sum Ozone) (denoted by L(Y.t, k = 1) as well as its trend component (denoted
by trend (Y.t).

Model involved the addition of a third lag component for aerosol L (Aerosol_
Region3, 3) (Table 5); all the following components involving mean ozone level (inter-
cept) and ozone’s lagged dependence of 1 and 5 days were found to be highly significant
(p < 0.0001), as were the negative trends for the first and second intervention points at
54 and 79 days, respectively. Likewise, the sustained negative lag1 effect at the third
change-point at 124 days was significant (p < 0.0001). Notably, in Region 3 (NSW) aerosol
levels lagging at 1 day had a significant impact on the observed ozone levels over time
(p < 0.04) and the negative impact of lag3 aerosol was significant but only at p = 0.10
(Table 5).

Table 5. Model Results.

Variable Estimate Std. Error t Value Pr(>|t|)

(Intercept) 5462.56 633.00 8.63 <0.0001 ***
L(Y.t, k = 1) 0.50 0.05 8.45 <0.0001 ***
L(Y.t, k = 5) −0.20 0.05 −3.71 0.000282 ***
S.t −234.58 59.74 −3.92 0.000126 ***
P.t −431.34 76.54 −5.63 <0.0001 ***
Q.t.1 −232.57 57.86 −4.02 <0.0001 ***
L(Aerosol_Region3, 1) 2.79 1.30 2.13 0.033857 *
L(Aerosol_Region3, 3) −2.41 1.26 −1.90 0.05

* p < 0.05, *** p < 0.001.

It can be seen that the resultant fitted model (Figure 23) was able to capture the
behavior of the series quite successfully with small residuals. The results and outputs for
the final intervention models for regions 1 and 2 can be found in Appendices A.1 and A.2.

Figure 23. Intervention Analysis Output for Region 3 with Model R3.

5. Conclusions

RFsp-based quantile regression predictions, visualized by spatial-temporal maps of
the ozone levels, across Australia and the nearby ocean, confirmed our hypothesis that
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bushfires result in a localized effect on the ozone layer in the vicinity of the bushfire or
downwind of it. Noteworthy also, is that our findings, along with those from [9,10] which
discuss how aerosols affect ground ozone levels, in addition to the findings of [15,19,20] on
stratospheric ozone depletion, indicate that there is significant evidence that ozone levels
are affected by aerosols from bushfires. Random forest spatial-temporal (RFsp) analysis of
the satellite data from [34] of ozone and aerosols (NASA/NOAA) has shown very accurate
ozone predictions from aerosol measurements (achieving an OOB R2 of 0.996 and MSE of
4.32, with a five-fold cross-validation R2 of 0.995 and MSE of 5.33), indicating a significant
association between bushfire incidence in Australia and ozone depletion in the vicinity of
the bushfires.

The use of the total column/sum ozone (TSO) and total sum aerosol (TSA) data
for three regions of eastern Australia (Pacific Ocean, Victoria, and NSW) demonstrated
significant change-points (or times of change in states) of ozone with respect to aerosol
exceedances, as established by binary segmentation and also by Hidden Markov models
(HMMs). The HMM approach established that the ozone TSO time series exhibited four or
five hidden states. We also observed a significant and quantifiable temporal and lagged
effect between times of significant change in aerosol of 10–25 days and change-points in
ozone levels in all three regions.

Intervention methods gave similar times of aerosol exceedance to those found by
HMM. Intervention analysis increases in aerosol in all three regions had a significant and
ongoing impact 1–5 days later in reducing ozone levels (p < 0.0001).

For all three regions, there was a lag of 10–25 days between times of aerosol ex-
ceedances (or change-points) and subsequent ozone depletion. Specifically, in Region 1
(Pacific Ocean) the exceedance (CP) in Aerosol occurred around 7 November 2019. The as-
sociated subsequent decrease in ozone then occurred around 12 days later on 19 November
2019. About 40 days later on 18 January 2020 ozone levels were starting to increase.

In Region 2 (Vic) the exceedance (CP) in Aerosol occurred around 13–17 November
2019. Then, 18 days later around 7–12 December 2019, there was a significant decrease in
ozone; 25 days later ozone levels began to increase.

In Region 3 (Pacific Ocean) the exceedance (CP) in Aerosol occurred around 5 Novem-
ber 2019; followed 13–16 days later by a decrease in Ozone around the 30 November 2019.
About 40–45 days later, ozone levels begin increasing somewhat around 15 January 2020.

Further work based on HMMs and SSM intervention analyses will incorporate meteo-
rological and climate variables, such as wind and temperature, seasonal effects, and possibly
random effects, along with forecasting future ozone levels. More mathematically rigorous
Binary Segmentation methods [58], are topics of future work; as are HMM-Gamma [69]
models, recently proposed for ozone zone identification models.

Possible overfitting by the RFsp model will be addressed by further optimization
of the tuning parameters, which govern the number of features randomly chosen for
growing each tree from the bootstrapped data. Fixed Rank Kriging [49] and Bayesian
Spatial Multivariate Trees (SPAMTrees) [47] are also recent alternatives to test and contrast
with RFsp in the near future. Further potential approaches to be future work are in regard
to Spatio-Temporal Functional Neural Networks following the machine learning (ML)
approach of Rao et al. [78].
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Appendix A. Intervention Analysis Results

Appendix A.1. Region 1 (Pacific Ocean) Results

According to the BinSeg segmentation and HMM analysis results in Sections 4.4 and
4.5, respectively, three different change-points were detected for the Total Ozone Column
for Region 1, day 59, 79 and 139 (Figure A1).

Figure A1. Detected Change Points for Total Sum Ozone (Region 1).

Based on the highest Adjusted R-squared value and lowest MASE and AIC scores
(Adjust R2 = 0.88, AIC = 2356.18, MASE = 0.85), Model R1 is selected as the best model
(Table A1). It can be seen that the fitted model (Figure A2) was able to capture the behavior
of the series quite successfully with small residuals. In summary, in this model all the
following components involving mean ozone level (intercept) and ozone’s lagged depen-
dence of 1 and 5 days were highly significant, as were the negative trend lag1 effects at the
first and second intervention points at 59 and 79 days, respectively; likewise, the sustained
non-lagged negative effect at the third change-point at 139 days. Aerosol levels lagging at
1 day were not shown to be significant.

Table A1. Model Results (Region 1).

Variable Estimate Std. Error t Value Pr (>|t|)

(Intercept) 4542.37 613.19 7.41 <0.0001 ***
L(Y.t, k = 1) 0.58 0.06 9.80 <0.0001 ***
L(Y.t, k = 5) −0.17 0.06 −2.97 0.0034 **
S.t.1 −245.98 57.83 −4.25 <0.0001 ***
P.t.1 −281.53 61.86 −4.55 <0.0001 ***
Q.t −256.53 53.78 −4.77 <0.0001 ***
L(Aerosol_Region1, 1) 0.90 0.64 1.40 0.16

** p < 0.01, *** p < 0.001.

https://www.opendap.org/support/user-documentation
https://www.opendap.org/support/user-documentation
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Figure A2. Intervention Analysis Output for Region 1.

Appendix A.2. Region 2 (Vic) Results

According to the BinSeg segmentation and HMM analysis results in Sections 4.4
and 4.5, respectively, three different change-points were detected for the Total Ozone
Column for Region 2, days 49, 74 and 105 (Figure A3). It can be seen that the fitted
model (Figure A2) was able to capture the behavior of the series quite successfully with
small residuals. In summary, in this model all the following components involving mean
ozone level (intercept) and ozone’s lagged dependence of 1 day were highly significant.
The negative trend lag1 effects at the first and second intervention points at 49 and 74 days,
were significant but the negative effect at the third change-point at 105 days was not
significant. Aerosol levels lagging by 1 day were also shown to be insignificant.

Figure A3. Detected Change Points for Total Sum Ozone (Region 2).

Based on the highest Adjusted R-squared = 0.82, and lowest MASE = 0.83 and
AIC = 2588.96, Model R2 was optimal, with the resultant coefficiencies (Table A2) and
the fitted model (Figure A4) which was able to capture the general behavior of the series.
In the optimal model, the following components involving mean ozone level (intercept)
and ozone’s lagged dependence of 1 day were highly significant, and the negative trends
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for the lag1 effect at the first and second intervention points at 49 and 74 days, respectively,
were significant. Aerosol levels or lags were not significant as covariates in this intervention
analytic model.

Figure A4. Intervention Analysis Output for Region 2

Table A2. Model Results (Region 2).

Variable Estimate Std. Error t Value Pr (>|t|)

(Intercept) 5179.19 582.43 8.89 <0.0001 ***
L(Y.t, k = 1) 0.38 0.07 5.37 <0.0001 ***
S.t 539.39 324.21 1.66 0.09
S.t.1 −773.75 327.30 −2.36 0.01 *
P.t.1 −648.94 326.91 −1.98 0.04 *
P.t.2 258.78 330.46 0.78 0.43
Q.t −184.70 234.72 −0.79 0.43
Q.t.2 −182.28 235.20 −0.78 0.43
Aerosol_Region2 −1.05 1.45 −0.72 0.47
L(Aerosol_Region2, 1) −0.51 1.73 −0.29 0.77
L(Aerosol_Region2, 2) 0.86 1.44 0.60 0.55

* p < 0.05, *** p < 0.001.

Appendix B. HMM Analysis Results for Region 1 and Region 2

Appendix B.1. HMM Analysis of Ozone for Region 1 with Adjustment by Aerosol as a Covariate

Tables A3–A5, and Figure A5 depict the HMM models when aerosol levels are added
as a covariate (the so-called bivariate model).

Table A3. AIC and BIC criteria for HMM model selection with differing number of states for total
sum ozone with total sum aerosol as a covariate in Region 1.

Model Name AIC BIC

HMM (with Aerosol)—with four States 3912.914 4012.067

HMM (with Aerosol)—with five States 3928.469 4069.203

HMM (with Aerosol)—with three States 3977.753 4041.723

HMM (with Aerosol)—with two States 4162.208 4197.392
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Table A4. Transmission matrix of all four states from HMM for total sum ozone with total sum
aerosol as a covariate in Region 1.

Transmission Matrix State 1 State 2 State 3 State 4

State 1 0.903 0.021 0 0.076

State 2 0 1 0 0

State 3 0 0 0.972 0.028

State 4 0.222 0 0.049 0.729

Table A5. Parameter estimates of all four states from HMM for total sum ozone and total sum aerosol
Region 1.

Ozone (DU) Aerosol

Mean Std. Deviation Mean Std. Deviation

State 1 6895.048 152.059 16.482 9.075

State 2 6450.222 208.331 15.354 6.577

State 3 7676.676 342.709 2.645 5.632

State 4 7086.395 294.442 70.048 40.184

Figure A5. HMM bivariate state changes in total sum ozone time-series with respect to total sum
aerosol time-series as a covariate for Region 1.

With reference to Figure A5, the beginning of the ozone series is identified as be-
ing in State 3 (highest mean ozone intercept parameter = 7676.67 DU, and lowest mean
aerosol = 2.645) until day 68 (7 November 2019), which corresponds to the day of the
change-point for the aerosol data (Figure 17). This is also the same day as the first change-
point detected using Binary Segmentation.

Between day 68 (7 November 2019) and 80 (19 November 2019), ozone levels vary
between States 3 and 4 (Figure A5) with State 4 having the highest aerosol intercept mean
of 70.5 (State 4: ozone(DU) = 7086.40).

From day 80 (19 November 2019), ozone levels then alternate between State 1 (mean
ozone, aerosol = (6895.04, 16.48)) and State 4 (mean ozone, aerosol) = (7086.40, 70.05)) where
they remain until day 140 (18 January 2020), which is 10 days after the last change-point
detected for aerosol by Binary Segmentation.

From the transmission probabilities in Table A4 the ozone level in this period primarily
remains in State 1 with a probability of 0.903. Note that during this period State 1 can
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transition to State 4 with a probability of 0.076, and State 4 can transition to State 1 with a
probability of 0.22. After day 141 (19 January 2020) ozone levels were identified as State 2
(mean ozone, aerosol) = (6450.22, 15.35).

Appendix B.2. HMM Analysis of Ozone for Region 2 with Adjustment by Aerosol as a Covariate

Tables A6–A8, and Figure A6 depict the HMM models when aerosol levels are added
as a covariate for Region 2.

Table A6. AIC and BIC criteria for HMM model selection with differing number of states for total
sum ozone with total sum aerosol as a covariate in Region 2.

Model Name AIC BIC

HMM (with Aerosol)—with four States 4003.818 4102.971

HMM (with Aerosol)—with five states 4011.968 4152.702

HMM (with Aerosol)—with three States 4049.551 4113.521

HMM (with Aerosol)—with two States 4146.869 4182.053

Table A7. Transmission matrix of all four states from HMM method for total sum ozone with total
sum aerosol as a covariate in Region 2.

Transmission Matrix State 1 State 2 State 3 State 4

State 1 0.857 0 0.091 0.052

State 2 0 0.742 0 0.258

State 3 0.061 0 0.939 0

State 4 0.018 0.085 0 0.897

Table A8. Parameter estimates of all four states from HMM method for total sum ozone and total
sum aerosol Region 2.

Ozone (DU) Aerosol

Mean Std. Deviation Mean Std. Deviation

State 1 7475.178 340.042 6.038 4.328

State 2 6580.937 232.147 64.789 39.997

State 3 8295.045 409.157 0.04 5.805

State 4 6742.159 240.538 14.767 8.762

Figure A6 displays the state change plot of the optimal HMM bivariate model with
four states with minimum AIC and BIC achieved in testing two, three, four and five state
HMM models (Table A6) for Region 2. According to the transmission matrix in Table A7 all
states tend to remain in their state primarily but main transitions occur between States 1
and 3, and between States 2 and 4.

According to the intercept of the parameters of the HMM model, the intercept of ozone
of State 3 has the largest average mean ozone level intercept of 8295.05 DU aligned with
the lowest aerosol of 0.04, and State 2 has the smallest average state-specific mean ozone
level of 6580.94 DU and highest mean aerosol of 64.79 (Table A8).

From the beginning of the series (see Figure A6) until day 70 (9 November 2019)
the system alternates between State 3 and 1, with State 3 having the highest mean ozone
intercept parameter of 8295.05 DU and lowest mean aerosol of 0.04, and in contrast State
1 has the second lowest aerosol intercept mean of 6.04 and ozone level intercept mean
of 7475.18 DU. Note that day 70 (9 November 2019)) is the same as the change-point for
aerosol detected with Binary Segmentation (Figure 18) plus an additional 2 days.
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Figure A6. HMM bivariate state changes in total sum ozone time-series with respect to total sum
aerosol time-series as a covariate for Region 2.

After day 70 (9 November 2019) up to and including day 107 (16 December 2019),
ozone levels then vary between State 1 (mean ozone(DU), aerosol = (7475.18, 6.04)) and
State 4 (mean ozone(DU), aerosol = (6742.16, 14.77)).

After day 107 (20 December 2019) to the end of the time series the system is transition-
ing between State 2 and State 4. Note State 2 (mean ozone(DU), aerosol = (6580.94, 64.79))
has the lowest ozone level and highest aerosol mean intercept, in contrast to State 4 (mean
ozone(DU), aerosol = (6742.16, 14.77)).

Notably, the first sign of bushfire-associated aerosols occurs on day 68 (7 November
2019), and the time of state change in ozone levels indicated by HMM occurs approximately
2 days later, at 70 days (9 November 2019) in Region 2.
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