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Abstract: Searchable encryption (SE) allows users to efficiently retrieve data from encrypted cloud
data, but most of the existing SE solutions only support precise keyword search. Fuzzy searchable
encryption agrees with practical situations well in the cloud environment, as search keywords that are
misspelled to some extent can still generate search trapdoors that are as effective as correct keywords.
In scenarios where multiple users can search for ciphertext, most fuzzy searchable encryption schemes
ignore the security issues associated with malicious cloud services and are inflexible in multi-user
scenarios. For example, in medical application scenarios where malicious cloud servers may exist,
diverse types of files need to correspond to doctors in the corresponding departments, and there is
a lack of fine-grained access control for sharing decryption keys for different types of files. In the
application of medical cloud storage, malicious cloud servers may return incorrect ciphertext files.
Since diverse types of files need to be guaranteed to be accessible by doctors in the corresponding
departments, sharing decryption keys with the corresponding doctors for different types of files is
an issue. To solve these problems, a verifiable fuzzy searchable encryption with blockchain-assisted
multi-user scenarios is proposed. Locality-sensitive hashing and bloom filters are used to realize
multi-keyword fuzzy search, and the bigram segmentation algorithm is optimized for keyword
conversion to improve search accuracy. To realize fine-grained access control in multi-user scenarios,
ciphertext-policy attribute-based encryption (CP-ABE) is used to distribute the shared keys. In
response to the possibility of malicious servers tampering with or falsifying users’ search results,
the scheme leverages the blockchain’s technical features of decentralization, non-tamperability, and
traceability, and uses smart contracts as a trusted third party to carry out the search work, which not
only prevents keyword-guessing attacks within the cloud server, but also solves the verification work
of search results. The security analysis leads to the conclusion that the scheme is secure under the
adaptively chosen-keyword attack.

Keywords: multi-user fuzzy search; smart contract; access control

1. Introduction

Due to the convenience of cloud services, individuals and organizations are inclined to
upload their files to the cloud for storage, it is crucial to encrypt sensitive files before storing
on the cloud. However, another problem arises as to how to perform search operations on
the ciphertext files in cloud services. Searchable encryption technology [1] perfectly solves
the problem of searching ciphertext files directly and has a wide range of applications, such
as in the smart healthcare [2], smart city, and IoT fields [3].

Since the pioneering work on searchable encryption, scholars have devoted themselves
to studying some practical and feasible searchable encryption schemes. For example, a
scheme [4] supports conjunctive, subset and range queries on encrypted data, a scheme [5]
supports spatial keyword queries, and another scheme [6] supports Boolean queries. In
practice, when users perform a search operation, they often misspell the search keywords
or simply enter the approximate stem of the keyword or other forms to start performing
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the search operation. To address this situation, fuzzy search [7] realizes a certain degree of
approximate keyword search matching, which can generate the same or similar keyword
trapdoor for users to perform search matching. However, a few existing fuzzy search
schemes still have limitations. For example, the schemes in [7] and the scheme in [8] only
support single keyword search. Although there exists a multi-user scenario implemented
in the scheme in [9] and the scheme in [10], where multiple users can retrieve the ciphertext
through a single cloud server. In the case that multiple users have search permissions,
it is necessary to ensure that people with different search permissions can search for the
corresponding ciphertext files. Therefore, fine-grained access control needs to be ensured.
There is the problem that the encryption and decryption keys are difficult to share, the
online auditing and authorization by administrators for users applying for access are not
friendly when it comes to the actual situation of smart healthcare, and do not satisfy the
fine-grained access control of multi-user application scenarios. Although the scheme [11]
can search for ciphertext files with corresponding permissions in multi-user scenarios,
current fuzzy search schemes seldom consider fine-grained access control on shared keys
for different types of files. Therefore, it is essential to provide multi-keyword fuzzy search
encryption schemes with fine-grained control under multi-user conditions.

In the scenario of smart healthcare, doctors in different departments need to search for
the ciphertext of case files. The case information of different patients will be first classified
in a certain way, and then the medical data center will store the patient’s case and other
private information through encryption in the medical database or cloud server, which
can only be accessed by authorized doctors. In practice, doctors in different departments
have access rights to different files, e.g., doctors in the cardiology department can only
access cases of cardiac patients. Although some fuzzy search schemes support multiple
user scenarios, there is the problem of difficulty in sharing encryption and decryption keys,
and it is unfriendly in the actual situation in smart healthcare to review and authorize the
users applying for access online through administrators.

In addition, some scheme [12–15] models serve as honest but curious entities, which
are not realistic in practice. Cloud servers have too much power and are not conducive to
the data owner’s control over the data. Some malicious cloud servers even seriously harm
the data owner’s interests, such as returning wrong or incomplete files. This greatly affects
the practical application of fuzzy search encryption schemes. Therefore, a decentralized
fuzzy search encryption scheme is necessary and feasible to solve the possible problems of
malicious cloud servers.

Aiming at the above problems, the Blockchain-Assisted Verifiable and Multi-User
Fuzzy Search Encryption Scheme is proposed, which has more comprehensive functions
and efficient performance. And it is more adaptable to the ciphertext search needs under
new network services such as smart healthcare. The main innovations are as follows.

• For the existence of malicious cloud servers in fuzzy search schemes, semi-decentralization
is used to weaken the power of cloud servers, a smart contract is constructed to guar-
antee fairness between users and servers, and blockchain is introduced to assist in
achieving integrity verification of results.

• Aiming at the lack of fine-grained access control for users in one-to-many application
scenarios, the is used to distribute the shared key with a tree structure, and only
authorized users who meet the access results can decrypt the shared key.

• By improving the index tree structure and bigram participle algorithm, the proposed
scheme not only optimizes the search efficiency and search precision but also enables
users to check the search results locally for a second time.

• Through security analysis, it is proved that the scheme is secure under the adaptive
selection of keyword attacks. Functional comparison and experimental analysis show
that the search efficiency of the scheme has been improved under the premise of
supporting multi-functionalities such as multiple keywords, fuzzy search, dynamic
updating, and result validation. In particular, the search time of our scheme is more
advantageous with the increase in search keywords and searched files.
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The rest of this paper is arranged as follows. Related work on fuzzy search and
blockchain-based searchable encryption is in Section 2. Some preliminaries used in the
scheme are given in Section 3. In Section 4, the definitions of algorithm and security model
are provided. Details of the program will be presented in Section 5. Sections 6 and 7 provide
the program analysis and efficiency analysis, respectively. Section 8 summarizes the work
and gives conclusions.

2. Related Work

We present research work on fuzzy searchable encryption and blockchain-based
searchable encryption in this section.

2.1. Fuzzy Searchable Encryption

Since the fuzzy search encryption scheme has a broader application prospect, it attracts
scholars to study it continuously. Li et al. [7] first formalized the fuzzy keyword search
problem on encrypted cloud data and designed a wildcard-based secure index construction
scheme, which first constructs a wildcard-based fuzzy keyword set, each element in the
set is encrypted, and when searching, the user first generates the same encrypted fuzzy
keyword set, then the cloud server finds the corresponding keywords, and finally returns
the corresponding files. Subsequently, Wang et al. [16] improved on the scheme in [7] and
proposed a searchable encryption scheme for fuzzy keyword search based on the index tree
structure of keywords, which improves the search efficiency, but it only supports single
keyword search. Although [17] designed a dual ranking function that combines keyword
weights and keyword morphological similarity to rank search results, it still cannot avoid
the limitations of single-keyword search.

Kuzu et al. [18] scaled by minhash to transform keyword vectors and determine the
similarity of keywords. Subsequently, Wang et al. [19] implemented a multi-keyword
search based on scheme [18]. Fu et al. [14] improved the search accuracy with the Bloom
filter and location-sensitive hash function but still did not support the dynamic update
function. Zhong et al. [15] proposed a scheme to support efficient dynamic updating,
which improves the search accuracy and supports encrypted index tree based on the top-
k sorting of encrypted files. Tong et al. [20] designed a dual bloom filter to store and
mask the keywords contained in a file and realized the verification of correctness and
completeness, but the verification is more complicated. Li et al. [21] designed an improved
bi-gram participle algorithm to enhance fuzzy search accuracy, the scheme assumes cloud
server is malicious but fails to construct an effective solution for the malicious behavior of
malicious servers.

2.2. Blockchain-Based Searchable Encryption

The cloud server has too much right in traditional searchable encryption schemes, and
all the search processes are dependent on the cloud server. Scholars have introduced the
blockchain fairness mechanism to realize fairness due to the non-tamperable characteristics,
which guarantees that if a user and cloud server follow the agreement honestly, the cloud
server gets the corresponding service fee, while users get the correct results. Once a
cloud server is detected with dishonest behavior, it will not get the service fee and will be
punished with the loss of margin.

Cai et al. [22] realized dynamic keyword search in distributed storage combined with
blockchain technology for fair search. Wang et al. [23] constructed a decentralized privacy-
preserving search scheme. Data owners can be assured of receiving correct results without
having to worry about malicious server behavior. Hu et al. [24] combined blockchain
technology to achieve fair payment and constructed a file-sharing scheme in one-to-one
as well as one-to-many user scenarios. Smart contracts are used to store secure indexes
and execute searches, ensuring that users get correct results if they pay for the transaction.
Chen et al. [25] constructed a blockchain-enabled public key encryption scheme with multi-
keyword search, which uses smart contract to ensure the fairness without introducing
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a third party. Guo et al. [26] constructed an authentication-enabled search encryption
scheme on blockchain and implement forward security. It is evident that the combination
of blockchain and searchable encryption cryptography to achieve decentralization, build
fair transactions, and authentication features is effective.

3. Preliminaries

We introduce the technical knowledge used in fuzzy search in this section.

3.1. Bloom Filter (BF)

The Bloom Filter is a space-saving probabilistic data structure that determines whether
an element is in a collection or not. Mapping two or more different elements to the same
position in a bit array via a hash function has a false positive rate.

Suppose the bloom filter initializes a p-bit array, k random hash functions, and the
element set ∂ = {α1, α2, α3, . . . αn}.

For each element in the set, it is mapped to the k positions of the p − bit bloom filter by
k independent hash functions and corresponding positions are set to 1. When determining
whether αx is in ∂, it uses the same approach as described above to map αi to the k positions
of the bloom filter. If one of the k positions has a value of 0, then αx /∈ ∂; if all k positions
have a value of 1, then αx ∈ ∂ or there is a false positive.

3.2. Locality Sensitive Hashing (LSH)

In the scheme, the LSH determines whether the keyword is in the file or not by
mapping keywords into a hash bucket. A positional hash function is defined as follows:
A family of hash functions F is a mapping from Euclidean space S2 to hash coding space
U. The hash function F is said to satisfy (r1, r2, p1, p2)− ness when PrF[h(q) = h(p)] ≥ p1,
p ∈ B(q, r1) and PrF[h(q) = h(p)] ≤ p2, p ∈ B(q, r2) are satisfied, where B is the space
centered at q with radii r1, r2. The p-stable position-sensitive hash function is calculated as
ha,b(v) = [ a·v+b

n ], where the parameters a and b are a d-dimensional vector and a random
number between [0, n], respectively, and each element in the vector v satisfies p-stable
distribution. As shown in Figure 1, a · v means that vector a is mapped onto an axis with
vector v as the base vector, and this axis is divided into n equal parts of m. The labelled
value of the interval corresponding to the value of a · v is taken as the hash value of vector
a. We can determine whether a keyword can be mapped to a bucket by calculating the
probability that the values are equal by using LSH.
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4. Definitions of Algorithm and Security Model

Before describing our scheme in detail, the basic model, algorithmic framework, and
security model are first given.

4.1. System Model

The model is based on the following roles, as shown in Figure 2.
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(1) Data Owner (DO). DO extends beyond individual entities to data centers that are
responsible for the integration of file information owned by multiple data own-
ers. This implementation realizes the application of a multi-owner scenario from
another perspective.

(2) Trusted Authority (TA). As an authenticating entity, it generates attribute private keys
for data users and transmits system public parameters and other relevant information
to the users securely.

(3) Data Users (DU). DU need to apply for their attribute private keys based on their
attributes as well as reliable information, then generate and send search trapdoor to
the smart contract account for searching transactions through query requirements.

(4) Smart Contract (SC). As a decentralized component of the system, SC stores secure
index tree Indextree and verification information of data owners, mitigating the exces-
sive and uncontrolled authority of the cloud server. The search contract performs the
initial segment of the entire search transaction and ensures the verification process
for DU.

(5) Cloud Server (CS). CS has powerful storage as well as computational capabilities,
and stores the ciphertext data files outsourced by DO, and provides DU with the
second part of the search service based on the transaction initiated, it may have the
malicious behavior of tampering with the user’s search results.

The workflow of the system is as follows.
DO transmits parameters, public keys, etc., to TA initially (Step 1), firstly categorizes

all large collections of files, encrypts classified file collection D = {F1, F2, . . . , Fn} and
outsources the ciphertext set C = {C1, C2, . . . , Cn} to CS (Step 2). To achieve access control
and efficient search, DO constructs a file index tree and sends the index tree to the contract
storage address (Step 3). DU send a registration request to TA (Step 4) and receives attribute
private keys and search keys (Step 5). Then the DU generates a search token locally based
on query keywords and algorithms disclosed by TA and sends it through a transaction to
SC (Step 6). SC executes a search to obtain a search list and sends the information to the
user (Step 7). The ciphertext of file identifiers (FID), the ciphertext set C = {C1, C2, . . . , Cn}
and transaction information is sent to DU (Step 8). Then CS returns to DU the ciphertext
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data of the search transaction (step 9). DU can verify the search results locally, and only
users whose attribute private key satisfies the access control can finally decrypt the file and
malicious servers will receive penalties. (Step 10).

4.2. Algorithm Framework
4.2.1. Definition

Before giving the definition of the algorithm, the definitions of the symbols used in
the scheme are given in Table 1.

Table 1. Description of Symbols.

Notation Meaning

D = {F1, F2, . . . , Fn} the file set of DO
C = {C1, C2, . . . , Cn} the ciphertext set

pk the public key
Γ the access policy
Ki the symmetric key for the corresponding type of files.

CKi the key cipher containing access policy
K2 the verification key
Su the user attributes collection
Wq a query keyword collection
KS the index encryption key
SKu attribute private key for users
SKs the user search key
Tt a trapdoor with time stamp

KW a collection of keywords for a file set
KWFi the keyword set for file Fi
STkw the stemming of the keyword kw

STKWFi
the keyword stemming set for file Fi

MACci the ciphertext message authentication code
KS = (M1, M2, S) the key set for the encrypted trapdoor and index

4.2.2. Algorithm Definition

The scheme has nine main algorithms.

(1) Setup(1λ) → (pk, mk) is a system initialization algorithm. The Data Owner DO
inputs random security parameter λ, generates system public key pk and the master
private key mk.

(2) KeyGen(1λ, l) → KS is a key generation algorithm. DO inputs random security
parameter λ and the length l of file index, outputs the key set KS = (M1, M2, S).

(3) Enc(pk, K1, K2, D, KW, KS, Γ) → (FID, C, CK1 , I, MACci , Indextree) is an encryption al-
gorithm. DO takes public key pk, plaintext set D, keyword set KW, access policy Γ,
key Ki of the corresponding type of files, authentication key K2, and index encryption
key KS as input. Then, for outputs, the ciphertext set C, encrypted file identifier FID,
security index I, the key cipher containing access policy CKi , ciphertext file message
authentication code MACci , and security index tree Indextree.

(4) UserSign(pk, mk, Su) → (SKu, SKs, user_id) is a user registration algorithm run by
TA, it takes pk, mk, and Su as input, outputs attribute private key SKu, the user search
key SKs, and authenticated identifier user_id.

(5) TokenGen(pk, SKs, Wq) → Tt is a trapdoor generation algorithm. Data User takes the
public key pk, a query keyword collection Wq and attribute private key SKs as input,
outputs the trapdoor with time stamp Tt.

(6) Search(Indextree, Tt) → (Cκi , FID, MACci ) is a search-matching algorithm run by
Smart Contract SC. This algorithm takes Tt and Indextree as input, outputs CKi ,
MACci and FID.

(7) Veri f y(Ci, MACCi , K2) → 1/0 is a verification algorithm. The Data User takes the
verification key K2, the ciphertext file Ci and the ciphertext message authentication
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code MACCi as input. It is determined whether a preliminarily correct result is
obtained by outputting the result.

(8) Dec(SKu, CKi , Cwq) → (Dkw/⊥) is a decryption algorithm run by the Data User. It
takes the attribute private key SKu, the key cipher containing access policy CKi , and
file set cipher Cwq , which are based on the query keyword set wq as input. If SKu
satisfies the access structure Γ defined by the Data Owner DO, then it outputs the
plaintext files containing the query keyword set, otherwise, the output is ⊥.

(9) Update(Uptype, ITc) → Indextree_new is an index tree update algorithm run by the
smart contract. It takes the encrypted subtree ITc sent by the Data Owner as input,
and outputs the new index tree Indextree_new. The detailed process is described in
Section 5.2.4.

4.3. Security Model

The CS is considered an entity that may have malicious behavior and is not fully
trustworthy, it may return untrue results to save computation and bandwidth resources,
which can seriously harm the DU. In addition, DU uploads its own set of attributes
honestly to obtain user_id, all communication with TA is secure.

Regarding privacy requirements, this article considers two threat models with different
adversary capabilities.

Known Ciphertext Model: The cloud server can only observe the encrypted file set, the
encrypted index, the submitted tokens, and the search results. It has no prior knowledge of
the file set or the search keywords.

Known Background Model: the cloud server is also able to obtain some additional
background information like statistical information about the files, the queried keywords
and their corresponding tokens, and the frequency of searched keywords.

A simulation-based game between adversary A and a stateful simulator B using an
allowed leakage access model and a search model are used to prove security. Two leakage
functions L = (L1, L2) are defined, where L1 and L2 are expressed formally as follows.

L1(D) =
{
|D|, n, {|Fi|, ind(Fi)}i∈[1,n]

}
and takes the plaintext file collection D as input

and outputs the plaintext collection size |D|, the number of files n, the size of each file |Fi|,
and file identifiers ind(Fi)i∈[1,n].

L2(D, Wq
∗) =

{
P(Wq

∗), T∗}, it takes the plaintext file collection D and the search
keyword collection as input and outputs the keyword access patterns P(Wq

∗) and search
trapdoor T∗. Here, suppose A is an adversary, B is a stateful simulator, and G acts as a
challenger. The interaction game between A, B, and G is as follows.

• RealA(λ). G initializes system and runs KeyGen(1λ, m) → KS , then sends a collection
of files D to G. G generates encrypted file C and index I with a secure symmetric
encryption algorithm and index generation algorithm, then sends them to A. A
generates a polynomial number of keywords sets and launches an adaptive search
Q1 = (w1, w2, . . . , wq). Then the search keywords in set are transformed into a set of
vectors to generate search trapdoor by G, which is sent to A. Eventually, A outputs
anser ∈ {0, 1}, ending the game.

• IdealA(λ). Given the leakage functions L1 and L2, G inputs plaintext file D. Simu-
lator B generates a simulated index I∗ and ciphertext C∗, sends I∗ and C∗ to A. B
chooses a polynomial number of keywords Q1 = (w1, w2, . . . , wq) for adaptive inter-
rogation, then outputs search trapdoor Tt

∗ based on L2. Finally, A outputs the result
anser′ ∈ {0, 1}, ending the game.

5. Proposed Scheme

We describe the main ideas of fuzzy search and detail the algorithms in this section.
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5.1. Main Idea

The scheme implements fuzzy search based on LSH and BF. Assuming that DO has
n plaintext files D = {F1, F2, . . . , Fn}, a p bit bloom filter Bi is generated as an index vector,
which contains all the keywords in Fi. To map the keywords in Fi on Bi, the keywords need
to be converted into bigram vectors, then the bigram vectors are mapped to Bi by LSH.
Trapdoor generation similarly requires transforming the query keyword Wq into a bigram
vector and generating an m − bit bloom filter Bwq , which maps bigram vector on Bwq using
the same LSH to generate index vector. The inner product of Bi and Bwq represents the
relevance of file Fi and query wq. As shown in Figure 3.
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5.2. Concrete Construction

We describe the various algorithms and talk about them in four broad modules, namely,
the preliminary work, the encryption work, the search work, and the subsequent work.

5.2.1. Preliminary Work

The preliminary work includes Setup(1λ), KeyGen(1λ, m) and UserSign(pk, mk, Su).
Setup(1λ): DO defines two multiplicative cyclic groups G0, G1 on Zp, the bilinear map

e : G0 × G0 → G1 , randomly selects anti-collision hash function H1 : {0, 1}∗ → G0 , and
two pseudo-randomized functions H2 : {0, 1}l ×{0, 1}∗ → {0, 1}k and
H3 : {0, 1}l ×{0, 1}∗ → {0, 1}k . g is the generating element of G0, p is a large secure prime,
and e(g, g) is the value of the bilinear mapping in the swarm. TA selects α, β randomly as input,
outputs the master private key mk = (α, β), and pk = (G0, G1, p, g, h = gβ, e(g, g)α, H1, H2, H3).

KeyGen(1λ, l): DO inputs a random security parameter λ and the index length l to
generate KS = (M1, M2, S) to encrypt the trapdoor and index, where (M1, M2) ∈ Rl×l,
S ∈ {0, 1}l is a vector that prevents brute force decryption and M1, M2 are invertible matrices.

UserSign(pk, mk, Su): When a user sends an enrollment request, TA checks the user’s
attribute set Su, then confer user_id and search key SKs to the user.
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5.2.2. Encryption Work

The encryption work mainly includes key encryption, file index vector generation,
index tree generation, and trapdoor generation.

A. Key Encryption

Enc(pk, K1, K2, D, KW, KS, Γ): Assume that the file set has t types, DO has n plaintext
files D = {F1, F2, . . . , Fn}. The files are categorized according to their types and the
corresponding symmetric encryption key Ki(1 ≤ i ≤ t) is generated for different types
of files., e.g., in a medical database, ophthalmology case files are classified as one type
and case files from different sections are categorized into different types. DO parses
keyword sets KW from D and KWFi from Fi respectively, then encrypts file identifiers of
D = {F1, F2, . . . , Fn} by K2 to obtain the ciphertext FID = {FID1, FID, . . . , FIDn}.

DO sets the access control structure tree Γ for different types of files with key K1 based
on actual application requirements. For example, the core files of a medical department can be
decrypted only by users who meet the conditions of important attributes, while for the general
files of the department only the basic conditions of access to the files by the department need
to be met. DO assign a polynomial qx for each node x from root r, where qx in leaf nodes are
constant. Randomly select s from Zp which qr(0) = s, deg(qx) = dx = kx − 1, then deg(qr)
random coefficients are selected fromZp to determine qx. Y denotes the leaf nodes and kx is the
threshold value of x. Eventually gets CKi =

{
Γ, C = K1e(g, g)αs, C = hs,

{
Cy, Cy′

}
∀y ∈ Y

}
where Cy = gqy(0), Cy′ = H1(att(y))qy(0). DO encrypts plaintext D = {F1, F2, . . . , Fn} by Ki
to obtain ciphertext set C = (C1, C2 . . . , Cn). Eventually, C and FID are sent to CS, CKi will
be stored in the index tree described subsequently.

B. File Index Vector Generation

The generation of file index vectors is carried out by mapping the keywords on the
bloom filter of the file. The keywords transform into vectors so that they can be mapped
on the bloom filter and the improved keyword bigram disambiguation algorithm from
scheme [21] is used to transform the keywords into vectors.

For the keyword “happy”, DO first converts it to a bigram set {ha1, ap1, pp1, py1}.
Considering the existence of the same bigram elements, the vector is expanded to 2 × 262,
where 26 × 26 represents possible binary letters. If the bigram set of the keyword exists in
the corresponding position of the vector, the corresponding position is set to 1, otherwise it
is set to 0, different keywords are converted into vectors with the same length.

DO constructs and initializes an l − bit bloom filter Bi for file Fi in the file collection
D by k LSH. I′ and I ′′ are l − bit null vectors. The keyword set KWFi is subjected by the
porter stemming algorithm to obtain the stemmed set KWSTFi

. If the file Fi has x keywords,
the bigram set of KWSTFi

finally converts to a vector set BvSTFi
, bvi in the vector set BvSTFi

are mapped onto Bi by k LSH. Set the corresponding position of the mapping to TFi,j/k
according to the importance of the file according to the importance of the keyword to the
file, where TFi,j = 1 + |kwj|/|Fi| is the frequency of keyword kwj in Fi,

∣∣kwj
∣∣ denotes the

number of occurrences of kwj in Fi, and |Fi| denotes the number of keywords in Fi.
The index vector construction for Fi is demonstrated by an example, as shown in

the left side of Figure 3. Suppose Fi has three keywords “happily, teachers, likely”, where
S = [1, 0, 1, 0, 0, 1, 1, 0, 0, 1], l = 10, M1, M2 are invertible matrices and M1, M2 ∈ R10×10.
DO constructs an l − bit bloom filter Bi for Fi, then converts the set of keywords to the
stem set STkw = {happy, teach, like}. The stem keyword “happy” is first converted to
Bv1 = {ha1, ap1, pp1, py1} and then converted to vector bv1. For ease of representation,
Figure 3 is represented by a string of 0 and 1 vectors. Then Bv2, Bv3 and bv2, bv3 are
constructed for the rest stem keywords in the same way, finally, bv1, bv2, and bv3 are
mapped as inputs to k LSHs on Bi, respectively, and the corresponding position of Bi is set
to TFi,j/k. Assuming three keywords have the same weight TFi,j/k of 0.5, the final index
vector Bi of the file Fi is obtained.

C. Index Tree Generation
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Denote S in KS and bloom filter Bi of file Fi as S = (s1, s2, . . . sm) and Bi = (b1, b2, . . . bm),
respectively, where Bi and S have the same structure. For each bi in Bi, let Bi′ = (b1′, b2′, . . . , bm′),
B′′

i = (b′′1 , b′′2 , . . . , b′′m). If si = 1, then bi = bi′ = b′′i ; If si = 0, then bi′ = bi/2 + r,
b′′i = bi/2 − r, where r is a random parameter and r ∈ R. Finally, the encrypted index
Ii = (Ii′, I′′i ) of the file Fi is obtained, where Ii′ = (MT

1 · Bi′), I′′i = (MT
2 · B′′

i ).
The index tree construction of the scheme in [15] is used to construct the Indextree

and the storage structure of the leaf nodes is improved on this basis. Leaf nodes store
file identifiers and vectors in addition to filing authentication codes and key ciphertexts
with access control structures. The internal nodes store the optimal vectors of their leaf
node index vectors and the internal node vectors are encrypted in accordance with the
index encryption method of Fi. Finally, the Indextree is sent to SC, the Indextree is shown in
Figure 4.
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D. Trapdoor Generation

TokenGen(pk, SKs, Wq): DU first converts the set of keywords Wq into a bigram set by
the bigram segmentation algorithm, then the bigram set is transformed into a binary vector
set Bv using the same method as for index generation. Each vector in Bv is used as an input
to the k LSHs, respectively, to map into an l − bit bloom filter, the value of the mapped
location is set to 1. Finally, the vector Bt of the keywords is obtained.

The bloom filter used to generate the search trapdoor is denoted as Bt = (t1, t2, . . . tm),
S in KS is denoted as S = {s1, s2, . . . , sm}. S and Bt have the same structure as
Bt′ = (t1′, t2′, . . . tm′) and B′′

t = (t′′1 . For each ti in Bt, if si = 1, then ti′ = ti/2 + r′,
t′′i = ti/2 − r′; if si = 0, then ti = ti′ = t′′i . Then, encrypt Bt′, B′′

t to get T′ = (M1
−1 · Bt′),

T′ = (M2
−1 · B′′

t ). Eventually, the secure search trapdoor T = (T′, T′′), Tt = (T||Lt) , and
user_id are sent to SC through transaction.

5.2.3. Search Match

Search(Indextree, Tt): DO defines a reasonable search unit price $search, then sets
$pro_DU as the deposit of DU stored temporarily in SC to prevent DU from quitting in
the middle. $All represents the total price that DU should pay for each search transaction
and $search_price represents the overhead of calling the search algorithm. gas_lim and
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gas_price respectively represent the maximum gas consumption and gas unit price in the
SC, and the product of the two represents the maximum price that the SC is allowed
to accept.

SC obtains the user’s search trapdoor and user_id through the transaction. After
authenticating whether the identity is correct, it checks whether the pre-deposit of DU
satisfies the search transaction, if it does, a search match will be performed, otherwise, the
transaction is canceled.

The index tree will be traversed from top to bottom. Meanwhile, SC calculates TT · Ii,
which represents the correlation score Score of the node and search keywords, where
T · Ii =

{
M1

−1Bt′ · MT
1 Bi′+ M2

−1B′′
t · MT

2 B′′
i

}
. If the Score of the parent node vector and

the search trapdoor is less than the threshold TH, the traversal of the node’s children is
stopped. The entire index tree is traversed in this way.

SC defines a list Sclist, which consists of at most kn records. Each entry contains
a pair < ScoreFi , value >, where value =

{
FID

∣∣∣∣CKi

∣∣∣∣MACCi

}
, Score = {T ∗ Ii}. When

traversing to the leaf node, SC stores the information of leaf node in Sclist. After traversing
the index tree, SC sorts and eliminates the kn entries of Sclist based on ScoreFi . Finally the
k entries that match the user’s search are obtained, then SC sends the value in RList to DU,
sends the FID and transaction information in value to the CS. After receiving the message,
CS packages the ciphertext set C and sends it to the DU.

SC uses GDFS (Greedy Depth-First Search) for searching, the notation and Algorithm
1 used are described as follows.

Scorend: correlation score between index vector Ii of node nd and search vector T.
nd.hcld: child nodes of node nd with high query relevance.
nd.lcld: child nodes of node nd with low query relevance.

Algorithm 1 Search Matching Algorithm

Input: the index tree Indextree
Output: Sclist
1: if nd is not a leaf node then
2: if Scorend > TH then
3: GDFS (nd.hcld)
4: GDFS (nd.lcld)
5: else
6: return
7: end if
8: else
9: if ScoreFi > TH && Sclist is full
10: delete the lowest relevance node from Sclist
11: insert the new node < ScoreFi , value > and sort all the node by ScoreFi

12: else if ScoreFi > TH && Sclist is not full
13: insert the new node < Score, value > in Sclist
14: end if
15: return
16: end if

As the child nodes are overwritten by parent nodes, only part of the tree needs to
search. As in Figure 4, the file collection D = {F1, F2, . . . , F7}, the threshold TH is set to 1.5,
and the trapdoor T = (0, 1, 0, 1, 0) is sent to SC by the user. Assume that 1 most relevant
file for the search is selected.

SC traverses the nodes from top to bottom and computes Score for each node. The
children of L11 do not need to traverse due to ScoreRoot = 2.5 > TH, ScoreL11 = 1 < TH,
ScoreR12 = 2 > TH,ScoreR23 = 1.8 > TH, ScoreF5 = 1 < TH,ScoreF6 = 1.6 > TH and
ScoreF7 = 1.5 > TH. The information of F6 and F7 is finally added to Sclist, SC ranks F6
and F7 in Sclist according to Score, then F7 is eliminated.
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5.2.4. The Subsequent Work

In this section, we focus on verification, decryption of files, and updating the index tree.

A. Verification

Verify(Ci, MACCi , K2): Suppose k encrypted identifiers FID = {FID1, FID2 . . . , FIDk}
are returned in a search result, DU first determines whether FID from CS is the same
as FID from SC. Then, the MACCi of the file is calculated locally by k2 to determine
whether the CS has tampered with search information. SC sends $search to DO, sends
$search_price ∗ $gas_price to the staff member who executed the transaction, and refunds
the transaction deposit from DU.

B. Decryption

Dec(SKu, CKi , Cwq): After getting the key ciphertext CKi , the user checks whether the
SKu matches with the ciphertext access policy, if it matches, DU can get A = e(g, g)rs and
recover the Ki, otherwise, DU has no access to the file. The decryption of Ki is shown in the
Decryption Correctness section.

C. Index tree update

Update(Uptype, ITc): The updating of the index tree is the process of replacing the old
subtree with the new encrypted one. DO retains the unencrypted index tree locally and de-
notes Tc as the set of nodes that may be changed during the update process. As an example,
in Figure 4, if the file F1 is deleted in an update operation, then Tc = {L11, L21, Root, F1}.

When Uptype = delete, delete the leaf node Fi and recompute the other node index
vectors in Tc, encrypt node index vectors in Tc by KS. If the operation destroys the balance
of the tree, replace it with a pseudo node, then a new indexed subtree ITc is generated. DO
sends ITc and Uptype = delete to SC, which replaces the original indexed subtree with
the help of ITc .When Uptype = add, the leaf node Fi needs to store the key ciphertext CKi ,
the file ciphertext message authentication code MACFi , encrypted identifier FIDFi and the
other operations are the same as the deletion operation. The index update process will not
destroy the balance of the tree because the new nodes will be added to the pseudo nodes.

6. Program Analysis

We analyze the correctness and security of the scheme in this section.

6.1. Correctness Analysis
6.1.1. Fuzzy Search Correctness

We denote Ii = (Ii′, I′′i ) and trapdoor T = (T′, T′′ ) for the multi-keyword set wq. As-
suming n file indexes are matched with T in the search, Score is the inner product of Ii and T,
denote each element in Score as Px,y, which
Score = Ii′ · T′ + I ′′i · T′′ = MT

1 · Bi′ · M1
−1 · Bt′ + MT

2 · B′′
i · M2

−1 · B′′
t ,

P =
{

Px,y
∣∣1 ≤ x ≤ n, 1 ≤ y ≤ n

}
and satisfy (1).{

rx,y = b′x,y · t′y + b′′x,y · t′′y = bx,y · (ty/2 + r′) + bx,y · (ty/2 − r′) = bx,y · ty, sy = 1

rx,y = b′x,y · t′y + b′′x,y · t′′y = bx,y · (ty/2 + r′) + bx,y · (ty/2 − r′) = bx,y · ty, sy = 0
(1)

From the above calculations, it can be concluded that the random numbers r and r′
are not linked to the result, so the correlation scores of the fuzzy search when the trapdoor
is matched with the index inner product are not affected by the random numbers.

6.1.2. Decryption Correctness

After DU receives the key ciphertext Ck1 containing the access structure, DU uses
attribute private key Su to determine whether the access structure is satisfied or not, and
only if the access structure is satisfied can Ki be recovered, the process is in (2).
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Ki =
C

e(C,E)
A

=
Kie(g, g)αs

e(hs ,g
α+r

β )
e(g,g)rs

=
Kie(g, g)αse(g, g)rs

e(g, g)s(α+r)
(2)

6.2. Security Analysis

Theorem 1. The scheme is secure under the adaptive selection of keyword attacks when CS and
external adversaries can only divulge what they are allowed to.

Proof. For adversary A, a stateful simulator B satisfies the condition
|Pr[RealA(λ)]− Pr[IdealA, B(λ)]|≤ negl∗(λ) , where negl∗(λ) is a negligible probability.
From the proof equivalence in the scheme in [27], the simulation-based game proofs are
equivalent to indistinguishable game proofs. A only needs to analyze the differentiation
between B to win the game, Pr[IndA(λ) = 1] − 1/2 ≤ negl∗(λ) is used to prove the
scheme is secure. B simulates the process of generating ciphertexts, indexes, and trapdoors
as follows.

(1) Generate ciphertext C∗ by simulation.

According to L1(D) =
{∣∣∣D∣∣∣, n, {|Fi|, ind(Fi)}i∈[1,n]

}
, B generates n ciphertexts of∣∣∣Fi

∣∣∣i∈[1,n] − bit uniformly at random to simulate the encrypted file set C∗ = {C1, C2, . . . , Cn},
which is encrypted by AES. According to the semantic security of symmetric encryption,
the ciphertext C generated by RelA(λ) and the ciphertext C∗ generated by IdealA, B(λ) are
computationally indistinguishable, i.e., the advantage of the adversary’s victory can be
ignored, i.e., | Pr[Encrypt(F, Ki) → C]− Pr[Sim → C∗] |≤ negl1∗(λ) .

(2) Generate search trapdoor T∗ by simulation.

According to L2(D, Wq
∗) =

{
P(Wq

∗), T∗}, B maps each keyword in
Wq

∗ = (w1, w2, . . . , wq) to the bloom filter, its search trapdoor is denoted as TQ = (TQ′, T′′
Q),

where TQ′ = (M1
−1 · BQ′), T′′

Q = (M2
−1 · B′′

Q), BQ′ = (t′1, t′′2 , . . . , t′m), t′j = t′j/2 + r′, and
t′′j = t′′j /2 − r′. The probability of B simulating the search token TQ is negligible when the
KS is unknown. Due to the introduction of the random value r′ in the encrypted query and
the pseudo-random nature of the key set KS, the simulator B randomly selects KS∗ and r∗ to
construct the feasible search token with probability
Pr[TQ = T∗] ≈ Pr[r′ = r∗] ≈ Pr[KS = KS∗] ≈ 1/2k ≤ neg2

∗(λ), thus the advantage
of B to simulate the feasible search trapdoor is negligible.

(3) Simulated construction of index I∗.

In the process of generating the secure index based on the leakage function L1, L2,
simulator B picks a random value to replace the random number used in the real case.
According to the secure KNN encryption algorithm, it is known that the secure KNN
algorithm using random numbers is indistinguishable. Meanwhile, the matrix picked for
the key set KS is a sufficiently large invertible matrix and KS is not artificially compro-
mised. Thus, the advantage of winning for the polynomial adversary satisfies (3), which
is negligible.∣∣Pr[BuildIndex(SK, Fi, KWFi ) → Ireal ]− Pr[Sim → I∗]

∣∣≤ negl3∗(λ) (3)

Since the adversary wins this indistinguishability game by analyzing ciphertexts,
indexes and search credentials, the advantages of the adversary in distinguishing between
real ciphertexts and simulated ciphertexts, real indexes and simulated ciphertexts, and
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real search tokens and simulated search tokens, respectively, are denoted as AdvA(C, C∗),
AdvA(Ireal , I∗) and AdvA(TQ, T∗). Then we get (4).

Pr[IndA(λ) = 1] = 1
2 + AdvA(C, C∗) + AdvA(Ireal , I∗) + AdvA(TQ, T∗)

= 1
2 + |Pr[Encrypt(Fi, Ki) → C]− Pr[Sim → C∗]|

+|Pr[BuildIndex(KS, Fi, KWFi ) → Ireal ]− Pr[Sim → I∗]|
+|Pr[Trapdoor(KS, Wq

∗) → TQ]− Pr[Sim → T∗]|
≤ 1

2 + negl1∗(λ) + neg2
∗(λ) + negl3∗(λ)

(4)

In summary, the outputs of RelA(λ) and IdealA, B(λ) obtained for any polynomial
adversary are indistinguishable. □

Theorem 2. If the blockchain is tamper-proof, the scheme ensures that user transactions are fair.

Proof. If the CS is dishonest, it will return incorrect file numbers or falsify search results.
According to the fair-trade rules set by SC, CS will not receive service fees and will be
penalized with loss of deposit. If CS enforces the contract rules honestly, DU gets the correct
result and CS gets the corresponding service fee. In addition, the transaction specifies
a limit time Lt, when the transaction time is greater than Lt, the user’s deposit will be
refunded, and the transaction will be ended. □

Theorem 3. For malicious cloud servers and other external adversaries, no information can be
learned about plaintext files except for ciphertext files.

Proof. In the scheme, the file is encrypted with the corresponding symmetric key Ki before
it is uploaded to the CS, then DO encrypts Ki as CKi based on CP − ABE and stores it
in the index tree Indextree. Even though the CS and external adversaries eavesdrop on
the ciphertext files in the channel, the difficulty of trying to get the plaintext information
is equal to the difficulty of decrypting Ki. Since C = kie(g, g)αs in CKi , e(g, g)αs must be
computed to decrypt Ki. Under the discrete logarithm problem, the external adversary and
CS to compute e(g, g)αs from C = hs and e(g, g)α is difficult. Based on the Di f f e− Hellman
computational problem, the adversary cannot use the Lagrange interpolation formula to
recursively compute e(g, g)rs without the attribute key SKu that conforms to the access
policy and obtain Ki. Ki and the plaintext file can be decrypted when SKu satisfies the
access structure. Since SKu is privately stored by the DU, it is not possible for CS and
external adversaries to learn any plaintext information other than the ciphertext file. □

7. Efficiency Analysis

The scheme will be analyzed in terms of function, complexity, and performance
experimentation in this section.

7.1. Functionality Comparison

The functions of the proposed scheme with the related schemes [15,21,25,28,29] are
completed in this section. As shown in Table 2, where the symbol “✓” indicates that the
corresponding functionality is satisfied and “
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” indicates that it is not satisfied.
Both the scheme in [15] and the scheme in [29] are about multi-keyword fuzzy search-

able encryption. The scheme in [15] realizes dynamic updating by constructing a tree
structure but does not support verification of the search result. The scheme in [29] only con-
siders the problem of ciphertext result correctness and does not support dynamic updating.
The scheme in [25] utilizes the blockchain mechanism to protect the index, but it does not
support fuzzy search and relevance sorting of files, and it cannot maximize the return of
the set of files that the user is interested in. The scheme in [28] utilizes authentication and
homomorphic encryption to detect misbehavior occurring in cloud servers, and the search
results are outsourced to edge computing servers, which can verify the correctness and
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integrity, but it would impose additional overhead. Although the scheme [21] supports all
the functions, the scheme does not indicate how the process of dynamic updating takes
place. It also does not take measures against the possible malicious behavior of the cloud
server and does not effectively limit the privileges of the cloud server.

Table 2. Functionality Comparison of Different Schemes.

Scheme Scheme [15] Scheme [28] Scheme [25] Scheme [29] Scheme [21] Ours

Multi-Keyword ✓ ✓ ✓ ✓ ✓ ✓

Dynamic Updates ✓
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The proposed scheme makes up for the shortcomings of the above schemes, and it not
only realizes fuzzy search, search result relevance sorting, and dynamic updating but also
supports fine-grained access control, search result correctness, and integrity verification.
At the same time, smart contracts are used to constrain malicious behaviors that may occur
in the search process of cloud servers and protect the rights and interests of users.

7.2. Complexity Theoretical Analysis

In this section, the performance will be analyzed from three aspects: index tree
generation, trapdoor generation, and search matching.

• Index tree generation. The cost of file index generation includes the generation of a
plaintext index vector for each file and the encryption of the plaintext index vector.
Where the generation of the index is mainly linked to the number of keywords, the
encryption of the plaintext vector mainly consists of the factorization operation of the
vector and multiplication with a matrix of order l × l. The time overhead of single
file index generation is O(l2). The Indextree generates (n − 1) additional nodes at
the internal nodes when the number of files is n. Therefore, the cost of the Indextree
generation is a little higher than the other schemes, but it is generated by the DU
locally and upload to the smart contract only once.

• Trapdoor Generation. The cost of trapdoor generation mainly consists of generating
an l bit plaintext trapdoor and performing matrix multiplication operations on the
plaintext trapdoor, so the cost of trapdoor generation is O(l2).

• Search Match. The Search and Match includes traversing the Indextree, the calculation
of the inner product of trapdoors and index vectors, and sorting the files to filter out
rejections based on relevance. In this scheme, only the nk most relevant ciphertext files
are searched. These files and child nodes share the same access path, so the traversal
of the Indextree only touches a portion of n nodes i.e., on r(r << n) paths from the
root to the leaf nodes instead of traversing the child nodes repeatedly, hence the time
complexity is O(r log n).

In Table 3, the efficiency is compared in terms of index generation, trapdoor generation,
and search time. Here, n is the number of files, Q is the number of exact keywords, Z is
the maximum number of fuzzy keywords, and l denotes the index length in the proposed
scheme. In the scheme, l can be treated as a constant and n << Q << Z.

Table 3. Time Complexity of Different Schemes.

Scheme Scheme [30] Scheme [31] Scheme [21] Ours

Index Generation O(ZQ) O(ZQ) O(nl2) O((2n − 1)l2)
Trapdoor Generation O(Z) O(Z) O(l2) O(l2)

Search Cost O(Z) O(Z log Q) O(nl) O(r log n)
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7.3. Experimental Performance

In this section, simulation experiments are conducted. The performance of the scheme
is evaluated using Java language in the Windows 10 Home Chinese version. The hardware
system is a 64-bit Windows operating system Intel(R) Core (TM) i7-8750H CPU @2.20 GHz
with 16 GB of RAM and the experimental dataset is RFC (Request For Comments). Smart
contracts are deployed through the solidity language, running in an Ethereum virtual
machine. The blockchain implementation is based on the official Ethereum test network
Rinkeby and the Ethereum wallet MetaMask is used to function as an account. The numbers
of LSH are chosen as k = 30, the constructed index and trapdoor vector is l = 8000, the file is
encrypted by AES-256, and the number of keywords in a file is 80–113.

The scheme excludes keywords with little semantic distinction such as the, where, and
a. Simulation experiments and comparisons of our scheme with scheme [15], scheme [28],
and scheme [29] are conducted in terms of file index generation, search matching time, and
search accuracy.

• Individual File Index Generation and Encryption. In Figure 5a, the cost of generating
a plaintext index vector for a single file index is gradually increasing with the number
of file keywords. Meanwhile, the encryption time of the plaintext index vector is
constant, which fluctuates slightly at 40 ms.
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Li, J. et al (2022) refers to the scheme in ref. [28] and Fu, S. et al (2021) refers to the scheme in ref. [29].
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• Search Match. In Figure 5b, as the number of files gradually increases, all 4 schemes
basically show an increasing trend. When the number of files is no more than 1000, all
the schemes increase at a relatively small level. The time cost and growth rate required
for searching in the proposed scheme are lower than those of the schemes in [25,29],
and as the number of files increases, the scheme follows up with a slight increase
compared to the beginning. Although the search time of the scheme in [21] also
consistently increases at a lower level, the search time of our scheme is still superior
to it. When the number of files is 2000, the search times of the schemes in [28,29] are
7.42 s and 4.42 s, respectively, while the time cost of our scheme is only 2.21 s. In
Figure 5c, the search matching costs of the schemes in [21,28,29] tend to stabilize, while
the time cost in our scheme shows a small linear increase. When the number of search
keywords is 9, the time costs of the scheme in [28,29], and [21] are 7.42 s, 4.51 s, and
2.65 s, respectively, while the time cost of our scheme is only about 1.85 s.

• Fuzzy Search Accuracy. Since our scheme and the scheme in [15] have similarities
in index construction which uses unigram to transform keywords, the scheme in [15]
is chosen to compare fuzzy search accuracy. The fuzzy keywords are constructed
by replacing one letter in the keyword with another letter randomly, and the check
accuracy is used to test the search results. The accuracy test method ∆P = p′/p from
the scheme in [32] is used in our scheme, where p indicates the number of search files
returned and p′ indicates the number of real files returned.

As seen in Figure 5d, the search accuracy increases gradually with the increase in the
number of search keywords, which makes the scheme more capable of distinguishing the
files that satisfy the user’s search conditions. The search accuracy of the scheme in [15] is
around 85%, while the search accuracy of our scheme can reach 91% with the increase in
valid search keywords.

8. Conclusions

In this paper, an effective semi-decentralized multi-keyword fuzzy searchable encryp-
tion scheme is proposed. We improved the index tree storage to support fine-grained
access control without losing search efficiency. In addition, CP − ABE is introduced into
the scheme to support multi-user scenarios. Experimental results show that our scheme
has certain advantages in efficiency compared to similar schemes. In a word, the proposed
scheme is rich with additional functions such as verification, updating, etc., while at the
same time presenting a high performance.
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