Explosive Strength and Speed as Potential Determinants of Success in Youth Figure Skating Competitions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Anthropometric Measurements
2.2.2. Tests of Lower-Limb Explosive Strength
2.2.3. Repeated Vertical Jump (RVJ) Test
2.2.4. Standing Long Jump (SLJ) Test
2.2.5. Triple Jump Test with Right/Left Leg (TJR/TJL Test)
2.2.6. Fifteen-Meter Running Sprint Test
2.2.7. Fifteen-Meter Skating Sprint Test
2.3. Results of Figure Skating Competitions
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brenner, J.S.; Council on Sports Medicine and Fitness. Sports Specialization and Intensive Training in Young Athletes. Pediatrics 2016, 138, e20162148. [Google Scholar] [CrossRef]
- Cruz, J.; Vriner, M.; Mangum, L.; Slater, L. Longitudinal Changes in Athletic Performance in Competitive Figure Skaters. J. Sci. Sport Exerc. 2021, 3, 332–339. [Google Scholar] [CrossRef]
- Cabell, L.; Bateman, E. Biomechanics in figure skating. In The Science of Figure Skating; Routledge: Abingdon, UK, 2018. [Google Scholar] [CrossRef]
- Kutlay, E.; Haslofça, F.; Haslofça, E. The relationship between anthropometric characteristics and physical fitness parameters of figure skating athletes. Eur. J. Phys. Educ. Sport Sci. 2020, 6. [Google Scholar] [CrossRef]
- Slater, L.V.; Vriner, M.; Zapalo, P.; Arbour, K.; Hart, J.M. Difference in Agility, Strength, and Flexibility in Competitive Figure Skaters Based on Level of Expertise and Skating Discipline. J. Strength Cond. Res. 2016, 30, 3321–3328. [Google Scholar] [CrossRef]
- Yordanova, T. Judging Results in Figure Skating After the ISU Judging System Was Introduced In 2004. J. Appl. Sports Sci. 2022, 2, 64–76. [Google Scholar] [CrossRef]
- Rauer, T.; Pape, H.C.; Knobe, M.; Pohlemann, T.; Ganse, B. Figure skating: Increasing numbers of revolutions in jumps at the European and World Championships. PLoS ONE 2022, 17, e0265343. [Google Scholar] [CrossRef]
- Lom, S.E. Changing rules, changing practices: The direct and indirect effects of tight coupling in figure skating. Organ. Sci. 2016, 27, 36–52. [Google Scholar] [CrossRef]
- Mochida, M.; Jin, B.; Zhang, Y. Effects of stretching training on lower limb explosive strength in figure skating athletes. Rev. Bras. De Med. Do Esporte 2022, 29, e2022_0350. [Google Scholar] [CrossRef]
- Shulman, C. The Complete Book of Figure Skating; Human Kinetics: Champaign, IL, USA, 2002. [Google Scholar]
- Comuk, N.; Erden, Z. The effect of muscular strength and endurance on technical skill in professional figure skaters. Isokinet. Exerc. Sci. 2012, 20, 85–90. [Google Scholar] [CrossRef]
- Cattle, A.; Mosher, A.; Mazhar, A.; Baker, J. Early specialization and talent development in figure skating: Elite coaches’ perspectives. Curr. Issues Sport Sci. 2023, 8, 013. [Google Scholar] [CrossRef]
- Mostaert, M.; Deconinck, F.; Pion, J.; Lenoir, M. Anthropometry, physical fitness and coordination of young figure skaters of different levels. Int. J. Sports Med. 2016, 37, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Faigenbaum, A.D.; Stone, M.H.; Oliver, J.L.; Jeffreys, I.; Moody, J.A.; Brewer, C.; Pierce, K.C.; McCambridge, T.M.; Howard, R.; et al. Position statement on youth resistance training: The 2014 International Consensus. Br. J. Sports Med. 2014, 48, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef]
- Tkac, M.; Hamar, D.; Komadel, L.; Kuthanova, O. Measurement of anaerobic power of the lower limbs by a method of repeated vertical jumps. Sports Med. Train. Rehabil. 1990, 1, 317–325. [Google Scholar] [CrossRef]
- Zemková, E.; Hamar, D. Jump ergometer in sport performance testing. Gymnica—Acta Univ. Palacki. Olomuc. 2005, 35, 7–16. [Google Scholar]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. J. Strength Cond. Res. 2011, 25, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- EUROFIT. Handbook for the Eurofit Tests of Physical Fitness; Committee for the Development of Sport, Council of Europe: Rome, Italy, 1988. [Google Scholar]
- Madruga-Parera, M.; Bishop, C.; Fort-Vanmeerhaeghe, A.; Beltran-Valls, M.R.; Skok, O.G.; Romero-Rodríguez, D. Interlimb asymmetries in youth tennis players: Relationships with performance. J. Strength Cond. Res. 2020, 34, 2815–2823. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Santos, J.R.; Ruiz, J.R.; Cohen, D.D.; Gonzalez-Montesinos, J.L.; Castro-Piñero, J. Reliability and validity of tests to assess lower-body muscular power in children. J. Strength Cond. Res. 2015, 29, 2277–2285. [Google Scholar] [CrossRef] [PubMed]
- Seiberl, W.; Hahn, D.; Power, G.A.; Fletcher, J.R.; Siebert, T. Editorial: The stretch- Shortening cycle of active muscle and muscle-tendon complex: What, why and how it increases muscle performance? Front. Physiol. 2021, 12, 693141. [Google Scholar] [CrossRef] [PubMed]
- Davey, K.; Read, P.; Coyne, J.; Jarvis, P.; Turner, A.; Brazier, J.; Bishop, C. An assessment of the hopping strategy and inter-limb asymmetry during the triple hop test: A test–retest pilot study. Symmetry 2021, 13, 1890. [Google Scholar] [CrossRef]
- Bös, K.; Schlenker, L.; Büsch, D.; Lämmle, L.; Müller, H.; Oberger, J.; Tittlbach, S. Deutscher Motorik Test 6-18:(DMT 6-18); Czwalina: Hamburg, Germany, 2009. [Google Scholar]
- Helešic, J. Rychlost Lokomoce a Dynamická Síla Dolních Končetin Hráčů Ledního Hokeje Dorosteneckého a Juniorského Věku. (Locomotion Speed and Dynamic Strength of Lower Extremities in Adolescent and Junior Ice Hockey Players); UK FTVS: Prague, Czech Republic, 1999. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Menlo Park, CA, USA, 1977. [Google Scholar]
- Ogasawara, H. Standard errors for the direct Oblimin solution with Kaiser’s normalization. Jpn. J. Psychol. 1999, 70, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory; McGraw Hill: New York, NY, USA, 1994. [Google Scholar]
- Lehnert, M.; Psotta, R.; Helešic, J. Influence of chronological age on reactive strength in 8–13-year-old female figure skaters. J. Phys. Educ. Sport 2022, 22, 724–731. [Google Scholar] [CrossRef]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The Influence of Growth and Maturation on Stretch-Shortening Cycle Function in Youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R. Examining the relationship between physical fitness and performance in developmental figure skaters. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2016. [Google Scholar] [CrossRef]
- Harrison, A.; Gaffney, S. Motor development and gender effects on stretch-shortening cycle performance. J. Sci. Med. Sport Sports Med. Aust. 2002, 4, 406–415. [Google Scholar] [CrossRef]
- Williams, M.; Squillante, A.; Dawes, J. The Single Leg Triple Hop for Distance Test. Strength Cond. J. 2017, 39, 94–98. [Google Scholar] [CrossRef]
- Los Arcos, A.; Mendiguchia, J.; Javier, Y. Specificity of jumping, acceleration and quick change of direction motor abilities in soccer players. Kinesiology 2017, 49, 22–27. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; De Ste Croix, M.B. Chronological Age vs. Biological Maturation: Implications for Exercise Programming in Youth. J. Strength Cond. Res. 2014, 28, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Rees, T.; Hardy, L.; Gullich, A.; Abernethy, B.; Côté, J.; Woodman, T.; Warr, C. The Great British Medalists Project: A Review of Current Knowledge on the Development of the World’s Best Sporting Talent. Sports Med. 2016, 46, 1041–1058. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Cheng, D.; Gonzalez, J. Technical and Program Component scores frozen together: Difficulty bias and outcome prediction in international figure skating. Math. Sports 2022, 4. Available online: https://libjournals.unca.edu/OJS/index.php/mas/article/view/23 (accessed on 14 October 2024).
- Hirosawa, S.; Watanabe, M.; Aoki, Y. Determinant analysis and developing evaluation indicators of grade of execution score of double axel jump in figure skating. J. Sports Sci. 2022, 40, 470–481. [Google Scholar] [CrossRef]
Group 1 | Group 2 | |||||||
---|---|---|---|---|---|---|---|---|
Age | BH | BM | BMI | Age | BH | BM | BMI | |
Number of participants | 85 | 95 | ||||||
Average | 10.38 | 1.38 | 32.75 | 17.19 | 13.02 | 1.52 | 42.73 | 18.49 |
Standard deviation | 1.10 | 0.07 | 4.63 | 1.19 | 1.06 | 0.08 | 7.62 | 1.77 |
(A) | ||
Kaiser–Meyer–Olkin measure of sampling adequacy. | 0.84 | |
Bartlett’s test of sphericity | Approx. chi-square | 1652.04 |
Degree of freedom | 105 | |
Significance | ≤0.001 | |
(B) | ||
Kaiser–Meyer–Olkin measure of sampling adequacy. | 0.807 | |
Bartlett’s test of sphericity | Approx. chi-square | 1501.018 |
Degree of freedom | 105 | |
Significance | ≤0.001 |
Test | Variables | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Running sprint test | R_t15 m (s) | −0.93 | 0.501 | −0.35 | |
R_v_2.s (m/s) | 0.892 | 0.364 | −0.473 | 0.586 | |
R_v_3.s (m/s) | 0.81 | 0.378 | −0.345 | 0.595 | |
R_v_1.s (m/s) | 0.78 | −0.333 | |||
Repeated vertical jump test | RSI | 0.31 | 0.96 | −0.366 | 0.558 |
Pact (W/kg) | 0.341 | 0.946 | −0.397 | 0.574 | |
tc (s) | −0.847 | ||||
h (m) | 0.444 | 0.74 | −0.495 | 0.662 | |
Skating sprint test | S_v_2.s (m/s) | 0.519 | 0.323 | −0.924 | 0.393 |
S_t15m (s) | −0.581 | −0.339 | 0.902 | −0.351 | |
S_v_3.s (m/s) | 0.677 | 0.316 | −0.883 | 0.459 | |
S_v_1.s (m/s) | −0.863 | ||||
Jumps in horizontal direction test | TJL (m) | 0.444 | 0.438 | −0.355 | 0.963 |
TJR (m) | 0.403 | 0.475 | −0.378 | 0.931 | |
SLJ (m) | 0.412 | −0.313 | 0.919 |
Test | Variables | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Skating sprint test | S_v_2.s (m/s) | 0.929 | 0.306 | −0.495 | |
S_t15m (s) | −0.903 | −0.394 | 0.537 | ||
S_v_3.s (m/s) | 0.9 | 0.394 | −0.508 | ||
S_v_1.s (m/s) | 0.873 | −0.331 | |||
Repeated vertical jump test | RSI | 0.982 | |||
Pact (W/kg) | 0.979 | ||||
h (m) | 0.455 | 0.774 | 0.421 | −0.467 | |
tc (s) | −0.768 | ||||
Jumps in horizontal direction | TJL (m) | 0.941 | −0.439 | ||
TJR (m) | 0.309 | 0.911 | −0.417 | ||
SLJ (m) | 0.899 | −0.464 | |||
Running sprint test | R_v_2.s (m/s) | 0.393 | 0.457 | −0.936 | |
R_v_3.s (m/s) | 0.399 | 0.479 | −0.915 | ||
R_t15m (s) | −0.486 | −0.415 | 0.894 | ||
R_v_1.s (m/s) | 0.591 | −0.697 |
Model | R | R Squa. | Adjust. R Squa. | Std. Error of Estim | F Change | df1 | df2 | Sig. F Change Model | Durbin–Watson | Signif. Component |
---|---|---|---|---|---|---|---|---|---|---|
RCH_FS_Score | 0.578 | 0.334 | 0.296 | 9.206 | 8.764 | 4 | 70 | <0.001 | 1.545 | <0.001; C3 |
RCH_FS_Pcs | 0.591 | 0.35 | 0.311 | 4.210 | 9.136 | 4 | 68 | <0.001 | 1.46 | <0.001; C3 |
RCH_FS_Tes | 0.546 | 0.298 | 0.256 | 4.590 | 7.205 | 4 | 68 | <0.001 | 1.533 | <0.001; C3 |
SB3_FS_Score | 0.625 | 0.391 | 0.361 | 9.358 | 12.998 | 4 | 81 | <0.001 | 1.5 | <0.001; C3 |
SB3_FS_Pcs | 0.638 | 0.407 | 0.377 | 4.020 | 13.873 | 4 | 81 | <0.001 | 1.277 | <0.001; C3 |
SB3_FS_Tes | 0.652 | 0.425 | 0.396 | 4.243 | 14.756 | 4 | 80 | <0.001 | 0.993 | <0.001; C3 |
Model | R | R Squa. | Adjust. R Squa. | Std. Error of Estim | F Change | df1 | df2 | Sig. F Change Model | Durbin–Watson | Signif. Component |
---|---|---|---|---|---|---|---|---|---|---|
RCH_Total sc. | 0.439 | 0.192 | 0.155 | 14.473 | 5.179 | 4 | 87 | 0.001 | 0.363 | <0.001; C3 |
RCH_SP score | 0.431 | 0.186 | 0.149 | 5.379 | 5.086 | 4 | 89 | 0.001 | 0.307 | <0.001; C3 |
RCH_SP_Pcs | 0.294 | 0.086 | 0.042 | 1.670 | 1.956 | 4 | 83 | 0.109 | 0.178 | 0.027; C3 |
RCH_SP_Tes | 0.431 | 0.185 | 0.148 | 3.185 | 5.009 | 4 | 88 | 0.001 | 0.366 | <0.001; C3 |
RCH_FS_Score | 0.433 | 0.188 | 0.15 | 10.012 | 5.023 | 4 | 87 | 0.001 | 0.469 | <0.001; C3 |
RCH_FS_Pcs | 0.392 | 0.154 | 0.113 | 3.954 | 3.81 | 4 | 84 | 0.007 | 0.298 | <0.001; C3 |
RCH_FS_Tes | 0.388 | 0.151 | 0.11 | 4.903 | 3.687 | 4 | 83 | 0.008 | 0.371 | <0.001; C3 |
SB3_Total sc | 0.472 | 0.223 | 0.193 | 14.100 | 7.323 | 4 | 102 | <0.001 | 1.635 | <0.001; C3 |
SB3_SP score | 0.487 | 0.237 | 0.206 | 4.054 | 7.69 | 4 | 99 | <0.001 | 0.415 | <0.001; C3 |
SB3_SP_Pcs | 0.307 | 0.094 | 0.056 | 1.614 | 2.494 | 4 | 96 | 0.048 | 0.202 | 0.048; C3 |
SB3_SP_Tes | 0.434 | 0.188 | 0.156 | 2.644 | 5.796 | 4 | 100 | <0.001 | 0.424 | <0.001; C3 |
SB3_FS_Score | 0.473 | 0.223 | 0.193 | 9.980 | 7.334 | 4 | 102 | <0.001 | 1.643 | <0.001; C3 |
SB3_FS_Pcs | 0.47 | 0.221 | 0.189 | 3.892 | 6.888 | 4 | 97 | <0.001 | 0.382 | <0.001; C3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helesic, J.; Lehnert, M. Explosive Strength and Speed as Potential Determinants of Success in Youth Figure Skating Competitions. Appl. Sci. 2024, 14, 11861. https://doi.org/10.3390/app142411861
Helesic J, Lehnert M. Explosive Strength and Speed as Potential Determinants of Success in Youth Figure Skating Competitions. Applied Sciences. 2024; 14(24):11861. https://doi.org/10.3390/app142411861
Chicago/Turabian StyleHelesic, Jiri, and Michal Lehnert. 2024. "Explosive Strength and Speed as Potential Determinants of Success in Youth Figure Skating Competitions" Applied Sciences 14, no. 24: 11861. https://doi.org/10.3390/app142411861
APA StyleHelesic, J., & Lehnert, M. (2024). Explosive Strength and Speed as Potential Determinants of Success in Youth Figure Skating Competitions. Applied Sciences, 14(24), 11861. https://doi.org/10.3390/app142411861