% applied sciences

Review

Microbial and Enzymatic Biodegradation of Plastic Waste for a
Circular Economy

Muhammad Aitzaz Akram !, Rangasamy Savitha 117, Gemma K. Kinsella 1*(0, Kieran Nolan 2(7, Barry J. Ryan !

and Gary T. Henehan /*

check for
updates

Citation: Akram, M.A; Savitha, R,;
Kinsella, G.K.; Nolan, K.; Ryan, B.J.;
Henehan, G.T. Microbial and
Enzymatic Biodegradation of Plastic
Waste for a Circular Economy. Appl.
Sci. 2024, 14,11942. https://doi.org/
10.3390/app142411942

Academic Editors: Fabrizio Medici

and Laura Maria Raimondi

Received: 11 November 2024
Revised: 9 December 2024

Accepted: 16 December 2024
Published: 20 December 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower,

D07 ADY7 Dublin, Ireland; d23128130@mytudublin.ie (M.A.A.); savitha.rangasamy@tudublin.ie (R.S.);

barry.ryan@tudublin.ie (B.J.R.)

2 School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland;
kieran.nolan@dcu.ie

*  Correspondence: gemma.kinsella@tudublin.ie (G.K.K.); gary.henehan@tudublin.ie (G.T.H.)

Abstract: Plastics play a crucial role in modern life, but their accumulation poses a serious threat
to both the environment and human health. Due to their effects on the terrestrial and aquatic
environment, it is essential to develop sustainable approaches to dispose of waste plastics. Traditional
methods of plastic disposal, such as burning and landfilling, are problematic since they produce
hazardous byproducts. Biodegradation is a potentially effective, eco-friendly approach which uses
microbial consortia or isolated enzymes to break down plastic waste. Enzymes interact with plastic
surfaces and hydrolyse the large polymer chains into smaller units. These byproducts can then
be utilised as carbon sources by microbes, which are eventually converted into CO, and water.
This review explores the principal approaches to plastic degradation, with a focus on existing and
emerging polymers made to be readily biodegradable. In addition, sustainable valorisation methods
for converting plastic waste into valuable byproducts are considered. The implementation of a
circular plastic economy is expected to lead to further development, including scaling up of efficient
plastic bio-upcycling processes, which can serve to stimulate environmental waste removal and
value-added use of post-consumer plastic streams.

Keywords: plastic waste; microbial digestion; enzymatic biodegradation; circular economy

1. Introduction

Plastics have become an integral part of modern life due to their beneficial charac-
teristics, including their versatility, light weight, durability, transparency, and chemical
resistance. However, it is because of these characteristics that they have become inexpen-
sive, disposable, and significant contributors to environmental damage [1]. The global
production of plastics reached 460 million tons in 2022, with China and the European Union
accounting for 32% and 17% of the world’s synthetic plastic use, ranking first and second,
respectively [2]. Synthetic plastics are polymers derived from chains of repeating monomers
usually obtained from petrochemicals. Polyethylene (PE), polypropylene (PP), polyvinyl
chloride (PVC), polystyrene (PS), polyethylene terephthalate (PET), and polyurethane (PU)
are examples of common synthetic polymers [3]. Each type of plastic has unique qualities
which make it useful in a wide variety of applications, including packaging, home goods,
and automobile parts. Table 1 shows different types of synthetic plastics, their structures
and their applications.
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Table 1. The most common types of synthetic plastic and their structures and common uses.

Name Structure Uses Reference

Shopping bags, drinks
bottles, food packaging [4]
material, plastic pipes.

Mn
. . Raincoats, shower
Polyvinyl chloride n curtains, window frames, [4]
(PVC) . .
indoor plumbing.

Manufacturing chemical
derivatives, packaging, [5,6]
automotive industries.

\M\rl
n Disposable cups,
packaging materials,
Polystyrene (PS) laboratory consumables, 7]
electronic instruments.

Food and beverage

Polyethylene (PE)

Polypropylene (PP)

Polyethylene . .
packaging, photographic [8]
terephthalate (PET) —0 0 film, insulated clothing.
- -n
(0]
Plastic foams, cushions,
R rubber goods, synthetic
Polyurethane (PU) g R\ T leathers, adhesives, ]
N 9 paints, fibres.
H
_ in

Plastics are widely used because of their versatility and efficiency, yet they have be-
come one of the most pressing environmental concerns. The paradox lies in the fact that
while plastics are useful and efficient materials, they have a durability that is misaligned
with a material that is often designed for a single use, with its disposal becoming a sig-
nificant threat to ecosystems, including land, marine, air, and water [2]. Studies have
concluded that plastics and microplastics (plastic fragments less than 5 mm in size) can
enter the human body through different means such as inhalation, ingestion, and dermal
contact [10]. Long-term exposure can cause negative effects on human DNA and increase
the risk of infertility and cancer [11,12].
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Approximately 460 million tons of plastic waste were generated globally in 2022 [13].
This includes various types of plastics, with PE, PP, and PET being the most concerning ones.
These plastics are commonly used in household items such as bottles, containers, shopping
bags, and wrappers. They are often found in the environment, contributing significantly to
pollution [14]. For example, low-density polyethylene (LDPE) and bioplastics such as PLAs
and PHAs are commonly used in plastic bags, while synthetic plastics like PET are widely
used in textiles and as food containers [15]. Single use plastic waste for items such as food
and drink products accumulates more quickly than waste from durable and expensive
materials like laptops, televisions, and automotive parts [16,17]. Furthermore, such plastics
are challenging to recycle due to their mixed nature. Only by using cleaned, non-mixed
plastic can high-quality recycled products be produced [18].

Figure 1 shows how plastic management varies in the major world economies, with
significant disparities in recycling, incineration, and mismanagement rates globally. Of the
plastic waste generated worldwide, 49% is accumulated in landfills, 22% is classified as
mismanaged (which ultimately ends up in landfills), 19% is incinerated, and only 9% is
recycled. These figures vary among the top economies, with the United States having the
highest landfilling rate (73%) while mismanagement rates range between 4% in the US and
46% in India.
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Figure 1. Plastic waste disposal management by region, globally, and in major economies. This image
was reproduced from OECD (2023) [13] and processed by Our World in Data. Mismanagement refers
to accumulation in landfill.

Landfill is the most common destination for waste plastic based on its simplicity
and low-cost, as no capital cost is incurred except for the land (Figure 2). Landfills are
chosen in many regions due to poor recycling infrastructure. Plastics which are landfilled
pose a risk of leakage into rivers, lakes, and the ocean, creating water pollution [19].
Conversely, incineration is a thermal process used to treat plastic waste and concurrently
reduce its volume. In some cases, the heat generated during incineration is utilised to
produce electricity. However, incineration produces toxic byproducts, which contribute
to air pollution. For example, Wu et al. reported that approximately 70.2 million tons
(29% of the total) of plastic waste was burned without regulation worldwide in 2016,
releasing almost a million tons of toxic aerosols into the atmosphere, with the majority
occurring in developing regions [20,21]. Recycling is an alternative option which can be
more environmentally friendly compared with landfilling or incineration. Mechanical
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recycling involves segregation, cleaning, and reuse of the plastics. Whilst this approach
reduces demand for virgin materials, the plastic created with this method can be of lower
quality, whereas chemical recycling handles mixed plastics, creates new plastics, and offers
a closed recycling loop. Chemical recycling processes release hazardous byproducts and
require high amounts of energy [11].

Sustainable methods

|
Conventional methods Collection and transportation

I-Incineration

N
Ly o@ o
R i
# & Biodegradation \3 ‘.'L
2-Mechanieal recycling ﬁf;—- '
‘s gl b

o B, 3
—r { o
alr ?1 2 Enzymatic degradation
- Landfilling

-, i

3-Chemical recycling

o N
-
i
g
S
£
E
7
4]
H
g
)
o
g
=

Figure 2. A schematic overview of the different approaches to plastic waste management, including
conventional and sustainable approaches.

The development of biodegradable plastics and bioplastics has had a significant impact
on the problem of increasing volumes of persistent plastics in the environment. Biodegrad-
able plastics are defined as materials which are completely degraded to carbon dioxide
and water by the action of naturally occurring microorganisms, such as bacteria, fungi,
and algae, and as such are more easily broken down under natural conditions [22,23].
While the terms biodegradable plastics and bioplastics have been conflated and are used
interchangeably, there is a notable difference between the two. As the name suggests,
biodegradable plastics are degraded by bio-organisms, whereas bioplastics are produced or
derived from biomaterials and are not necessarily biodegradable. For instance, some fossil
fuel-derived plastics are biodegradable, like polybutylene adipate terephthalate (PBAT)
and polybutylene succinate (PBS) [24]. However, polylactic acid (PLA), a common type of
bioplastic (derived from fermented products), is degradable only in industrial composting
sites and is not rapidly degraded under natural conditions [23]. Conversely, an example
of non-biodegradable bioplastics are PETs derived from renewable resources, which are
targeted to replace PETs from non-renewable resources [25]. Figure 3 shows the production
rate of biodegradable plastics in 2023 [2]. Among various types, polylactic acid (PLA) and
polybutylene adipate terephthalate (PBAT) together make up almost 60% of the bioplastics
produced, while polyhydroxyl alkanoate (PHA) and polybutylene succinate (PBS) produc-
tion is less than 10%. Starch-based polymers and blended plastics are beginning to emerge
with strategically improved mechanical properties. These types of plastic offer a promising
alternative due to their enhanced biodegradability and potential for lower environmental
impacts than conventional plastics [26,27].

Increasingly, researchers are exploring the possibility of biotechnological approaches
to plastic degradation involving the use of microbes or enzyme preparations. Consid-
erable research has focused on the biodegradation of synthetic plastics [28-30]. Ideally,
biodegradable plastics are those which can be completely decomposed from complex
polymeric structures into simpler chemicals and biomass when exposed to natural envi-
ronmental conditions and microbial enzymatic action [22,23] (see Table 2). Concurrently,
newly synthesised biodegradable plastics are an active research area. However, it is
important to note that not all bioplastics are inherently biodegradable under typical en-



Appl. Sci. 2024, 14, 11942

5 of 27

vironmental conditions; many require specific conditions such as industrial composting
to facilitate effective degradation [31]. It is also worth noting that many biodegradable
plastics can persist for long periods in landfills due to a lack of bioplastic-degrading
organisms. Although plastic biodegradation is considered a green, safe, and low-energy
input process, it is worth noting that these benefits have primarily been proven on
laboratory scales [32,33]. The scalability and effectiveness of this process on an industrial
scale has not yet been fully demonstrated.
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Figure 3. Production of biodegradable plastics in 2023 (based on data derived from [22-24]), where
PHA is polyhydroxyalkanoate, PLA is polylactic acid, PBS is polybutylene succinate, and PBAT is
polybutylene adipate terephthalate.

The concept of a circular economy is based on reducing waste, reusing materials, and
recycling products to create a closed-loop system that minimises environmental impact. In
this context, biodegradable plastics are crucial as they can be easily degraded and integrated
back into the environment compared with synthetic plastics [34]. However, significant
research is required to fully achieve a closed loop of minimised plastic use, coupled with
re- or up-cycling, as positive steps towards a circular economy. Key biological strategies
to achieve this goal are synthesising biodegradable bioplastics, bio-driven degradation
and recycling of plastics, and upcycling of plastics for waste into valuable products. In
the next section, the focus is on the methods of bio-driven degradation of plastics and
bio-based plastic valorisation as a waste-to-resource approach, contributing to the goal of a
sustainable circular economy. By enhancing waste management practices, improving the
microbial and enzymatic degradation, and developing new biodegradable plastics, plastic
pollution can be reduced and its reuse promoted, thereby supporting the principles of a
circular economy:.

Table 2. Common types of biodegradable plastic and their structures and their uses.

Biodegradation Biodegradation
Types Structure ingSoil in Aqueous Uses References
Environment
0 Packagi
Poly butylene o 85% after o ackagmng
succinate (PBS) o NN 150 days 2% after 117 days material and [35,36]
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coating films
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Table 2. Cont.

Biodegradation Biodegradation
Types Structure . gS il in Aqueous Uses References
1 sol Environment
Poly o o Agriculture
caprolactone z%éo;fesr 181 ;oc?;tesr mulching films, [35,37,38]
(PCL) y ¥ long-term item
n
- HO _
(¢}
L N o Food
Polylactic acid -~ ™~ 16% after 2% after 117 days ~ containers and [35,39,40]
(PLA) 180 days shopping bags
(@)
L 11n
O Bottles,
Polyhydroxy 99% after 83% after wrapping )
butyrate (PHB) H 136 days 117 days material, [35,37,40]
o) OH shopping bags
n
Poly(butylene i .
adipate-co- 21% after o Bags, mulching
terephthalate) SNV O%\ 180 days 2% after 117 days film [35,39,41]
(PBAT) "

2. Microbial and Enzyme-Based Degradation of Plastic
2.1. Microbial Degradation of Plastics

Both synthetic and bio-plastics can be degraded by the action of microbes, including
bacteria, fungi, and actinomycetes [42,43]. Biodegradation of polymers in the environment
starts with the process of biodeterioration, where the mechanical, chemical, and physical
properties of plastic surfaces change due to thermal and photo-oxidation. These structural
changes occur under the influence of environmental conditions (i.e., temperature, moisture,
and sunlight). Microorganisms augment this biodeterioration through the formation of
biofilms on plastic surfaces [44,45]. After biofilm formation, the constituent monomers
are broken down [46,47], and these smaller monomers are taken up into the microbial cell,
where they are broken down to produce energy [48].

2.1.1. Bacterial Biodegradation

Bacteria produce enzymes which are involved in plastic biodegradation [49]. Many
bacterial communities isolated from landfills and oceans in recent years have demonstrated
capabilities in plastic decomposition and utilisation [50]. The capabilities of certain microor-
ganisms, particularly Pseudomonas sp., in accelerating the degradation and metabolism of
synthetic plastics, including polystyrenes and polyethylene, are of special interest [51,52].
For example, a Pseudomonas strain isolated from a landfill site showed 8.7% PE degradation
following 60 days of incubation [53]. In another Pseudomonas study, Pseudoxanthomonas
sp. NyZ600, isolated from activated sludge, was found to depolymerise polycaprolactone
(PC) films into two degradation products—bisphenol A and 4-cumylphenol—which are
monomers of PC [54]. A PET-degrading enzyme from Ideonella sakaiensis PETase is capable
of completely breaking down PET in six weeks. This plastic was previously considered non-
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biodegradable. Ideonella sakaiensis secretes PETase enzymes, which causes the breakdown
of PET at 30 °C. This enzyme produces an intermediate, mono (hydroxyethyl) terephthalate
(MHET), which is absorbed by the cell and processed by the enzyme MHET hydrolase. The
end-product of these two enzymatic processes is terephthalic acid and ethylene glycol, both
of which are monomers that the organism uses for its growth [55].

2.1.2. Fungal Biodegradation

Fungi play a significant role in biodegradation due to their ability to produce extracel-
lular enzymes [56]. These enzymes include cellulases, ligninases, and cutinases which are
effective in degrading various polymers [57]. The biological degradation of polyurethane,
polystyrene, and polyethylene samples by filamentous fungi isolated from Antarctica was
also reported. Here, plastic films were incubated with different fungal isolates at 18 °C for
90 days. Among them, Penicillium sp. demonstrated the highest degradation efficiency,
achieving 28.3% degradation of polyurethane, 8.39% degradation of polystyrene, and 3.53%
degradation of low-density polyethylene. This finding highlights that cold-adapted fungi
can potentially degrade a range of plastics under low-temperature conditions, which could
be beneficial for biodegradation in extreme environments [58]. Furthermore, out of 18
screened fungal strains—based on their ability to degrade polyurethane polyethylene,
and tyre rubber—Fusarium, Penicillium, Botryotina cnerea EN41, and Trichoderma showed
the highest potential to degrade these plastics without any pretreatment [59]. Another
ascomycete, Penicillium, which is involved in PU degradation, was found to be particularly
effective when compared with other ascomycete such as Aspergillus and Alterniaia, as re-
ported by Magnin at el. These fungal strains can use the polyester PU as their sole carbon
source [60].

2.1.3. Algal Biodegradation

Algae, particularly microalgae, are involved in biodegradation because of their ability
to enhance the breakdown of plastic [61,62]. For example, studies have shown that mi-
croalgae can grow on the surface of PE, facilitating degradation. When isolated from waste
plastic bags colonised by green algae, Uronema africanum, a microalga, was reported to initi-
ate the breakdown of low-density polyethylene (LDPE) sheets in 30 days [60]. Only a few
algae have been reported to break down plastics, specifically those that release ligninolytic
and exopolysaccharide enzymes. While algae show the potential to degrade plastic, it is
important to note that biodegradation in the natural environment is slower, which leads to
concerns about accumulation of microplastics [63], and algae are difficult to grow as they
require specific light conditions and appropriate nutrient levels [64]. Maintaining such
conditions consistently can be more complex than for other microorganisms.

2.1.4. Microbial Consortia

Microbial consortia have shown significant potential in plastic biodegradation by
leveraging the synergistic effect of various microbial communities, enhancing the degra-
dation efficiency beyond what individual strains can achieve [65,66]. Plastics are often
more susceptible to fungi and bacteria when applied in consortia [59]. For example, several
PET-degrading strains such as Sarcina aurantiaca (TB3), Bacillus subtilis (TBS8), Aspergillus
flavus (STF1), and Aspergillus niger (STF2) were obtained from plastic waste disposal sites.
The efficacy of these isolates in PET degradation was investigated on PET films for 60 days
at 37 °C as individual organisms and as microbial consortia (TB3 + TB8 + STF1 + STF2).
This study showed 28.78% (w/w) weight loss for the PET films through the microbial
consortia (S. aurantiaca + B. subtilis + A. flavus + A. niger). Further investigations on the
isolate’s hydrophobicity, viability, and total protein concentration showed that there were
no hazards to human health or the environment when using this microbial consortium to
degrade PET-based waste [67]. Another microbial consortium of biodegradation was as-
sessed in both mixed and individual forms. Penicillium raperi, Aspergillus flavus, Penicillium
glaucoroseum, and other Pseudomonas sp. were tested for their biodegradation ability under



Appl. Sci. 2024, 14, 11942

8 of 27

both unstimulated and H,O,-stimulated conditions. In the unstimulated conditions, the
strains were tested under both mixed cultures over 270 days and as individual cultures
over 100 days, while the HyO,-stimulated strains were tested only in the mixed culture for
30 days. Among these isolated strains, Aspergillus flavus showed the highest weight loss
(of 5.5% (w/w)) of PE within 100 days in unstimulated culture conditions [68].

2.1.5. Biodegradation in Different Environments

In the marine environment, plastics undergo photodegradation and biodegradation,
leading to weight loss and changes in their properties. Microorganisms form biofilms on
the surfaces of these plastics, which facilitates degradation [69]. In a study conducted
by Sarkhel et al. [70], the degradation potential of Aspergillus sp. (a fungal species) and
Vibrio sp. (a bacterial species) isolated from the marine environment was investigated.
Over a six-week period, the bacterial strain demonstrated 35% degradation of plastic
bottle waste, while the fungal strain achieved 22% degradation. This study also evaluated
various influencing factors, such as temperature, pH, and inoculum concentration, to
optimise the degradation conditions. These findings suggest that bacteria, specifically
Vibrio sp., are better than fungi at breaking down plastic waste under the conditions tested,
making bacterial treatment a more efficient approach for plastic disintegration in marine
environments [68].

In soil, the degradation of plastics varies significantly. Conventional plastics like PE
and PVC can persist for decades [71,72]. However, some bacteria, such as Lysinibacillus
sp. isolated from soil, have demonstrated the ability to degrade PE and PP [73]. On the
other hand, biodegradable plastics can degrade much faster than conventional plastics. For
example, PHB shows 99% degradation in soil after 136 days, while PCL also degrades by
99% in soil within 136 days. PBS degrades by 85% after 150 days in soil. The degradation
rates of these plastics in aqueous environments are also noteworthy. After 117 days, PBS
degraded by 2%, PCL degraded by 77.6%, and PHB degraded by 83.0%. These examples
illustrate that the same type of plastic can degrade at significantly different rates in different
environments [35,36,38].

Despite these studies, challenges and limitations exist in microbial plastic degradation.
Reliable reports are mostly limited to specific synthetic polymers, with fewer studies
focusing on bioplastics despite their persistence in the environment for an extended time.
This issue can be potentially mitigated by applying microorganisms, plastic-eating insects,
and enzymes to accelerate their degradation. Some researchers have argued that the
microbial degradation of plastics has been overstated [74]. These researchers point to
the lack of evidence for the substantial degradation of unadulterated PE, PP, PS, or PVC,
which represent most of the global plastics production. Table 3 details the various plastic-
degrading bacterial species reported and their respective biodegradation patterns for
different plastics. The table summarises the advancements in identifying and cultivating
microorganisms under laboratory conditions based on published reports from the ten year
period 2014 to 2024.

2.2. Insect Microbiota in Plastic Degradation

Recent studies have highlighted the potential of insect microbiota to digest plastic,
largely due to the microorganisms in their guts. Research into the application of insects
in the breakdown of plastics is increasing, especially research linked to insect gut bacteria
or associated enzymes. Recently, Ali et al. investigated how the lesser waxworm (Achroia
grisella) larvae’s stomach symbionts biodegrade low-density polyethylene plastic. The
results of this study revealed that two bacterial strains, Citrobacter freundii (LDPE-DB1) and
Bacillus sp. (LDPE-DB2), isolated from the insect’s gut displayed notable degradation, with
test plastic tensile strengths being reduced by 51.3% and 58.3%, respectively. During the
course of the 30-day incubation period, cell densities rose, and the development of cavities
on the LDPE surfaces verified the presence of bacteria [75].
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Zophobas atratus larvae, commonly known as superworms, have emerged as
standout performers in tackling plastic waste. A study unveiled the unique ability
of Z. atratus larvae to break down PS and PU foam plastics. This study revealed that
feeding on plastics changes the larvae’s gut microbial communities and increases
specific enzyme activities. Specifically, protease activity increased, enhancing the
larvae’s ability to digest these synthetic polymers. Remarkable microbial shifts in gut
microflora were, characterised by Mangrovibacter domination in the PU-fed group,
Citrobacter flourished in the PE-fed group, and Dysgonomonas and Sphingobacterium
thrived in the PS-fed group. Across all plastic-fed groups, Enterococcus was found
to be prominent microorganisms, suggesting its central role in the biodegradation
process [76].

Building on these findings, Jiang et al. conducted a comparative analysis of polystyrene
biodegradation in three insect species: Tenebrio molitor (yellow mealworm), Galleria mel-
lonella (greater wax moth), and Zophobas atratus. Among these, the Z. atratus (common
name: superworms) larvae exhibited better degradation efficiency. Across all three species,
Enterococcus and Enterobacteriaceae were capable of PS plastic breakdown, yet Z. atratus
demonstrated far greater degradation efficiency [77].

Further advancing this narrative, Peng et al. delved into the ability of Z. atratus
larvae to biodegrade PS and LDPE. Their study provided evidence of plastic frag-
mentation within the larvae’s gut. This process was also linked to changes in the gut
microbiota, particularly the upregulation of functional enzymes such as arylesterase
and serine-hydrolase. The presence of Citrobacter sp. was notably higher when the
larvae consumed PS and LDPE, suggesting its potential contribution to enzymatic
plastic degradation [78].

The use of insects could be a potential large-scale biological solution for plastic waste
management [79]. While the primary mechanism of plastic degradation in insects is
digestion by gut enzymes from resident bacteria, the exact enzyme(s) which facilitate
depolymerisation are not clear [80].

Mealworms consume PS and PE, breaking them down into small fragments [81]. Their
mechanical breakdown of plastics starts with chewing and ingesting, which increases the
surface area available for microbial enzyme activity in the gut [82]. Further degradation of
these fragments occurs in their gut, where bacterial communities, particularly Psedomonas
and Serratia sp., play a vital role in the degradation process. This process facilitates the
conversion of larger plastic particles into smaller fragments, enhancing microbial colonisa-
tion and therefore enzymatic degradation [83]. Microbial digestion in the mealworm gut
enables mineralisation of plastic particles into carbon dioxide and organic matter, as shown
in Figure 4.

Mealworms can degrade up to 47.7% of ingested polystyrene into metabolites within
25 h [84]. Interestingly, polystyrene is resistant to most forms of biodegradation, but
mealworms have shown a significant ability to degrade both its physical and molecular
structures [85]. Unlike the traditional chemical recycling process, mealworms or other
insects can degrade plastic at room temperature, with less environmental waste. Moreover,
the frass (insect excretion) could be investigated for potential application in agriculture
as organic fertiliser, potentially opening a new area for sustainable plastic waste manage-
ment [81]. The above examples show that a variety of organisms can be exploited for
plastic degradation. Another approach, examined below, is to exploit the ability of isolated
enzymes to degrade plastics. This approach holds the possibility of being able to recover
plastic monomers and upcycle them into useful products.
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Figure 4. Role of insect gut microbiota in plastic degradation, with released enzymes facilitating
depolymerisation [81,84].

2.3. Enzymatic Degradation of Polymers

Extracellular and intracellular enzymes are produced by microorganisms which
are involved in the biodegradation of plastic [46,47,86]. To degrade polymers, enzymes
capable of breaking ester, ether, carbon-carbon, and amide bonds will be required [34].
Among these, oxidoreductases, peroxidases, transferases, and hydrolases have been
reported to facilitate depolymerisation and hydrolysis reactions [87,88]. The application
of a variety of purified enzymes in plastic degradation has been studied [46,89]. The
advantage of using purified enzymes lies in the easier downstream recovery of degra-
dation products and avoiding catabolism of products (typically the monomers) [90].
Acyl hydrolases are the most extensively studied enzymes for the degradation of poly-
mers [91-93]. Cutinase, lipase, esterase, and PETase are widely reportedto efficiently
degrade polyesters like PET, PHA, and PLA [46,94,95]. They are produced by both bac-
teria and fungi involved in plastic degradation [46,47]. The difference between lipases,
esterases, and cutinases is a function of their substrate chain lengths [96]. Esterases
catalyse the breakdown of ester bonds with chain lengths of less than 10 carbon atom:s,
and lipases hydrolyse esters with more than 10 carbon atoms in their chains [97,98].
Cutinases can break ester bonds, and their active sites are more exposed to substrates
due to the lack of a “lid” structure covering the active site [99]. Lipases also break ester
bonds, but their active sites are covered by a lid which somewhat limits substrate access.
The lid opens in the hydrophobic environment of the water/lipid interface [100,101].
These enzymes belong to the o/ 3-hydrolase superfamily [102] and contain a catalytic
triad of Serine, Histidine and Aspartate. This catalytic triad facilitates nucleophilic
attack on the carbonyl carbon of the ester bond, causing the hydrolysis of the polyester
chain [103-105].

2.3.1. Cutinase-Catalysed Depolymerisation of Plastics

Cutinases enzymes can break down the ester bonds present in polyesters, especially
polyesters like PET [103,104,106]. Cutinases have been identified in various organisms,
including fungi and bacteria. The enzymatic depolymerisation reported by Lykidis et al.
using the cellulolytic actinomycete Thermobifida fusca isolated from soil resulted in up to
50% degradation of PET at 55 °C in three weeks. After this work, many cutinases from
various Thermobifida sp. were isolated which could degrade plastics [105]. Alongside
this work, engineered cutinases were developed and employed to degrade polyester-
based plastics. For example, cutinases from Thermobifida cellulosilytica DSM44535 and
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Thermobifida fusca DSM44342 were successfully cloned and expressed in E. coli BL21. These
enzymes from Thermobifida, specifically ThcCutl, exhibit favorable kinetic parameters
for soluble substrates and release MHET and terephthalic acid from PET. Comparative
homology modelling suggests that His-209, located in the active site, is crucial for hydrolysis
activity [107]. Thermobifida fusca cutinase (TfC) effectively degrades PET films pretreated
with S. pavanii JWG-G1, showing up to 91.4% degradation within 23 days. The pretreatment
with S. pavanii JWG-G1 likely enhanced the accessibility of the PET substrate, making it
more susceptible to the enzyme. This combination of microbial pretreatment and enzymatic
degradation resulted in substantial degradation of PET films, suggesting the benefit of a
synergetic approach for efficient PET degradation [108].

The cutinases (FoCut5a) from Fusarium oxysporum and Thermobifida alba AHK119 fun-
gus, expressed in E. coli BL21, show optimal catalytic activity on synthetic esters at 40 °C
and a pH of 8.0 [109]. Their successful expression in E. coli BL21 is an advantage which
allows for high yield production using a well-established and cost-effective microbial
expression system. The Fusarium oxysporum enzyme represents a promising approach for
hydrolysing PET-like substrates and other synthetic polymers [110]. A purified lipase
from the yeast Cryptococcus sp. showed sequence homology with proteins in the cutinase
family rather than the lipase family, and this enzyme demonstrated effective degradation
of the high molecular weight polymer PLA, as well as other biodegradable polymers in-
cluding PBS, PCL, and PHB [95]. Din et al. demonstrated the potential of an extracellular
cutinase-like enzyme from the biofilm forming-bacterium Stenotrophomonas maltophilia PRS8
in PET breakdown [111]. This enzyme’s stability and activity were maintained during
various environmental changes (including temperature, pH level, substrate concentration,
and the presence of inhibitors or activators), and it was effective in the hydrolysis of PET.
The depolymerisation process generated terephathalic acid (TPA), mono(2-hydroxyethly)
terephthalate (MHET), and bis(2-hydroxyethyl) terephthalate (BHE) from PET flakes, indi-
cating its potential for managing PET waste and recovering value-added products [111].

Cutinases could be a promising tool in combating plastic pollution and recovering
various plastics monomers. Mutation and engineering of these enzymes may enhance
their functional activity and stability over a wider range of pH levels and temperatures.
However, it is important to note that while cutinases are effective in the degradation of
polyester, a single enzyme is not sufficient for all types of polymers. Multi-enzyme sys-
tems are needed to target a wide range of plastics. This aspect needs further exploration
and research [112].

2.3.2. Lipase-Catalysed Depolymerisation of Plastic

Lipase enzymes, like cutinases, catalyse the hydrolysis of ester bonds in triglycerides to
liberate fatty acids [113]. These enzymes have been identified as a sustainable and effective
means for both the synthesis and degradation of polymers. Lipases can be used to degrade
different types of plastics, particularly biodegradable plastics [114]. For example, a lipase
isolated from Rhizomucor miehei (formerly Mucor miehei) was used to efficiently degrade
synthetic polymers such as PC and PET in an aqueous medium at 37 °C [115]. Additionally,
a lipase from Crytococcus sp. can degrade biodegradable polymers such as polybutylene
succinate (PBS) sheets of 200 um in 72 h when incubated in 100 mM phosphate buffer,
pH 7.0 at 30 °C [116].

Furthermore, a lipase extracted from Pseudomonas cepacian caused 80% degradation
of PBS in less than 24 h when incubated at 50 °C [117]. The same lipase showed greater
degradation of PBS sheets when shaking (rather than under static conditions) at 37 °C in
phosphate buffer pH 7.2-7.4, suggesting that shaking enhances mass transfer efficiency
during the degradation process [118]. Candida antarctica lipase B was chemically modified
to enhance its stability and activity. This modified lipase showed the ability to depolymerise
PLA into its monomers within 40 h at 90 °C [119].
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Deep eutectic solvents (DESs) are mixtures of a hydrogen donor and acceptor which
can create a favorable environment for protein chemical modification. Few studies
have been conducted on the use of DESs to enhance enzymatic plastic degradation.
One such study used the Humicola insolens cutinase (HiC) in a DES environment for
PET degradation and showed that the DES solution increased the hydrolysis yield by
1.5 times [120]. DESs are promising for the stabilisation of enzymes and enhancement
of their catalytic activity [121]. This approach can be beneficial for efficient enzymatic
degradation processes and can be scaled up for industrial application.

2.3.3. Esterase-Catalysed Depolymerisation of Plastics

Esterases released by both bacteria and fungi play a role in plastic degradation by
acting on the polymer surface, creating micro-fractures in the polymer structure which
leads to further degradation [93,94]. This mechanism has been observed in various microor-
ganisms, showing the diverse sources and strategies for plastic degradation. For instance,
some thermophilic bacteria secrete an esterase-like enzyme which targets the amorphous
regions of PET and PLA polymers [122]. Similarly, the Comamonas acidovorans bacterium
produces an esterase capable of degrading low molecular weight PLA [123]. The fungal
species Aspergillus flivus and Aspergillus tubingensis also secrete esterases which can degrade
plastic [124,125].

Esterase activity is typically limited to short-chain acyl esters [94], but recombinant
technology allows fine-tuning of enzymes through site-directed mutagenesis, which has
shown promising enhancement in their degradation capabilities [126]. A notable approach
can be observed in the case of Tenebrio molitor, where five genes were cloned into an E. coli
expression system, with the feruloyl esterase-like enzyme (TmFae) exhibiting the most
PET degradation at 50 °C. Through site-directed mutagenesis of TmFae, two amino acids,
Leucine at position 95 (L95) and Proline at position 122 (P122), which were mutated along
with the hydrophobic amino acid Tryptophan (W), resulting in increased interaction with
PET [127]. Another esterase which was originally found in Ideonella sakaiensis was expressed
in E. coli, and a double mutation, S238F and W159H, produced a narrow active site, like
Thermobifida fusca cutinase (TfCut). This mutant showed enhanced catalytic activity against
PET [128]. Similarly, an engineered recombinant esterase from Pseudomonas aeruginosa
demonstrated 60% enhanced depolymerisation activity [129]. These mutations are exam-
ples of how site-directed mutagenesis can optimise enzyme activity for applications in
plastic degradation.

2.3.4. PETase-Catalysed Depolymerisation of Plastics

Hydrolases are a class of enzymes that catalyse the hydrolysis of bonds, often
through the addition of water [130]. They include esterases, lipases, and cutinases,
and each one is specialised in breaking down different ester bonds [69]. The difference
between these enzymes is primarily a function of their substrate chain length and the type
of bond length cleaved (as explained in Section 2.3). A PET hydrolase, termed PETase,
which was originally isolated from Ideonella sakaiensis exhibited optimal degradation
activity at 40 °C. PETase has the catalytic triad S160-D206-H237 and an « and (3 hydrolase
fold structure, with the core domain comprising nine 3-sheets encircled by seven «-
helices. In contrast to other hydrolases (i.e., lipases and cutinases), PETase possesses three
additional residues (N244, 5245, and N246) in the 38-x6 region, extending the substrate
binding pocket’s cleft and expanding it to accommodate the PET substrate [113,131].
PETase enzymes are named for their ability to hydrolyse PET, thereby differentiating
PETase from other hydrolases, which typically have no, or less, structural adaptations
necessary to effectively degrade PET. Figure 5A depicts the 3D structure and catalytic
triad residues of PETase, while Figure 5B shows the structure and catalytic triad of a
cutinase. This cutinase showed efficient degradation against PCL and PBS, but could
not degrade PET.
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Figure 5. Structure of PETase and Amycolatopsis mediterranei cutinase, (A) Structure and catalytic triad
representation of PETase from Ideonella sakaiensis (PBD ID code: 6EQE) [128]. (B) Modelled structure
and catalytic triad representation of the cutinase from Amycolatopsis mediterranei [46].

Figure 6 shows the enzymatic degradation pathways of PET in Ideonella sakaiensis.
PETase initiates the reaction by hydrolysing the ester bonds (green highlight) in PET,
breaking it down into BHET and MHET monomers [132]. Further hydrolysis is carried out
by MHETase converting MHET into terephthalic acid (TPA) and ethylene glycol. Esterases
and lipases are also involved in this process; these enzymes can further hydrolyse the
ester bonds in both the primary polymer and the intermediates, enhancing the overall
degradation process [97]. Yoshida et al. reported Ideonella sakaiensis breaking down 75%
of PET in 6 weeks using both PETase and MHETase [133]. The PET degradation pathway
suggests that multiple enzymes can act synergistically to break down polymers more
efficiently than a single enzyme [134]. An enzyme cocktail would be a promising approach
to improving effective polymer degradation and could be a suitable option for continuous
industry-scale plastic recycling processes.
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Figure 6. Enzymatic degradation mechanism of PET degradation through cutinase, lipase, and
MHETase producing terephthalic and ethylene glycol (adapted from [135]).

2.3.5. Overview of Plastics Biodegradation

Biodegradation of plastics has been extensively studied, focusing on a variety of plastic
types, microorganisms, and enzymes involved in their degradation. Polyethylene, in both
low- and high-density form (LDPE and HDPE), and PET are among the most studied
polymers for biodegradation [135-137]. These plastics are widely used in packaging,
construction, and industrial applications, leading to their widespread accumulation in the
environment. The degradation of these plastics typically includes specific microbial strains
and enzymatic processes that vary from plastic to plastic, depending upon its chemical
structure [138,139]. The biodegradation process is monitored using various qualitative
and quantitative analytical techniques, such as FTIR, SEM, HPLC, and GC-MS, providing
information on the rate of degradation [138,139]. Chemical and physical modifications
of polymers such as HDPE and LDPE with degradation are monitored using FTIR and
SEM to know the extent of surface erosion and chemical bond breaking during microbial
degradation [140]. Table 3 illustrates the range of microorganisms and enzymes involved
in the biodegradation of different types of plastics, detailing the growth media used, the
time required for biodegradation, and the extent of biodegradation achieved.
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Table 3. Microorganisms and enzymes involved in the biodegradation of different types of plastics. The table is categorised by plastic polymer type.
Polymer Type Microorganisms and Enzymes Media Time Degradation Extent Reference
Paracoccus sp. (Enzyme not specified) Mineral Basal Medium 40 days Change in PET characteristics [136]
Ideonella sakaiensis (PETase and MHETase) | M9 Media 6 weeks 75% of PET [133]
Streptomyces species (Esterase, MHETase, MSM 18 days 49.2-68.8% of PET [137]
PETase)
16 genera of Bacilli, 5 genera of
Polyethylene terephthalate (PET) Proteobacteria, and one genus of Bushnell-Haas broth (BHB) 90 days 18% weight loss [138]
Actinobacteria (Enzyme not specified)
Presence TPA in fermentation
Rhococcus sp. SSM1 (Esterase) Modified Minimal Medium - media which can only come only | [139]
by degradation of PET
Bacillus altitudinis B538 and Alcaligenes . . o o
faecalis BI47 (Esterase) Minimum Media 10 days 0% PET and 2.49% PCL [140]
Achromo%)qcter xylosoxidans (Enzyme Davis Minimal Broth medium 90 days 9.38% of HDPE [141]
not specified)
Acinetobacter sp. strain NyZ450 and
Bacillus sp. strain NyZ451 (Laccase, LB broth 30 days 18% of PE film [142]
Alkane Hydroxylase)
Pseudomonas aeruginosa (MHETase) Aquatic microcosm 30 days 6.25% of PE [143]
Polyethylene (PE) gé’fgﬁg;sggigﬁ;;ﬂrﬁxﬁggsggy ost Nutrient rich growth medium 8-week PE mulch lost 5.95% and 3.62% [144]
Bacterial and Fungal consortia (Esterase) | Basal MSM medium 90 days §?$§5Vg$§ht reduction (22.4% [145]
Rhodococcus opacus R7 (Laccase) M9 mineral medium 24h 10% of PE [146]
. . . Liquid carbon-free basal medium
Kiebsiella pneumoniae (Laccase-Like (LCFBM) and Luria-Bertani (LB) | 90 days 1.68% of LDPE [53]
Multi-Copper Oxidase) medium




Appl. Sci. 2024, 14, 11942 16 of 27
Table 3. Cont.
Polymer Type Microorganisms and Enzymes Media Time Degradation Extent Reference
Ao ?;ZZ;ZS sp- SCM_MK2-4 (Protease | g 1 media (MM) 14 days 36% of PLA [147]
Polylactic acid (PLA) -
i . o 21.9% of PLA film and 42%
Brevibacillus brevis (Hydrolase) Submerged Conditions 60 days reduction in molecular weight [148]
Gordonia and Novosphingobium . o
Polystyrene (PS) (Hydrolase) Marine Broth 2216 30 days 7.73% of PS [149]
Polyvinyl chloride (PVC) fpceflrgzgl)l ofis and B. flexus (Enzyme not |y jq\y 30 days 4.2% by weight loss [150]
Nocardioides marinisabuli DSM 18965 . . Change in P(3HB) surface
Polyhydroxybutyrate (P(3HB)) (Esterase (C4) and Esterase Lipase (C8)) Mineral Medium 15 days characteristics [151]
Pseudoxanthomonas sp. strain NyZ600 L . . Mw from 45.67 to 31.97 kDa and
Polycarbonate (PC) (Hydrolase-PETase) Liquid Enrichment Media 30 days 23.55 to 16.75 kDa [54]
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3. Factors Affecting Plastic Biodegradation

Plastic biodegradation is affected by the physical and chemical properties of polymers.
The main influencing factors are the surface area, molecular weight, hydrophilicity, hy-
drophobicity, chemical structure, melting temperature, and crystallinity [152]. Furthermore,
the hydrophobic properties of plastic polymers inferred by their chemical structures reduce
microbial activity by preventing water absorption [153]. For example, plastics such as PE
and PS have long hydrophobic chains which resist water penetration, creating a barrier
that inhibits microbial colonisation on the plastic’s surface [154]. These factors could be
broadly classified into extrinsic factors and polymer properties.

3.1. Extrinsic Factors

Extrinsic factors refer to the external conditions which influence the growth of mi-
croorganisms. Microbes require specific conditions to grow and thrive. The temperature
and pH level are prominent influences. Extremes of temperature can hinder microbial
growth and activity to slow the biodegradation process [155]. For instance, extremely
high temperatures may denature microbial enzymes and disrupt cellular structures, while
extremely low temperatures can reduce metabolic rates and enzyme activity. However,
some cold-adapted microbes can effectively degrade polymers at low temperatures due to
specialised enzymes which remain active in cold environments. Despite this, the overall
rate of degradation is typically slower at low temperatures. For example, Penicillium sp.
has shown a degradation efficiency of just 3.53% for LDPE at low temperatures [58] com-
pared with P. simplicissimum from the Penicillium genus which demonstrated a significantly
higher degradation efficiency of 38% for PE [156]. These examples underscore the impor-
tance of considering environmental factors when evaluating the potential for microbial
biodegradation. However, while certain specialised microorganisms can operate in more
extreme conditions, most microbes and purified enzymes prefer neutral to slightly alkaline
conditions [49,157] The primary consideration for effective biodegradation must be the
environment in which it will occur.

3.2. Polymer Properties

The hydrophobicity of polymers is strongly influenced by the presence or absence
of functional groups. When non-polar groups dominate in the polymer structure, the
polymer is more hydrophobic and more resistant to microbial attacks [154]. For example,
PE and PP, which consist of long chains of non-polar carbon and hydrogen atoms, are
highly hydrophobic and resistant to biodegradation [158]. Another important factor is
the polymer’s structural complexity. For instance, crystalline polymers have an ordered
structure at the molecular level and are therefore more difficult to degrade, as it is difficult
for enzymes to access suitable regions of the substrate to begin degradation. The degree
of crystallinity is determined by the functional groups, polymer chain length, degree of
branching, and tacticity of the monomers. In general, branched and interlinked polymers
are resistant to degradation compared with the same polymers without interlinking [125].
Similarly, ester bonds break down more quickly than ether or amide bonds because they
have a lower bond dissociation energy [159]. The sequence of bond breakability is as
follows: ester > ether > amide > urethane [160]. Higher-density polymers are often more
resilient to microbial attacks as they have tighter molecular packing, which inhibits the
entry of enzymes or microorganisms [161]. Along the same reasoning, amorphous plastic
is more prone to degrade than crystalline plastic [162]. These factors significantly vary
between polymers, influencing not only their biodegradability but also their susceptibility
to abiotic degradation processes such as photo- and thermal- degradation, which rely on
the presence of reactive sites.

Engineering novel enzymes or microbial strains for more specificity and activity
towards plastics requires a multidisciplinary approach. For studying and designing protein
thermostability, the ProthermaDB database is a valuable online resource [163]. The database
comprises over 14 million protein sequences which can be viewed according to their
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thermal stability and protein family. These experimentally derived data, when combined
with advancing machine learning and artificial intelligence, can be beneficial to increase
our understanding of protein stability towards creating new mutational and evolutional
strategies to make enhanced enzymes. Based on known, experimentally measured changes
in temperature stability (AT) mutations, the database recommends mutations for protein
families to improve their thermostability. However, the application of this knowledge to
plastic degrading enzymes is still in the early stages.

Furthermore, protein glycosylation produced in eukaryotic microbial cells can also
improve enzyme thermostability [164] There are some examples of successful glycosylation
for enhancing enzyme stability. For example, the lipase from Geobacillus zalihae was ex-
pressed in a yeast Pichia sp. strain, producing a lipase with improved thermostability [165].
These more stable enzymes could potentially be more useful to degrade plastic compared
to their native forms.

Enzyme-mediated plastic degradation can be accelerated by altering the enzyme’s
surface properties. However, in this approach, the enzymes must first be identified based
on their catalytic properties and may require mutation to improve substrate specificity or
stability under specific conditions, such as pH or temperature [166].

4. Biodegradable Plastic and the Circular Economy

Plastic valorisation is the process of turning waste plastic into energy, useful chemicals,
or other usable resources to reduce resource depletion and environmental impact. Enzy-
matic valorisation is an environmentally friendly approach when compared with traditional
chemical or mechanical recycling because it operates under milder conditions, such as
lower temperature and pressure, and typically does not require harmful chemicals [167].

High-purity product recovery is also possible since enzymes can be highly selec-
tive [168], resulting in the production of valuable byproducts upon degradation [168].
Koller et al. reported biodegradation of PHA into 3-hydroxyalkanoates (3HAs), which
can be used to make new plastics [169]. Creating a closed loop re- and up-cycling system,
where the degraded products from plastic are repolymerised into new materials and other
products such as butanol or biofuels, is currently of significant interest [170]. To make
bio-based valorisation more effective, bioreactors are employed for enzymatic degradation
in controlled environments. The degradation of PLA in non-sterile soil environments
is influenced by both abiotic and biotic factors. Microorganisms present in the soil can
catalyse the hydrolysis of PLA. Therefore, the observed 16% degradation after 180 days
is likely a combined effect of both intrinsic polymer properties and microbial activity
in the soil environment (see Table 2). However, employing enzymatic degradation in
a controlled environment, such as a bioreactor, could enhance degradation and favour
product recovery. For example, enhanced PET waste conversion into monomers has been
demonstrated by enzyme systems like PETase/MHETase (see Section 2.3), indicating the
possibility for multienzyme systems (i.e., enzyme cocktails) which can break down PET and
possibly polyolefins and other plastic additives [171]. An example of industry-scale enzy-
matic valorisation was commercialised by CARBIOS [172] for recycling PET by employing
specifically engineered enzymes, effectively breaking PET down into ethylene glycol and
terephthalic acid. These monomers can then be repolymerised to produce high-value,
food-grade PET [173]. Applying such models to biodegradable plastics can lead to more
effective and sustainable valorisation strategies [174].

The potential for obtaining biodegraded products from mixed plastic is still chal-
lenging and currently requires plastic sorting and segregation prior to degradation. This
“sorting problem” is an expensive part of the recycling process. However, promising meth-
ods are being developed, including the use of metal-promoted autoxidation to chemically
oxidise mixed plastics such as HDPE, PET, and polystyrene [175,176]. In this approach,
the polymers are treated to become water-soluble intermediates, which are subsequently
broken down for re- and up-cycling through enzymatic degradation by engineered Pseu-
domonas putida [177].
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End-of-life biodegradable plastics can be valorised through a circular lifecycle concept,
specifically by upcycling biodegradable plastics into chemical and molecular intermediates,
which can then be converted into more valuable products. For example, in agricultural
mulching fields, plastic mulch films are widely used for weed control, moisture retention,
and soil temperature regulation. However, these films often persist in the environment
after use. According to EU guidelines, all polymer products used in agriculture must
be biodegradable [36]. Therefore, in the context of agriculture, increasing the rate of
biodegradation of mulching films in situ will save time and provide organic fertiliser for
the soil, leading to increased soil fertility. An interesting example of recycling plastic waste
involves PLA, which is a biodegradable plastic that can be depolymerised into lactate
monomers (see Figure 7). The hydrolytic depolymerisation of PLA into its monomeric units
is catalysed by enzymes such cutinases, lipases, and proteinase K [178,179]. These lactate
esters are considered green solvents due to their biodegradability and low toxicity [180].
They can be converted into lactide, which can be used again to produce PLA, thus becoming
an important part of a circular bioprocess [181].
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Figure 7. Lifecycle of biodegradable PLA and PHB contributing to a circular economy.

5. Conclusions and Future Directions

Traditional waste management methods are costly and hazardous. However, microbial
and enzymatic degradation of plastic presents a viable and sustainable solution to global
plastic waste problems. Biodegradation by microorganisms, which produce enzymes like
cutinase, lipases, esterases, and PETases, offers a more sustainable approach. PHA and
PLA are promising bioplastics which not only degrade under specific conditions but also
produce valuable products following degradation (e.g., 3-hydroxyalkanoates and lactic
acid). These products can be upcycled (to enhance their value) and recycled into various
industrial applications contributing to a circular economy. A circular economy is a closed-
loop system where products can be easily extracted, recycled, and reused. However, in the
context of soil, it becomes challenging, as once plastics enter the soil, they become difficult
to retrieve and reuse.

Additionally, investigating the interactions between the polymer structure, compo-
sition, and enzymatic degradation mechanisms will further aid in developing enzymes
which effectively degrade specific plastics. This will provide critical information for further
rational enzyme design and improvements in the biocatalytic performance of enzymes
in terms of selectivity, activity, stability, and scalability. In addition, the development of
specific enzymes capable of digesting one plastic in the presence of another will contribute
towards addressing the expensive sorting step. Selective hydrolysis of plastic mixtures
would greatly ameliorate the costs associated with plastic sorting. The cost and impact of
the production of degradative enzymes also needs to be considered as part of a circular
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economy. One approach is to enhance enzyme affordability by economies of scale. Another
approach is via increasing the activity of enzymes by mutagenesis or solvent engineering.

Integrating biological processes into the entire lifecycle of plastic products would
enhance sustainability and favour environmental remediation. Creating a closed loop
from production to end of use for plastics in non-polluting and regenerative ways is a
must to achieve this goal of a circular economy. This requires continued technological
advancements, the development of appropriate infrastructures, and policy support to
integrating biological solutions into global waste management.
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