Modeling Approaches for Accounting Radiation-Induced Effect in HVDC-GIS Design for Nuclear Fusion Applications
<p>Portion of solid–gas interface layer <math display="inline"><semantics> <msub> <mi>Γ</mi> <mi>S</mi> </msub> </semantics></math> of thickness <math display="inline"><semantics> <mi>δ</mi> </semantics></math>. The normal and tangent vectors (<math display="inline"><semantics> <mi mathvariant="bold">n</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="bold">t</mi> </semantics></math>, respectively) and the direction of current densities across the layer are also drawn.</p> "> Figure 2
<p>Overview of DTT Tokamak hall with highlighted parts.</p> "> Figure 3
<p>(<b>a</b>) Example of <span class="html-italic">J</span>-<span class="html-italic">E</span> population clustering. (<b>b</b>) Example of <span class="html-italic">J</span>-<span class="html-italic">E</span> populations for different values of <span class="html-italic">S</span>.</p> "> Figure 4
<p>Geometrical model of the 2D axisymmetric HVDC-GIS chamber.</p> "> Figure 5
<p>Trend of <math display="inline"><semantics> <mrow> <msub> <mi>ϱ</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> along the gas–solid insulator interface. The arc length is measured from the bottom to the top of the interface.</p> "> Figure 6
<p>Surface charge density <math display="inline"><semantics> <msub> <mi>ϱ</mi> <mi>S</mi> </msub> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>8000</mn> </mrow> </semantics></math> h along the gas–solid insulator interface obtained with the DDR and EQS with constant <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>G</mi> </msub> </semantics></math>. Low-ionization regime. The arc length is measured from the bottom to the top of the interface.</p> "> Figure 7
<p>Surface charge density <math display="inline"><semantics> <msub> <mi>ϱ</mi> <mi>S</mi> </msub> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>8000</mn> </mrow> </semantics></math> h along the gas–solid insulator interface obtained with the DDR and EQS with constant <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>G</mi> </msub> </semantics></math>. High-ionization regime.</p> "> Figure 8
<p>Negative ions’ distribution after <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>8000</mn> </mrow> </semantics></math> h. (<b>a</b>) Low-ionization regime. (<b>b</b>) High-ionization regime.</p> "> Figure 9
<p>Charge density distribution in the solid insulator after <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>8000</mn> </mrow> </semantics></math> h. (<b>a</b>) Homo-charge in low-ionization regime. (<b>b</b>) Hetero-charge in high-ionization regime.</p> "> Figure 10
<p>Cross -section of TL.</p> ">
Abstract
:1. Introduction
2. Surface Charge Accumulation
- Electric conduction within the gas.
- Electric conduction in solid insulators.
- Electric conduction of the interface layer.
3. Effect of External Ionization Field
4. Electric Field Modeling
Simplified Approach
5. Modeling Charge Transport in Dielectric Gas
- A Dirichlet condition for is imposed in the boundaries, where , i.e., = 0, while a natural Neumann condition is imposed to therein, i.e., = 0.
- A Dirichlet condition for is imposed in the boundaries, where , i.e., = 0, while a natural Neumann condition is imposed to therein, i.e., = 0.
6. An Equivalent Gas Conductivity for RIC Phenomenon
7. Numerical Results
7.1. Post-Insulator in SF
7.2. Ionization Effect of TL
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HVDC | High-voltage direct current |
NBI | Neutral beam injector |
MCF | Magnetic confinement fusion |
AGPS | Acceleration grid power supply |
GIS | Gas-insulated system |
TL | Transmission line |
DTT | Divertor Tokamak Test |
CFETR | China Fusion Engineering Test Reactor |
GIL | Gas-insulated line |
RIC | Radiation-induced conductivity |
EQS | Electro-quasistatic |
HVB | High-voltage bushing |
DDR | Drift–diffusion reaction |
References
- Lucchini, F.; Marconato, N. Development of HVDC Gas-Insulated Components for the Power Supply of Neutral Beam Injectors. IEEE Access 2023, 11, 9731–9741. [Google Scholar] [CrossRef]
- Takahashi, A.; Suto, T.; Fujita, H.; Hiranuma, Y.; Ichimura, S.; Watanabe, K.; Kashiwagi, M.; Tobari, H.; Maejima, T. -1 MV DC filter and high-voltage DC measurement system for ITER neutral beam injector system. IEEE Trans. Power Electron. 2020, 36, 7587–7599. [Google Scholar] [CrossRef]
- Takahashi, A.; Suto, T.; Tanaka, T.; Yamaguchi, K.; Fujita, H.; Hiranuma, Y.; Ichimura, S.; Watanabe, K.; Kashiwagi, M.; Maejima, T.; et al. 1 MV rectifier with SF6-gas insulation and cooling for ITER neutral beam injector system. IEEE Trans. Ind. Appl. 2021, 57, 4398–4408. [Google Scholar] [CrossRef]
- Watanabe, K.; Kashiwagi, M.; Kawashima, S.; Ono, Y.; Yamashita, Y.; Yamazaki, C.; Hanada, M.; Inoue, T.; Taniguchi, M.; Okumura, Y.; et al. Development of a dc 1 MV power supply technology for NB injectors. Nucl. Fusion 2006, 46, S332. [Google Scholar] [CrossRef]
- Tobari, H.; Watanabe, K.; Kashiwagi, M.; Yamanaka, H.; Maejima, T.; Terunuma, Y.; Kojima, A.; Dairaku, M.; Hanada, M. DC ultrahigh voltage insulation technology for 1 MV power supply system for fusion application. IEEE Trans. Plasma Sci. 2016, 45, 162–169. [Google Scholar] [CrossRef]
- Romanelli, F. Divertor Tokamak Test facility Project: Status of Design and Implementation. Nucl. Fusion 2024, 64, 112015. [Google Scholar] [CrossRef]
- Zheng, J.; Qin, J.; Lu, K.; Xu, M.; Duan, X.; Xu, G.; Hu, J.; Gong, X.; Zang, Q.; Liu, Z.; et al. Recent progress in Chinese fusion research based on superconducting tokamak configuration. Innovation 2022, 3, 100269. [Google Scholar] [CrossRef]
- Ferro, A.; Lucchini, F.; Agostinetti, P.; Ratti, D.; Granucci, G.; Romano, A.; Romano, R.; Cucchiaro, A.; Princiotta, A. Conceptual design of the power supplies for DTT neutral beam injector. Fusion Eng. Des. 2021, 169, 112624. [Google Scholar] [CrossRef]
- Agostinetti, P.; Benedetti, E.; Bonifetto, R.; Bonesso, M.; Cavenago, M.; Bello, S.D.; Palma, M.D.; D’Ambrosio, D.; Dima, R.; Favero, G.; et al. Improved Conceptual Design of the Beamline for the DTT Neutral Beam Injector. IEEE Trans. Plasma Sci. 2022, 50, 4027–4032. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Ma, S.; Yang, S.; Yu, K.; Pan, Y. Design and development of acceleration grid power supply-conversion system for CFETR N-NBI. Fusion Eng. Des. 2020, 161, 111917. [Google Scholar] [CrossRef]
- Magier, T.; Tenzer, M.; Koch, H. Direct Current Gas-Insulated Transmission Lines. IEEE Trans. Power Deliv. 2018, 33, 440–446. [Google Scholar] [CrossRef]
- Molinie, P. A review of mechanisms and models accounting for surface potential decay. IEEE Trans. Plasma Sci. 2011, 40, 167–176. [Google Scholar] [CrossRef]
- Bettini, P.; Specogna, R.; Trevisan, F. Electroquasistatic analysis of the gas insulated line for the ITER neutral beam injector. IEEE Trans. Magn. 2009, 45, 996–999. [Google Scholar] [CrossRef]
- Zebouchi, N.; Haddad, M.A. A review on real-size epoxy cast resin insulators for compact high voltage direct current gas insulated switchgears (GIS) and gas insulated transmission lines (GIL)—Current achievements and envisaged research and development. Energies 2020, 13, 6416. [Google Scholar] [CrossRef]
- Qi, B.; Gao, C.; Li, C.; Xiong, J. The influence of surface charge accumulation on flashover voltage of GIS/GIL basin insulator under various voltage stresses. Int. J. Electr. Power Energy Syst. 2019, 105, 514–520. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Lin, C.; Chen, G.; Tu, Y.; Zhou, Y.; Lei, Z.; Han, T.; Suraci, S.V.; Wang, J.; et al. Surface charging phenomena on HVDC spacers for compressed SF6 insulation and charge tailoring strategies. Csee J. Power Energy Syst. 2020, 6, 83–99. [Google Scholar] [CrossRef]
- Wang, C.; Wilson, A.; Watts, M. Surface flashover sustained by electrostatic surface charge on epoxy resin insulator in SF6. IEEE Proc. Sci. Meas. Technol. 1993, 140, 346–350. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, Y.; Hao, Y.; Zhang, Q.; Li, X.; Chen, L.; Li, L. Surface flashover patterns of GIS basin insulator under impulse voltage. Eng. Fail. Anal. 2021, 130, 105800. [Google Scholar] [CrossRef]
- Li, C.; Lin, C.; Zhang, B.; Li, Q.; Liu, W.; Hu, J.; He, J. Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1152–1166. [Google Scholar] [CrossRef]
- Kindersberger, J.; Lederle, C. Surface charge decay on insulators in air and sulfurhexafluorid-part I: Simulation. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 941–948. [Google Scholar] [CrossRef]
- De Lorenzi, A.; Grando, L.; Pesce, A.; Bettini, P.; Specogna, R. Modeling of epoxy resin spacers for the 1 MV DC gas insulated line of ITER neutral beam injector system. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 77–87. [Google Scholar] [CrossRef]
- Lucchini, F.; Marconato, N.; Bettini, P. Automatic Optimization of Gas Insulated Components Based on the Streamer Inception Criterion. Electronics 2021, 10, 2280. [Google Scholar] [CrossRef]
- Pan, W.; Wang, Y.; Ding, H.; Shen, E.; Zhang, Z.; Yang, X.; Wang, Z.; Akram, S. Nonlinear Materials Applied in HVDC Gas Insulated Equipment: From Fundamentals to Applications. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1588–1603. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Inoue, T.; Miyamoto, K.; Miyamoto, N.; Ohara, Y.; Okumura, Y.; Watanabe, K. Influence of radiation on insulation gas at the ITER–NBI system. Fusion Eng. Des. 2001, 55, 1–8. [Google Scholar] [CrossRef]
- Umeda, N.; Taniguchi, M.; Kashiwagi, M.; Dairaku, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Sakamoto, K.; Inoue, T. Development of 1 MeV accelerator and HV bushing at JAEA toward ITER neutral beam system. Fusion Eng. Des. 2009, 84, 1875–1880. [Google Scholar] [CrossRef]
- Zebouchi, N.; Li, H.; Haddad, M.A. Development of future compact and eco-friendly HVDC gas-insulated systems: Shape optimization of a DC spacer model and novel materials investigation. Energies 2020, 13, 3288. [Google Scholar] [CrossRef]
- Gremaud, R.; Zhao, Z.; Baur, M. Measurement of DC conduction in alumina-filled epoxy. In Proceedings of the 2016 IEEE International Conference on Dielectrics (ICD), Montpellier, France, 3–7 July 2016; Volume 2, pp. 1097–1101. [Google Scholar] [CrossRef]
- Hensel, H.; Joergens, C.; Clemens, M. Numerical simulation of electric field distribution in HVDC gas insulated lines considering a novel nonlinear conductivity model for SF6. In Proceedings of the VDE High Voltage Technology; 4. ETG-Symposium, Berlin, Germany, 8–10 November 2022; VDE: Berlin, Germany, 2022; pp. 1–6. [Google Scholar]
- Volpov, E. HVDC gas insulated apparatus: Electric field specificity and insulation design concept. IEEE Electr. Insul. Mag. 2002, 18, 7–36. [Google Scholar] [CrossRef]
- Lavesson, N.; Doiron, C. Hybrid resistive-capacitive and ion drift model for solid gas dielectrics. In Proceedings of the COMSOL Conference 2015, Grenoble, France, 14–16 October 2015. [Google Scholar]
- Winter, A.; Kindersberger, J. Transient field distribution in gas-solid insulation systems under DC voltages. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 116–128. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, B.; Li, C.; Li, Q.; Zhang, Z.; Yan, W. Multiphysics coupled modelling in HVDC GILs: Critical re-examination of ion mobility selection. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 835–842. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Yu, D.; Pan, W.; Zhang, Z.; Tschentscher, M. Conductor Surface Roughness-dependent Gas Conduction Process for HVDC GIL—Part I: Simulation. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 511–519. [Google Scholar] [CrossRef]
- Ma, G.-m.; Zhou, H.-y.; Li, C.-r.; Jiang, J.; Chen, X.-w. Designing epoxy insulators in SF 6-filled DC-GIL with simulations of ionic conduction and surface charging. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3312–3320. [Google Scholar] [CrossRef]
- Straumann, U.; Schuller, M.; Franck, C.M. Theoretical investigation of HVDC disc spacer charging in SF 6 gas insulated systems. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 2196–2205. [Google Scholar] [CrossRef]
- Du, B.; Liang, H.; Li, J.; Ran, Z. Electrical field distribution along SF 6/N 2 filled DC-GIS/GIL epoxy spacer. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1202–1210. [Google Scholar] [CrossRef]
- De Lorenzi, A.; Grando, L.; Gobbo, R.; Pesavento, G.; Bettini, P.; Specogna, R.; Trevisan, F. The insulation structure of the 1 MV transmission line for the ITER neutral beam injector. Fusion Eng. Des. 2007, 82, 836–844. [Google Scholar] [CrossRef]
- Winter, A.; Kindersberger, J. Stationary resistive field distribution along epoxy resin insulators in air under DC voltage. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1732–1739. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, J.D.; Hao, L.; Zhang, B.; Liu, S. Charge transport and accumulation around a spancer insulator for application in HVDC wall bushing. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 281–293. [Google Scholar] [CrossRef]
- Taniguchi, M.; Hanada, M.; Iga, T.; Inoue, T.; Kashiwagi, M.; Morisita, T.; Okumura, Y.; Shimizu, T.; Takayanagi, T.; Watanabe, K.; et al. Development of high performance negative ion sources and accelerators for MeV class neutral beam injectors. Nucl. Fusion 2003, 43, 665. [Google Scholar] [CrossRef]
- Morrow, R. A survey of the electron and ion transport properties of SF6. IEEE Trans. Plasma Sci. 1986, 14, 234–239. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
4.8 m/(V·s) | |
4.8 m/(V·s) | |
R | 1.74 m/s |
S | 2.7 m s |
Low Ionization | High Ionization | |
---|---|---|
[A/m] | 5.2 | 1.3 |
Approach | Advantages | Disadvantages |
---|---|---|
EQS with specified | • Simple implementation | • Does not account for ions’ distribution |
• Effective tool for low-ionization regime | • Ions’ injection cannot be considered | |
• Not trivial selection of in high-ionization regime. Need for a functional dependence | ||
• Account for ions’ distribution | • Intrinsically nonlinear model | |
DDR | • Effective tool for low- and high-ionization regimes | • Requires additional Equations (12) and (13) to be solved |
• Ions’ injection can be considered |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchini, F.; Frescura, A.; Urazaki Junior, K.; Marconato, N.; Bettini, P. Modeling Approaches for Accounting Radiation-Induced Effect in HVDC-GIS Design for Nuclear Fusion Applications. Appl. Sci. 2024, 14, 11666. https://doi.org/10.3390/app142411666
Lucchini F, Frescura A, Urazaki Junior K, Marconato N, Bettini P. Modeling Approaches for Accounting Radiation-Induced Effect in HVDC-GIS Design for Nuclear Fusion Applications. Applied Sciences. 2024; 14(24):11666. https://doi.org/10.3390/app142411666
Chicago/Turabian StyleLucchini, Francesco, Alessandro Frescura, Kenji Urazaki Junior, Nicolò Marconato, and Paolo Bettini. 2024. "Modeling Approaches for Accounting Radiation-Induced Effect in HVDC-GIS Design for Nuclear Fusion Applications" Applied Sciences 14, no. 24: 11666. https://doi.org/10.3390/app142411666
APA StyleLucchini, F., Frescura, A., Urazaki Junior, K., Marconato, N., & Bettini, P. (2024). Modeling Approaches for Accounting Radiation-Induced Effect in HVDC-GIS Design for Nuclear Fusion Applications. Applied Sciences, 14(24), 11666. https://doi.org/10.3390/app142411666