Proteome Profiling of Cucurbita pepo Phyllosphere After Infection by Podosphaera xanthii and Application of Reynoutria sachalinensis Extract
<p>Heatmap of the top 100 Differentially Expressed Proteins (DEPs) in all <span class="html-italic">C. pepo</span> phyllosphere samples. The horizontal coordinate (dendrogram) on the top represents the clustering of each sample replicate for each treatment. Treatment names are as described in <a href="#applsci-14-10061-t001" class="html-table">Table 1</a>. The vertical coordinate (dendrogram) on the left represents the clustering of DEPs along with protein CuGenDB IDs. The heatmap specifies the relative up- or down-regulation of DEPs according to the log2 Centered Intensity index at the bottom of the heatmap. For each individual heatmap box, the dark red and dark blue colors represent high and low expression, respectively.</p> "> Figure 2
<p>Identification of differentially expressed proteins (DEPs). Volcano plots show the DEPs in each of the six (<b>A</b>–<b>F</b>) comparisons for the four treatments. Treatment names are as described in <a href="#applsci-14-10061-t001" class="html-table">Table 1</a>. The horizontal axis represents the fold change in protein expression between the two sample groups (Log2 fold change), and the vertical axis represents the <span class="html-italic">p</span>-value-based significance of the DEPs between the two sample groups (−Log10 <span class="html-italic">P</span>). Threshold lines for DEPs screening criteria are indicated by dashed lines (placed as a visual aid), with the horizontal line representing the statistical significance threshold (<span class="html-italic">p</span>-value < 0.05) set for the current analysis and the vertical ones placed at fold-change equals two. Non-significant (NS) DEPs (<span class="html-italic">p</span>-value > 0.05) are shown in gray (<2-fold change in expression) and blue (>2-fold change in expression). Significant (<span class="html-italic">p</span>-value < 0.05) up-regulated and down-regulated DEPs are shown as red (<2-fold change) and green (>2-fold change) dots, respectively. Proteins with a 4-fold and above difference in expression are depicted with their corresponding IDs.</p> "> Figure 3
<p>Venn diagrams showing the overlap and differences of DEPs with <span class="html-italic">p</span>-values < 0.05 shared between the three comparisons of treated (PX, RS, RSPX) samples versus the Control. Treatment names are as described in <a href="#applsci-14-10061-t001" class="html-table">Table 1</a>. Overlaps for expression magnitudes above 1-fold (<b>A</b>), 2-fold (<b>B</b>), and 4-fold (<b>C</b>) difference in expression are shown.</p> "> Figure 4
<p>Gene Ontology terms (GO-terms) functional enrichment analysis of DEPs for all six comparisons (<b>A</b>–<b>F</b>) between the four treatment sample groups. Treatment names are as described in <a href="#applsci-14-10061-t001" class="html-table">Table 1</a>. GO-terms are presented as bar-plots on the left side of the figure, and using g:Profiler-type table outputs on the right side of the figure, respectively. The bar-plot panels on the left present quantitative data (counts) regarding up- and down-regulated DEPs, categorized from top to bottom according to significance (smaller to higher adjusted <span class="html-italic">p</span>-values), and irrespective classification of DEPs in main functional categories. The table panels on the right present the same GO-terms further categorized into three functional groups: biological process (BP), cellular component (CC), and molecular function (MF). GO-term IDs and sizes are also presented along with <span class="html-italic">p</span>-value significance scores.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Treatments, and Sampling
2.2. Sample Preparation for Proteomics Analysis
2.3. Nano-Liquid Chromatography-High Resolution Tandem Mass Spectrometry (Nano-LC-HRMS/MS) Q-Exactive-Orbitrap Analysis
2.4. MS Data Processing
2.5. Data Analysis and Statistics
2.6. KEGG and Gene Ontology Enrichment Analyses
2.7. Data Availability
3. Results
3.1. Identification of Cucurbita pepo Differentially Expressed Proteins
3.2. Functional Enrichment Analyses of C. pepo Differentially Expressed Proteins
3.2.1. KEGG Analysis
3.2.2. GO-Term Analysis
4. Discussion
4.1. Evaluation of Proteomics Data and Selection of DEPs
4.2. Enriched Biochemical Pathways After P. xanthii Infection
4.3. Enriched Biochemical Pathways After C. pepo Elicitation by R. sachalinensis Extract
4.4. Biochemical Pathways Enriched Due to Synergistic Action of RS-Priming Followed by P. xanthii Infection
4.5. Enriched Biochemical Pathways Activated as Common Response Mechanisms or Revealing Further Differences Between Treated Groups
4.6. Relation of KEGG and GO-Term Functional Analyses
4.7. Highly Expressed Proteins in P. xanthii-Infected and RS-Treated Plants and Other Defense-Related Proteins of Interest
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chomicki, G.; Schaefer, H.; Renner, S.S. Origin and Domestication of Cucurbitaceae Crops: Insights from Phylogenies, Genomics and Archaeology. New Phytol. 2020, 226, 1240–1255. [Google Scholar] [CrossRef] [PubMed]
- Montero-Pau, J.; Blanca, J.; Bombarely, A.; Ziarsolo, P.; Esteras, C.; Martí-Gómez, C.; Ferriol, M.; Gómez, P.; Jamilena, M.; Mueller, L.; et al. De Novo Assembly of the Zucchini Genome Reveals a Whole-Genome Duplication Associated with the Origin of the Cucurbita Genus. Plant Biotechnol. J. 2018, 16, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Andolfo, G.; Di Donato, A.; Darrudi, R.; Errico, A.; Cigliano, R.A.; Ercolano, M.R. Draft of Zucchini (Cucurbita pepo L.) Proteome: A Resource for Genetic and Genomic Studies. Front. Genet. 2017, 8, 181. [Google Scholar] [CrossRef]
- Kusch, S.; Qian, J.; Loos, A.; Kümmel, F.; Spanu, P.D.; Panstruga, R. Long-Term and Rapid Evolution in Powdery Mildew Fungi. Mol. Ecol. 2023, 33, e16909. [Google Scholar] [CrossRef]
- Pérez-García, A.; Romero, D.; FernÁndez-OrtuÑo, D.; López-Ruiz, F.; De Vicente, A.; TorÉs, J.A. The Powdery Mildew Fungus Podosphaera fusca (Synonym Podosphaera xanthii), a Constant Threat to Cucurbits: Pathogen Profile. Mol. Plant Pathol. 2009, 10, 153–160. [Google Scholar] [CrossRef]
- Pirondi, A.; Vela-Corcía, D.; Dondini, L.; Brunelli, A.; Pérez-García, A.; Collina, M. Genetic Diversity Analysis of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii Suggests a Clonal Population Structure. Fungal Biol. 2015, 119, 791–801. [Google Scholar] [CrossRef]
- Polonio, A.; Diaz-Martinez, L.; Fernandez-Ortunõ, D.; De Vicente, A.; Romero, D.; Lopez-Ruiz, F.J.; Perez-Garcia, A. A Hybrid Genome Assembly Resource for Podosphaera xanthii, the Main Causal Agent of Powdery Mildew Disease in Cucurbits. Mol. Plant-Microbe Interact. 2021, 34, 319–324. [Google Scholar] [CrossRef]
- Kim, S.; Subramaniyam, S.; Jung, M.; Oh, E.A.; Kim, T.H.; Kim, J.G. Genome Resource of Podosphaera xanthii, the Host-Specific Fungal Pathogen That Causes Cucurbit Powdery Mildew. Mol. Plant-Microbe Interact. 2021, 34, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Meng, T.; Xiao, B.; Yu, T.; Yue, T.; Jin, Y.; Ma, P. Fighting Wheat Powdery Mildew: From Genes to Fields. Theor. Appl. Genet. 2023, 136, 196. [Google Scholar] [CrossRef]
- Kunova, A.; Pizzatti, C.; Saracchi, M.; Pasquali, M.; Cortesi, P. Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance. Microorganisms 2021, 9, 1541. [Google Scholar] [CrossRef]
- Vielba-Fernández, A.; Polonio, Á.; Ruiz-Jiménez, L.; de Vicente, A.; Pérez-García, A.; Fernández-Ortuño, D. Fungicide Resistance in Powdery Mildew Fungi. Microorganisms 2020, 8, 1431. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.L.; Chen, B.H.; Chen, X.J.; Guo, Y.Y.; Yang, H.L.; Li, X.Z.; Wang, G.Y. Transcriptome Profiling of Pumpkin (Cucurbita Moschata Duch.) Leaves Infected with Powdery Mildew. PLoS ONE 2018, 13, e0190175. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, W.L.; Laplant, K.E.; Bell, D.C.; Jahn, M.M.; Mazourek, M. Cultivar-Based Introgression Mapping Reveals Wild Species-Derived Pm-0, the Major Powdery Mildew Resistance Locus in Squash. PLoS ONE 2016, 11, e0167715. [Google Scholar] [CrossRef]
- Massonnet, M.; Riaz, S.; Pap, D.; Figueroa-Balderas, R.; Walker, M.A.; Cantu, D. The Grape Powdery Mildew Resistance Loci Ren2, Ren3, Ren4D, Ren4U, Run1, Run1.2b, Run2.1, and Run2.2 Activate Different Transcriptional Responses to Erysiphe Necator. Front. Plant Sci. 2022, 13, 1096862. [Google Scholar] [CrossRef]
- Nigro, D.; Blanco, A.; Piarulli, L.; Signorile, M.A.; Colasuonno, P.; Blanco, E.; Simeone, R. Fine Mapping and Candidate Gene Analysis of Pm36, a Wild Emmer-Derived Powdery Mildew Resistance Locus in Durum Wheat. Int. J. Mol. Sci. 2022, 23, 13659. [Google Scholar] [CrossRef]
- Pap, D.; Riaz, S.; Dry, I.B.; Jermakow, A.; Tenscher, A.C.; Cantu, D.; Oláh, R.; Walker, M.A. Identification of Two Novel Powdery Mildew Resistance Loci, Ren6 and Ren7, from the Wild Chinese Grape Species Vitis piasezkii. BMC Plant Biol. 2016, 16, 170. [Google Scholar] [CrossRef]
- Barilli, E.; Agudo, F.J.; Masi, M.; Nocera, P.; Evidente, A.; Rubiales, D. Anthraquinones and Their Analogues as Potential Biocontrol Agents of Rust and Powdery Mildew Diseases of Field Crops. Pest Manag. Sci. 2022, 78, 3489–3497. [Google Scholar] [CrossRef] [PubMed]
- Gur, L.; Cohen, Y.; Frenkel, O.; Schweitzer, R.; Shlisel, M.; Reuveni, M. Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. Plants 2022, 11, 978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Mersha, Z.; Vallad, G.E.; Huang, C.H. Management of Powdery Mildew in Squash by Plant and Alga Extract Biopesticides. Plant Pathol. J. 2016, 32, 528–536. [Google Scholar] [CrossRef]
- Malik, N.A.A.; Kumar, I.S.; Nadarajah, K. Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int. J. Mol. Sci. 2020, 21, 963. [Google Scholar] [CrossRef]
- Bektas, Y.; Eulgem, T. Synthetic Plant Defense Elicitors. Front. Plant Sci. 2015, 5, 804. [Google Scholar] [CrossRef] [PubMed]
- Burketova, L.; Trda, L.; Ott, P.G.; Valentova, O. Bio-Based Resistance Inducers for Sustainable Plant Protection against Pathogens. Biotechnol. Adv. 2015, 33, 994–1004. [Google Scholar] [CrossRef]
- Henry, G.; Thonart, P.; Ongena, M. PAMPs, MAMPs, DAMPs and Others: An Update on the Diversity of Plant Immunity Elicitors; BASE: Solihull, UK, 2012; Volume 16. [Google Scholar]
- Maffei, M.E.; Arimura, G.I.; Mithöfer, A. Natural Elicitors, Effectors and Modulators of Plant Responses. Nat. Prod. Rep. 2012, 29, 1288–1303. [Google Scholar] [CrossRef]
- Squeglia, F.; Berisio, R.; Shibuya, N.; Kaku, H. Defense Against Pathogens: Structural Insights into the Mechanism of Chitin Induced Activation of Innate Immunity. Curr. Med. Chem. 2017, 24, 3980–3986. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.C.; Ishizaka, M.; Ishii, H. Acibenzolar-S-Methyl-Induced Systemic Resistance against Anthracnose and Powdery Mildew Diseases on Cucumber Plants without Accumulation of Phytoalexins. J. Phytopathol. 2009, 157, 40–50. [Google Scholar] [CrossRef]
- Ben-Shalom, N.; Ardi, R.; Pinto, R.; Aki, C.; Fallik, E. Controlling Gray Mould Caused by Botrytis Cinerea in Cucumber Plants by Means of Chitosan. Crop Prot. 2003, 22, 285–290. [Google Scholar] [CrossRef]
- Fofana, B.; McNally, D.J.; Labbé, C.; Boulanger, R.; Benhamou, N.; Séguin, A.; Bélanger, R.R. Milsana-Induced Resistance in Powdery Mildew-Infected Cucumber Plants Correlates with the Induction of Chalcone Synthase and Chalcone Isomerase. Physiol. Mol. Plant Pathol. 2002, 61, 121–132. [Google Scholar] [CrossRef]
- Wiesel, L.; Newton, A.C.; Elliott, I.; Booty, D.; Gilroy, E.M.; Birch, P.R.J.; Hein, I. Molecular Effects of Resistance Elicitors from Biological Origin and Their Potential for Crop Protection. Front. Plant Sci. 2014, 5, 655. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.; Leifert, C.; Markellou, E. Reynoutria Sachalinensis Extract Elicits SA-Dependent Defense Responses in Courgette Genotypes against Powdery Mildew Caused by Podosphaera xanthii. Sci. Rep. 2020, 10, 3354. [Google Scholar] [CrossRef]
- Arsova, B.; Watt, M.; Usadel, B. Monitoring of Plant Protein Post-Translational Modifications Using Targeted Proteomics. Front. Plant Sci. 2018, 9, 1168. [Google Scholar] [CrossRef]
- Martínez-Esteso, M.J.; Martínez-Márquez, A.; Sellés-Marchart, S.; Morante-Carriel, J.A.; Bru-Martínez, R. The Role of Proteomics in Progressing Insights into Plant Secondary Metabolism. Front. Plant Sci. 2015, 6, 504. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, A.; Tian, J.; Komatsu, S. Proteomic Contributions to Medicinal Plant Research: From Plant Metabolism to Pharmacological Action. Proteomes 2017, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Rampitsch, C.; Bykova, N.V. Advances in Plant Proteomics toward Improvement of Crop Productivity and Stress Resistance. Front. Plant Sci. 2015, 6, 209. [Google Scholar] [CrossRef] [PubMed]
- Kimotho, R.N.; Maina, S. Unraveling Plant–Microbe Interactions: Can Integrated Omics Approaches Offer Concrete Answers? J. Exp. Bot. 2024, 75, 1289–1313. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, A.; Kudapa, H.; Pazhamala, L.T.; Weckwerth, W.; Varshney, R.K. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement. Front. Plant Sci. 2015, 6, 1116. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef]
- Wang, X. Protein and Proteome Atlas for Plants under Stresses: New Highlights and Ways for Integrated Omics in Post-Genomics Era. Int. J. Mol. Sci. 2019, 20, 5222. [Google Scholar] [CrossRef]
- Durán, D.; Albareda, M.; García, C.; Marina, A.I.; Ruiz-Argüeso, T.; Palacios, J.M. Proteome Analysis Reveals a Significant Host-Specific Response in Rhizobium Leguminosarum Bv. Viciae Endosymbiotic Cells. Mol. Cell. Proteom. 2021, 20, 100009. [Google Scholar] [CrossRef]
- Clarke, V.C.; Loughlin, P.C.; Gavrin, A.; Chen, C.; Brear, E.M.; Day, D.A.; Smith, P.M.C. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins. Mol. Cell. Proteom. 2015, 14, 1301–1322. [Google Scholar] [CrossRef]
- Balotf, S.; Wilson, R.; Tegg, R.S.; Nichols, D.S.; Wilson, C.R. Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant–Pathogen Interactions. Proteomes 2022, 10, 5. [Google Scholar] [CrossRef]
- Fang, X.; Chen, J.; Dai, L.; Ma, H.; Zhang, H.; Yang, J.; Wang, F.; Yan, C. Proteomic Dissection of Plant Responses to Various Pathogens. Proteomics 2015, 15, 1525–1543. [Google Scholar] [CrossRef] [PubMed]
- Cristea, I.M. The Host-Pathogen Ecosystem Viewed through the Prism of Proteomics. Mol. Cell. Proteom. 2017, 16, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J.M.; Griffin, B.D.; Walley, J.W. Advances in Functional Proteomics to Study Plant-Pathogen Interactions. Curr. Opin. Plant Biol. 2021, 63, 102061. [Google Scholar] [CrossRef]
- Nováková, S.; Flores-Ramírez, G.; Glasa, M.; Danchenko, M.; Fiala, R.; Skultety, L. Partially Resistant Cucurbita pepo Showed Late Onset of the Zucchini Yellow Mosaic Virus Infection Due to Rapid Activation of Defense Mechanisms as Compared to Susceptible Cultivar. Front. Plant Sci. 2015, 6, 263. [Google Scholar] [CrossRef]
- Liu, H.W.; Liang, C.Q.; Liu, P.F.; Luo, L.X.; Li, J.Q. Quantitative Proteomics Identifies 38 Proteins That Are Differentially Expressed in Cucumber in Response to Cucumber Green Mottle Mosaic Virus Infection. Virol. J. 2015, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wu, G.; Li, M.; Ma, M.; Du, J.; Sun, M.; Sun, X.; Qing, L. Transcriptome Analysis of Nicotiana Benthamiana Infected by Tobacco Curly Shoot Virus. Virol. J. 2018, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Serra-Soriano, M.; Navarro, J.A.; Genoves, A.; Pallás, V. Comparative Proteomic Analysis of Melon Phloem Exudates in Response to Viral Infection. J. Proteom. 2015, 124, 11–24. [Google Scholar] [CrossRef]
- Kan, Y.; Lyu, Q.; Jiang, N.; Han, S.; Li, J.; Burdman, S.; Luo, L. ITRAQ-Based Proteomic Analyses of the Plant-Pathogenic Bacterium Acidovorax Citrulli during Entrance into and Resuscitation from the Viable but Nonculturable State. J. Proteom. 2020, 211, 103547. [Google Scholar] [CrossRef]
- Xie, J.; Ding, Y.; Gao, T.; He, S.; Zhao, K.; Yang, X.; Zhang, J.; Yang, Z. Transcriptomic and Proteomic Analyses of Cucurbita Ficifolia Bouché (Cucurbitaceae) Response to Fusarium oxysporum f.Sp. Cucumerium. BMC Genom. 2022, 23, 436. [Google Scholar] [CrossRef]
- Elagamey, E.; Abdellatef, M.A.E.; Arafat, M.Y. Proteomic Insights of Chitosan Mediated Inhibition of Fusarium oxysporum f. Sp. Cucumerinum. J. Proteom. 2022, 260, 104560. [Google Scholar] [CrossRef]
- Xu, J.; Wang, K.; Xian, Q.; Zhang, N.; Dong, J.; Chen, X. Identification of Susceptibility Genes for Fusarium oxysporum in Cucumber via Comparative Proteomic Analysis. Genes 2021, 12, 1781. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Huang, Y.; Huang, Y.; Ge, W.; Jia, Z.; Song, S.; Zhang, L. Involvement of Jasmonic Acid, Ethylene and Salicylic Acid Signaling Pathways behind the Systemic Resistance Induced by Trichoderma Longibrachiatum H9 in Cucumber. BMC Genom. 2019, 20, 144. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Yu, Y.; Fan, H.; Zhang, D.; Cui, N.; Wang, X.; Jia, S.; Yang, Y.; Zhao, J. Analysis of Protein Synthesis in Cucumber Leaves after Inoculation with Corynespora cassiicola: A Proteomic Approach. Biochemistry 2019, 84, 963–977. [Google Scholar] [CrossRef]
- Segarra, G.; Casanova, E.; Bellido, D.; Odena, M.A.; Oliveira, E.; Trillas, I. Proteome, Salicylic Acid, and Jasmonic Acid Changes in Cucumber Plants Inoculated with Trichoderma Asperellum Strain T34. Proteomics 2007, 7, 3943–3952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, J.; Xu, B.; Zhou, J. Differential Responses of Cucurbita pepo to Podosphaera xanthii Reveal the Mechanism of Powdery Mildew Disease Resistance in Pumpkin. Front. Plant Sci. 2021, 12, 633221. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Kizis, D.; Kotopoulis, D.; Papadakis, I.E.; Anagnostopoulos, C.; Baira, E.; Termentzi, A.; Vichou, A.E.; Leifert, C.; Markellou, E. Enriched HeK4me3 Marks at Pm-0 Resistance-Related Genes Prime Courgette against Podosphaera xanthii. Plant Physiol. 2022, 188, 576–592. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Latosinska, A.; Vougas, K.; Makridakis, M.; Klein, J.; Mullen, W.; Abbas, M.; Stravodimos, K.; Katafigiotis, I.; Merseburger, A.S.; Zoidakis, J.; et al. Comparative Analysis of Label-Free and 8-Plex ITRAQ Approach for Quantitative Tissue Proteomic Analysis. PLoS ONE 2015, 10, e0137048. [Google Scholar] [CrossRef]
- Huber, W.; von Heydebreck, A.; Sültmann, H.; Poustka, A.; Vingron, M. Variance Stabilization Applied to Microarray Data Calibration and to the Quantification of Differential Expression. Bioinformatics 2002, 18, S96–S104. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Zhang, Y.; Long, Q. Fairness in Missing Data Imputation. arXiv 2021, arXiv:2110.12002. [Google Scholar]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; Hewapathirana, S.; García-Seisdedos, D.; Kamatchinathan, S.; Kundu, D.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A Hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
- Xu, Y.; Schmiege, S.C.; Sharkey, T.D. The Oxidative Pentose Phosphate Pathway in Photosynthesis: A Tale of Two Shunts. New Phytol. 2024, 242, 2453–2463. [Google Scholar] [CrossRef] [PubMed]
- Wieloch, T.; Augusti, A.; Schleucher, J. A Model of Photosynthetic CO2 Assimilation in C3 Leaves Accounting for Respiration and Energy Recycling by the Plastidial Oxidative Pentose Phosphate Pathway. New Phytol. 2023, 239, 518–532. [Google Scholar] [CrossRef]
- Walters, R.D. Photosynthesis in Attacked Plants and Crops. In Physiological Responses of Plants to Attack; Wiley: Hoboken, NJ, USA, 2015; pp. 41–87. [Google Scholar]
- Xu, F.Q.; Xue, H.W. The Ubiquitin-Proteasome System in Plant Responses to Environments. Plant Cell Environ. 2019, 42, 2931–2944. [Google Scholar] [CrossRef] [PubMed]
- Marino, D.; Peeters, N.; Rivas, S. Ubiquitination during Plant Immune Signaling. Plant Physiol. 2012, 160, 15–27. [Google Scholar] [CrossRef]
- Dielen, A.S.; Badaoui, S.; Candresse, T.; German-Retana, S. The Ubiquitin/26S Proteasome System in Plant-Pathogen Interactions: A Never-Ending Hide-and-Seek Game. Mol. Plant Pathol. 2010, 11, 293–308. [Google Scholar] [CrossRef]
- Kachroo, A.; Kachroo, P. Fatty Acid–Derived Signals in Plant Defense. Annu. Rev. Phytopathol. 2009, 47, 153–176. [Google Scholar] [CrossRef]
- Pretorius, C.J.; Zeiss, D.R.; Dubery, I.A. The Presence of Oxygenated Lipids in Plant Defense in Response to Biotic Stress: A Metabolomics Appraisal. Plant Signal. Behav. 2021, 16, 1989215. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Toppo, V.; Chole, P.B.; Banadka, A.; Sudheer, W.N.; Nagella, P.; Shehata, W.F.; Al-Mssallem, M.Q.; Alessa, F.M.; et al. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023, 13, 716. [Google Scholar] [CrossRef] [PubMed]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Ramaroson, M.L.; Koutouan, C.; Helesbeux, J.J.; Le Clerc, V.; Hamama, L.; Geoffriau, E.; Briard, M. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules 2022, 27, 8371. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid Biosynthetic Pathways in Plants: Versatile Targets for Metabolic Engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef]
- Smith, A.M.; Zeeman, S.C.; Thorneycroft, D.; Smith, S.M. Starch Mobilization in Leaves. Proc. J. Exp. Bot. 2003, 54, 577–583. [Google Scholar] [CrossRef]
- Ruan, Y.L. Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Tauzin, A.S.; Giardina, T. Sucrose and Invertases, a Part of the Plant Defense Response to the Biotic Stresses. Front. Plant Sci. 2014, 5, 293. [Google Scholar] [CrossRef]
- Jeandet, P.; Formela-Luboińska, M.; Labudda, M.; Morkunas, I. The Role of Sugars in Plant Responses to Stress and Their Regulatory Function during Development. Int. J. Mol. Sci. 2022, 23, 5161. [Google Scholar] [CrossRef] [PubMed]
- Conrath, U.; Beckers, G.J.M.; Flors, V.; García-Agustín, P.; Jakab, G.; Mauch, F.; Newman, M.-A.; Pieterse, C.M.J.; Poinssot, B.; Pozo, M.J.; et al. Priming: Getting Ready for Battle Prime-A-Plant Group. Mol. Plant Microbe Interact. 2006, 19, 1062–1071. [Google Scholar] [CrossRef]
- Jung, H.W.; Tschaplinski, T.J.; Wang, L.; Glazebrook, J.; Greenberg, J.T. Priming in Systemic Plant Immunity. Science 2009, 324, 89–91. [Google Scholar] [CrossRef]
- Bolton, M.D. Primary Metabolism and Plant Defense-Fuel for the Fire. Mol. Plant-Microbe Interact. 2009, 22, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of Primary Plant Metabolism during Plant-Pathogen Interactions and Its Contribution to Plant Defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Sun, Z.; Qi, F.; Liu, H.; Zhao, M.; Wang, J.; Wang, M.; Zhao, R.; Wu, Y.; Dong, W.; et al. Cytological and Transcriptomic Analysis to Unveil the Mechanism of Web Blotch Resistance in Peanut. BMC Plant Biol. 2023, 23, 518. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Gao, T.; Liang, Z.; Hao, J.; Liu, P.; Liu, X. Dynamic Changes in Plant Secondary Metabolites Induced by Botrytis Cinerea Infection. Metabolites 2023, 13, 654. [Google Scholar] [CrossRef]
- Boss, W.F.; Im, Y.J. Phosphoinositide Signaling. Annu. Rev. Plant Biol. 2012, 63, 409–429. [Google Scholar] [CrossRef]
- Jia, Q.; Kong, D.; Li, Q.; Sun, S.; Song, J.; Zhu, Y.; Liang, K.; Ke, Q.; Lin, W.; Huang, J. The Function of Inositol Phosphatases in Plant Tolerance to Abiotic Stress. Int. J. Mol. Sci. 2019, 20, 3999. [Google Scholar] [CrossRef]
- Zechmann, B. Compartment-Specific Importance of Glutathione during Abiotic and Biotic Stress. Front. Plant Sci. 2014, 5, 566. [Google Scholar] [CrossRef]
- Aslam, S.; Gul, N.; Mir, M.A.; Asgher, M.; Al-Sulami, N.; Abulfaraj, A.A.; Qari, S. Role of Jasmonates, Calcium, and Glutathione in Plants to Combat Abiotic Stresses Through Precise Signaling Cascade. Front. Plant Sci. 2021, 12, 668029. [Google Scholar] [CrossRef] [PubMed]
- Dubreuil-Maurizi, C.; Poinssot, B. Role of Glutathione in Plant Signaling under Biotic Stress. Plant Signal. Behav. 2012, 7, 210–212. [Google Scholar] [CrossRef]
- Zechmann, B. Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress. Plants 2020, 9, 1067. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Whitworth, R.J.; Stuart, J.J.; Chen, M.S. Unbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola Destructor in Wheat. Sci. Rep. 2015, 5, srep08092. [Google Scholar] [CrossRef] [PubMed]
- Pastori, G.M.; Kiddle, G.; Antoniw, J.; Bernard, S.; Veljovic-Jovanovic, S.; Verrier, P.J.; Noctor, G.; Foyer, C.H. Leaf Vitamin C Contents Modulate Plant Defense Transcripts and Regulate Genes That Control Development through Hormone Signaling. Plant Cell 2003, 15, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Pavet, V.; Olmos, E.; Kiddle, G.; Mowla, S.; Kumar, S.; Antoniw, J.; Alvarez, M.E.; Foyer, C.H. Ascorbic Acid Deficiency Activates Cell Death and Disease Resistance Responses in Arabidopsis. Plant Physiol. 2005, 139, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Boubakri, H. The Role of Ascorbic Acid in Plant-Pathogen Interactions. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 255–271. ISBN 9783319740577. [Google Scholar]
- Fitzpatrick, T.B.; Chapman, L.M. The Importance of Thiamine (Vitamin B1) in Plant Health: From Crop Yield to Biofortification. J. Biol. Chem. 2020, 295, 12002–12013. [Google Scholar] [CrossRef]
- Ahn, I.P.; Kim, S.; Lee, Y.H. Vitamin B1 Functions as an Activator of Plant Disease Resistance. Plant Physiol. 2005, 138, 1505–1515. [Google Scholar] [CrossRef] [PubMed]
- González-Bosch, C. Priming Plant Resistance by Activation of Redox-Sensitive Genes. Free Radic. Biol. Med. 2018, 122, 171–180. [Google Scholar] [CrossRef]
- Boubakri, H.; Wahab, M.A.; Chong, J.; Bertsch, C.; Mliki, A.; Soustre-Gacougnolle, I. Thiamine Induced Resistance to Plasmopara Viticola in Grapevine and Elicited Host-Defense Responses, Including HR like-Cell Death. Plant Physiol. Biochem. 2012, 57, 120–133. [Google Scholar] [CrossRef]
- Bahuguna, R.N.; Joshi, R.; Shukla, A.; Pandey, M.; Kumar, J. Thiamine Primed Defense Provides Reliable Alternative to Systemic Fungicide Carbendazim against Sheath Blight Disease in Rice (Oryza Sativa L.). Plant Physiol. Biochem. 2012, 57, 159–167. [Google Scholar] [CrossRef]
- Boubakri, H.; Poutaraud, A.; Wahab, M.A.; Clayeux, C.; Baltenweck-Guyot, R.; Steyer, D.; Marcic, C.; Mliki, A.; Soustre-Gacougnolle, I. Thiamine Modulates Metabolism of the Phenylpropanoid Pathway Leading to Enhanced Resistance to Plasmopara Viticola in Grapevine. BMC Plant Biol. 2013, 13, 31. [Google Scholar] [CrossRef]
- Ahn, I.P.; Kim, S.; Lee, Y.H.; Suh, S.C. Vitamin B1-Induced Priming Is Dependent on Hydrogen Peroxide and the NPR1 Gene in Arabidopsis. Plant Physiol. 2007, 143, 838–848. [Google Scholar] [CrossRef]
- Mehdi, S.; Derkacheva, M.; Ramström, M.; Kralemann, L.; Bergquist, J.; Hennig, L. The WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling. Plant Cell 2016, 28, 42–54. [Google Scholar] [CrossRef]
- Liu, W.; Tang, X.; Qi, X.; Fu, X.; Ghimire, S.; Ma, R.; Li, S.; Zhang, N.; Si, H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int. J. Mol. Sci. 2020, 21, 2894. [Google Scholar] [CrossRef]
- Ebrahim, S.; Usha, K.; Singh, B. Pathogenesis Related (PR) Proteins in Plant Defense Mechanism. Sci. Against Microb. Pathog 2011, 2, 1043–1054. [Google Scholar]
- Noman, A.; Aqeel, M.; Lou, Y. PRRs and NB-LRRs: From Signal Perception to Activation of Plant Innate Immunity. Int. J. Mol. Sci. 2019, 20, 1882. [Google Scholar] [CrossRef] [PubMed]
- Sessa, G.; Martin, G.B. Protein Kinases in the Plant Defense Response. Adv. Bot. Res. 2000, 32, 379–404. [Google Scholar]
- Sun, M.; Qiu, L.; Liu, Y.; Zhang, H.; Zhang, Y.; Qin, Y.; Mao, Y.; Zhou, M.; Du, X.; Qin, Z.; et al. Pto Interaction Proteins: Critical Regulators in Plant Development and Stress Response. Front. Plant Sci. 2022, 13, 774229. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, S. MAPK Cascades in Plant Disease Resistance Signaling. Annu. Rev. Phytopathol. 2013, 51, 245–266. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, R.; Khaskhali, S.; Gao, Z.; Guo, W.; Wang, H.; Niu, X.; He, C.; Yu, X.; Chen, Y. A Novel Glycerol Kinase Gene OsNHO1 Regulates Resistance to Bacterial Blight and Blast Diseases in Rice. Front. Plant Sci. 2022, 12, 800625. [Google Scholar] [CrossRef]
- Jagodzik, P.; Tajdel-Zielinska, M.; Ciesla, A.; Marczak, M.; Ludwikow, A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Front. Plant Sci. 2018, 9, 1387. [Google Scholar] [CrossRef]
- Ma, H.; Gao, Y.; Wang, Y.; Dai, Y.; Ma, H. Regulatory Mechanisms of Mitogen-Activated Protein Kinase Cascades in Plants: More than Sequential Phosphorylation. Int. J. Mol. Sci. 2022, 23, 3572. [Google Scholar] [CrossRef]
- Soltabayeva, A.; Dauletova, N.; Serik, S.; Sandybek, M.; Omondi, J.O.; Kurmanbayeva, A.; Srivastava, S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. Plants 2022, 11, 2660. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.R.H.; Joosten, M.H.A.J. Immune Signaling: Receptor-like Proteins Make the Difference. Trends Plant Sci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Sijaona, M.E.R.; Clewer, A.; Maddison, A.; Mansfield, W. Comparative Analysis of Powdery Mildew Development on Leaves, Seedlings and Flower Panicles of Different Genotypes of Cashew. Plant Pathol. 2001, 50, 234–243. [Google Scholar] [CrossRef]
Comparison Case 1 vs. Case 2 | DEPs 1 p-Value < 0.05 | DEPs >|2-fold| | Up-Regulated 2 in Case 1 | Down-Regulated 2 in Case 1 |
---|---|---|---|---|
PX vs. C 3 | 316 | 199 | 140 | 59 |
RS vs. C | 438 | 163 | 126 | 37 |
RSPX vs. C | 394 | 148 | 129 | 19 |
RS vs. PX | 75 | 31 | 10 | 21 |
RSPX vs. PX | 76 | 20 | 15 | 5 |
RSPX vs. RS | 82 | 25 | 18 | 7 |
KEGG Pathways | PX vs. Control 1 | RS vs. Control | RSPX vs. Control | ||||||
---|---|---|---|---|---|---|---|---|---|
Group 2 | Map Code | Pathway Description | N 3 | DEPs 4 | p.DE 5 | DEPs | p.DE | DEPs | p.DE |
1 | cpep00030 | Pentose phosphate pathway | 85 | 4 6 | 0.021 | ||||
cpep00710 | Carbon fixation in photosynthetic organisms | 114 | 5 | 0.013 | |||||
cpep03050 | Proteasome | 90 | 5 | 0.005 | |||||
cpep00071 | Fatty acid degradation | 66 | 3 | 0.048 | |||||
2 | cpep01110 | Biosynthesis of secondary metabolites | 1593 | 25 | 0.021 | ||||
cpep00941 | Flavonoid biosynthesis | 31 | 2 | 0.042 | |||||
cpep00500 | Starch and sucrose metabolism | 186 | 5 | 0.047 | |||||
cpep00380 | Tryptophan metabolism | 67 | 3 | 0.034 | |||||
3 | cpep00061 | Fatty acid biosynthesis | 62 | 3 | 0.020 | ||||
cpep02010 | ABC transporters | 70 | 3 | 0.028 | |||||
cpep01240 | Biosynthesis of cofactors | 311 | 8 | 0.008 | |||||
cpep00620 | Pyruvate metabolism | 131 | 4 | 0.035 | |||||
cpep00261 | Monobactam biosynthesis | 12 | 2 | 0.005 | |||||
4 | cpep00480 | Glutathione metabolism | 113 | 5 | 0.013 | 4 | 0.021 | ||
cpep00053 | Ascorbate and aldarate metabolism | 81 | 4 | 0.013 | 4 | 0.007 | |||
cpep00730 | Thiamine metabolism | 29 | 2 | 0.050 | 2 | 0.030 | |||
5 | cpep00630 | Glyoxylate and dicarboxylate metabolism | 109 | 4 | 0.005 | 5 | 0.003 | ||
cpep01200 | Carbon metabolism | 367 | 10 | 0.008 | 8 | 0.040 | |||
cpep03010 | Ribosome | 475 | 13 | 0.042 | 10 | 0.028 | |||
6 | cpep01100 | Metabolic pathways | 3036 | 47 | 0.021 | 46 | 0.000 | 40 | 0.003 |
cpep00970 | Aminoacyl-tRNA biosynthesis | 74 | 4 | 0.009 | 3 | 0.044 | 4 | 0.004 | |
cpep00902 | Monoterpenoid biosynthesis | 2 | 1 | 0.022 | 1 | 0.021 | 1 | 0.018 | |
KEGG Pathways | RS vs. PX | RSPX vs. PX | RSPX vs. RS | ||||||
Group | Map Code | Pathway Description | N | DEPs | p.DE | DEPs | p.DE | DEPs | p.DE |
7 | cpep01240 | Biosynthesis of cofactors | 311 | 4 | 0.015 | ||||
cpep00910 | Nitrogen metabolism | 49 | 2 | 0.004 | |||||
cpep01100 | Metabolic pathways | 3036 | 10 | 0.042 | |||||
8 | cpep01230 | Biosynthesis of amino acids | 327 | 3 | 0.013 | ||||
cpep03083 | Polycomb repressive complex | 66 | 2 | 0.004 | |||||
cpep00710 | Carbon fixation in photosynthetic organisms | 114 | 2 | 0.014 | |||||
9 | cpep00730 | Thiamine metabolism | 29 | 2 | 0.000 | 2 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theologidis, I.; Makridakis, M.; Termentzi, A.; Baira, E.; Zoidakis, J.; Kizis, D. Proteome Profiling of Cucurbita pepo Phyllosphere After Infection by Podosphaera xanthii and Application of Reynoutria sachalinensis Extract. Appl. Sci. 2024, 14, 10061. https://doi.org/10.3390/app142110061
Theologidis I, Makridakis M, Termentzi A, Baira E, Zoidakis J, Kizis D. Proteome Profiling of Cucurbita pepo Phyllosphere After Infection by Podosphaera xanthii and Application of Reynoutria sachalinensis Extract. Applied Sciences. 2024; 14(21):10061. https://doi.org/10.3390/app142110061
Chicago/Turabian StyleTheologidis, Ioannis, Manousos Makridakis, Aikaterini Termentzi, Eirini Baira, Jerome Zoidakis, and Dimosthenis Kizis. 2024. "Proteome Profiling of Cucurbita pepo Phyllosphere After Infection by Podosphaera xanthii and Application of Reynoutria sachalinensis Extract" Applied Sciences 14, no. 21: 10061. https://doi.org/10.3390/app142110061
APA StyleTheologidis, I., Makridakis, M., Termentzi, A., Baira, E., Zoidakis, J., & Kizis, D. (2024). Proteome Profiling of Cucurbita pepo Phyllosphere After Infection by Podosphaera xanthii and Application of Reynoutria sachalinensis Extract. Applied Sciences, 14(21), 10061. https://doi.org/10.3390/app142110061