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Abstract: Airwave interference presents a major source of noise in seismic exploration, posing
significant challenges to the quality control of raw seismic data. With the increasing data volume
in 3D seismic exploration, manual identification methods fall short of meeting the demands of
high-density 3D seismic surveys. This study employs the YOLOv5 model, a widely used tool in
object detection, to achieve rapid identification of airwave noise in seismic profiles. Initially, the
model was pre-trained on the COCO dataset—a large-scale dataset designed for object detection—
and subsequently fine-tuned using a training set specifically labeled for airwave noise data. The
fine-tuned model achieved an accuracy and recall rate of approximately 85% on the test dataset,
successfully identifying not only the presence of noise but also its location, confidence levels, and
range. To evaluate the model’s effectiveness, we applied the YOLOv5 model trained on 2D data to
seismic records from two regions: 2D seismic data from Ningqiang, Shanxi, and 3D seismic data from
Xiushui, Sichuan. The overall prediction accuracy in both regions exceeded 90%, with the accuracy
and recall rates for airwave noise surpassing 83% and 90%, respectively. The evaluation time for
single-shot 3D seismic data (over 8000 traces) was less than 2 s, highlighting the model’s exceptional
transferability, generalization ability, and efficiency. These results demonstrate that the YOLOv5
model is highly effective for detecting airwave noise in raw seismic data across different regions,
marking the first successful attempt at computer recognition of airwaves in seismic exploration.

Keywords: seismic acquisition; deep learning; quality control; single-trace classification

1. Introduction

During field seismic data acquisition, strong airwave noise can sometimes occur due
to factors such as poor source excitation conditions. For example, in well-shooting seismic
records, improper burial of explosive sources may result in seismic wave energy escaping
through the wellhead at the moment of detonation, propagating as acoustic waves through
the air and being picked up by the detectors [1,2]. On 2D seismic profiles, these airwave
waves typically appear as straight lines with slopes corresponding to the speed of sound
(approximately 343 m/s) in seismic profiles [3]. In contrast, on 3D seismic profiles, they
may take the form of arcs or straight lines with steeper slopes, indicating a higher apparent
velocity (Figure 1). This airwave noise tends to exhibit broadband characteristics, with
particularly strong energy concentrated in the higher effective frequency range [4]. If this
high-energy noise is not promptly identified and addressed, it can impair the effectiveness
of multi-channel processing techniques, such as pre-stack consistency, and severely degrade
the accuracy of pre-stack seismic migration results.
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Figure 1. Typical characteristics of airwave noise (indicated in green). (a) No airwave noise; (b) Weak 
airwave noise; (c,d) represent airwave noise in three-dimensional exploration, where (c) is closer to 
the seismic source than (d); (e,f) depict typical airwave noise in two-dimensional seismic explora-
tion. 

Currently, airwave noise is primarily identified through visual inspection, a simple 
and intuitive method that is still effective for 2D seismic exploration or small-scale 3D 
surveys [5]. However, as 3D surveys become more complex—with data volumes per shot 
reaching hundreds of megabytes and time intervals between successive shots shrinking 
to as little as half a minute (for well-shooting) or a few seconds (for controlled sources)—
manual identification becomes increasingly impractical [6]. The large volume of data and 
short timeframes lead to omissions and significant subjective bias in the identification pro-
cess. Traditional quality control methods focus on monitoring various operational param-
eters, such as seismic instrument status, TB time differences, equipment performance, 
source–receiver relationships, and observation systems [7–10]. However, these methods 
do not fully account for the effects of surface conditions, geological variations, environ-
mental factors, and random events on seismic data. Moreover, they lack the ability to 
quickly identify airwave noise based on waveform characteristics. Although airwave noise 
often presents clear features on seismic profiles, weaker instances (as shown in Figure 1b) 
may go undetected. Additionally, airwave noise may appear as unilateral slanting lines 
(as shown in Figure 1e), which, in some cases, are caused by noise sources unrelated to 
well-shooting. These complexities increase the difficulty and uncertainty of accurately 
identifying airwave noise. Therefore, enhancing the efficiency and accuracy of computer-
based automatic detection is essential for ensuring high-quality seismic data. 

In recent years, deep learning (DL) methods have emerged as innovative solutions 
for tackling the enormous challenges of geophysical data processing and interpretation 
[11–15]. These methods have been successfully applied to tasks such as seismic data de-
noising [16–18] and inversion [19–22]. Unlike traditional approaches, which often rely on 
physical models, deep learning is entirely data-driven. Once the model is trained, it can 
rapidly establish a relationship between observed data and the predicted parameters. As 
a result, DL-based techniques offer high efficiency, making them well-suited for real-time 
data processing and inversion imaging [11,23]. 

Figure 1. Typical characteristics of airwave noise (indicated in green). (a) No airwave noise; (b) Weak
airwave noise; (c,d) represent airwave noise in three-dimensional exploration, where (c) is closer to
the seismic source than (d); (e,f) depict typical airwave noise in two-dimensional seismic exploration.

Currently, airwave noise is primarily identified through visual inspection, a simple
and intuitive method that is still effective for 2D seismic exploration or small-scale 3D
surveys [5]. However, as 3D surveys become more complex—with data volumes per shot
reaching hundreds of megabytes and time intervals between successive shots shrinking to as
little as half a minute (for well-shooting) or a few seconds (for controlled sources)—manual
identification becomes increasingly impractical [6]. The large volume of data and short
timeframes lead to omissions and significant subjective bias in the identification process.
Traditional quality control methods focus on monitoring various operational parameters,
such as seismic instrument status, TB time differences, equipment performance, source–
receiver relationships, and observation systems [7–10]. However, these methods do not
fully account for the effects of surface conditions, geological variations, environmental
factors, and random events on seismic data. Moreover, they lack the ability to quickly
identify airwave noise based on waveform characteristics. Although airwave noise often
presents clear features on seismic profiles, weaker instances (as shown in Figure 1b) may go
undetected. Additionally, airwave noise may appear as unilateral slanting lines (as shown
in Figure 1e), which, in some cases, are caused by noise sources unrelated to well-shooting.
These complexities increase the difficulty and uncertainty of accurately identifying airwave
noise. Therefore, enhancing the efficiency and accuracy of computer-based automatic
detection is essential for ensuring high-quality seismic data.

In recent years, deep learning (DL) methods have emerged as innovative solutions for
tackling the enormous challenges of geophysical data processing and interpretation [11–15].
These methods have been successfully applied to tasks such as seismic data denoising [16–18]
and inversion [19–22]. Unlike traditional approaches, which often rely on physical models,
deep learning is entirely data-driven. Once the model is trained, it can rapidly establish a
relationship between observed data and the predicted parameters. As a result, DL-based
techniques offer high efficiency, making them well-suited for real-time data processing and
inversion imaging [11,23].

The identification of airwave noise is fundamentally an image recognition task, where
the objective is to automatically detect the location and extent of interference in individual
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seismic shot records. Deep learning, particularly in the field of object detection, excels at
this. Object detection techniques have been successfully applied across various domains,
including plant protection [24,25], wildlife conservation [26,27], and urban surveillance [28].
Among the various deep learning models, YOLO (You Only Look Once) stands out as a
widely used model for object detection. It is capable of simultaneously locating objects and
identifying their categories in a single forward pass. Since its initial release in 2016, YOLO
has gone through multiple iterations, each introducing notable improvements [29–33].
YOLOv5, developed in Python using the PyTorch (2.0.0) framework, is an open-source
model that benefits from an active community. With a more lightweight architecture
than its predecessors, YOLOv5 is known for its efficiency, accuracy, and ease of use,
making it widely applicable in various real-world scenarios that require rapid object
detection. These applications range from real-time monitoring and security systems to
intelligent transportation, environmental perception, medical image analysis, and drone-
based vision systems.

This paper introduces the first implementation of rapid airwave noise prediction
using YOLOv5, facilitating quick estimation of the location, extent, and confidence of
airwave noise in raw seismic data. To the best of our knowledge, this is the first attempt
at computer-based recognition of airwaves in seismic exploration. The proposed method
provides a real-time seismic source quality monitoring method during seismic acquisition.
The structure of this work is organized as follows. First, we outline the fundamental
architecture of YOLOv5, including its input–output layer structure and loss function. Next,
we detail the integration of a seismic dataset containing airwave noise for the network’s
secondary training and evaluate its performance on the test dataset. Finally, we apply the
model to 2D seismic data from the Ningqiang area in Shaanxi Province and 3D seismic data
from the Xiushui area in Sichuan Province to assess its performance and generalization
capabilities. In addition, we compare the accuracy and efficiency of different YOLO models
and discuss the necessity of image mapping from 2D seismic data.

2. Related Works

The application of the YOLO object detection algorithm is gaining significant traction
in the fields of seismology, earth sciences, and earthquake engineering. YOLO has been
successfully applied to various tasks, such as seismic velocity spectrum picking [34], real-
time co-seismic landslide detection [35], microseismic event detection [36], and detection
of collapsed buildings [37]. In seismological methods, YOLO is used to assist in seismic
numerical simulation and inversion imaging [38,39]. We summarize the applications of
YOLO in seismology in Table 1, indicating its potential for future large-scale seismic data
applications. Additionally, it has been utilized in GPR-based rebar diameter estimation [40],
demonstrating its versatility across different geophysical and engineering domains.

However, as seismic exploration generates massive amounts of data, there is an
increasing need for object detection algorithms to monitor and manage specific types of
noise within the data. Controlling noise is crucial for maintaining the quality and reliability
of seismic explorations. Given its speed, accuracy, and ability to detect subtle patterns
in large datasets, YOLO has been selected as an ideal tool for this purpose. By applying
YOLO to detect and filter out noise from seismic data, we can ensure that the data quality
remains high and the interpretation of seismic signals is accurate, ultimately improving the
efficiency and precision of seismic exploration and monitoring efforts. At present, noise
identification in array-based seismic exploration data largely relies on human interpretation.
We hope that the application of YOLO can effectively fill this gap.
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Table 1. Applications of the YOLO object detection algorithm in seismology.

Application Description Reference

Seismic velocity spectrum picking Wang et al., 2024 [37]

Real-time co-seismic landslide detection Pang et al., 2022 [35]

Detection of co-seismic collapsed buildings Wang et al., 2024 [37]
Ilmak and Iban, 2024 [41]

Microseismic event detection Zhu and Shragge, 2022 [36]

Local velocity anomalies detection from
Seismic inversion models Li and Meng, 2024 [42]

Seismic numerical modeling Lee et al., 2022 [38]

Arrival-time picking of P- and S-waves of
microseismic events Li et al., 2023 [39]

Post-earthquake fire detection Kustu and Taskin, 2023 [43]

Seismic noise detection (this work)

3. The Basic Principles of YOLOv5

In the YOLOv5 family, YOLOv5s, YOLOv5m and YOLOv5l are versions of different
sizes and complexities, impacting speed, accuracy, and inference time. After testing all
three models, this study chose YOLOv5m due to its optimal balance between efficiency
and accuracy.

3.1. Network Architecture

The YOLOv5m model structure employed in this paper is depicted in Figure 2 and
comprises two primary modules: the Backbone and the Neck [32]. The Backbone is
tasked with extracting multi-scale features from the input image and consists of three key
components: the Focus layer, CSP (Cross Stage Partial Network) layer, and SSP (Spatial
Pyramid Pooling) layer.

The Focus layer functions as the initial convolutional layer, increasing the number
of channels by processing and downsampling the input image in chunks. This approach
effectively reduces the computational load while preserving detailed information from
the image. The CSP structure facilitates feature segmentation and merging, aimed at
minimizing computational costs and reducing information redundancy. It also enhances
gradient flow and model expressiveness through cross-layer residual connections. The term
CSP_X denotes X residual or convolutional units; the network architectures for YOLOv5m
and more complex versions align with the YOLOv5m structure used in this study, with the
key distinction being that more advanced networks have larger values of X. This design
allows for adaptability to varying computational resources and task requirements.

The SSP layer aggregates multi-scale information by transforming feature maps into
fixed-size feature vectors through max pooling operations at different scales, thereby
enhancing the model’s capability to detect objects of various sizes. As illustrated in Figure 2,
the Backbone’s three distinct levels of features are forwarded to the Neck, enabling multi-
scale feature fusion and improving the model’s detection performance for a wide range of
object sizes.

The Neck network is designed to further process and integrate the features obtained
from the Backbone for object detection. It primarily consists of CSP layers, but does not
utilize cross-layer residual connections, as its main function is multi-scale feature fusion
rather than pure feature extraction. Since the Neck network must manage a significant
volume of feature maps from the Backbone, the feature fusion process is inherently complex.
Consequently, eliminating residual connections simplifies the Neck network’s design,
reducing the number of model parameters and thereby decreasing computational overhead
and memory usage.
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Figure 2. The YOLOv5m network architecture (modified from Zhang, 2022 [44]). Conv refers
to two-dimensional convolution operations, while BN (Batch Normalization) accelerates network
convergence during training and reduces sensitivity to parameter initialization. Concat denotes the
concatenation operation used to merge features from different sources. SiLU is the activation function,
defined as SiLU(x) = x

1+ex , which is a smooth, nonlinear activation function. This means that it
does not introduce discontinuity at zero like ReLU (Rectified Linear Unit), thereby avoiding gradient
instability issues. MaxPool refers to the max pooling layer used for downsampling, which reduces
the size of the feature map by selecting the maximum value within local regions of the feature map,
while preserving the most significant features.

3.2. Output Layer and Loss Function

In this study, the model outputs three feature maps, corresponding to grid sizes of
80 × 80 × C, 40 × 40 × C, and 20 × 20 × C, enabling the detection of objects of varying
dimensions. Here, C represents the number of channels in the output layer (see Figure 2),
calculated as [45]:

C = 3 × (nclas + 5) (1)

where nclas = 1 indicates the number of object classes. Since this paper focuses exclusively on
airwave noise as a single class, the output layer consists of 18 channels. The number 5 refers
to the five parameters associated with each predicted bounding box: the x-coordinate, y-
coordinate, width, height, and confidence score. Together, the coordinates and dimensions
define the predicted bounding box (also known as the scaled anchor box). The model
predicts three different sizes of bounding boxes for each grid cell.

Anchor boxes function as the model’s initial reference frames, facilitating the YOLOv5m
model’s ability to detect objects across various grid cells. Prior to training, the network
automatically optimizes the sizes and dimensions of these anchor boxes using labeled data
and clustering algorithms (such as K-means), which is why they are referred to as prior
anchor boxes. During the training process, the model predicts the position and size of
objects relative to the anchor boxes, with the network output essentially representing the
offsets, width-height scaling factors, and class probabilities in relation to these anchor boxes.
After undergoing a series of transformations, these outputs yield the final coordinates for
the object bounding boxes.

Each grid cell in the model is tasked with detecting the presence of an object within its
designated area (confidence) and predicting the corresponding bounding box and category.
Each output layer comprises cells that each generate three predicted bounding boxes to
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accommodate objects of various sizes. Each predicted bounding box is transformed from
anchor box and contains a confidence score and multiple class probabilities. For this
work, only one class is considered. When computing the loss function, the predictions
from all grid cells are considered, with the losses from each cell accumulated to yield an
overall loss value. However, if the Intersection over Union (IoU) between the anchor boxes
and the corresponding ground truth boxes falls below a specified threshold (e.g., 40%),
these anchor boxes are deemed to represent background. Consequently, we can disregard
their contribution to the bounding box loss in the loss function and assign a label of 0 for
confidence loss.

During the prediction phase, the model may output low-confidence bounding boxes,
indicating potential background areas. The grid structure allows each grid cell to con-
centrate solely on the objects within its respective region (see Figure 3) using non-max
suppression, thereby streamlining the object detection process and enhancing the model’s
ability to learn features from diverse areas effectively.
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Figure 3. The diagram illustrates the grid division (black grid lines), marked boxes or label (yellow
bounding boxes), prior anchor boxes (red bounding boxes), and the non-maximum suppression
process. Since only one class is predicted, each predicted unit greater than the IoU threshold
(indicated in purple) corresponds to three anchor boxes, which are merged into one by the non-
maximum suppression algorithm. (Modified form https://cloud.tencent.com/developer/article/11
18040 (accessed on 1 January 2020)).

Furthermore, identical or adjacent grid cells may produce multiple overlapping anchor
boxes. To address this, this study implements the Non-Maximum Suppression (NMS)
algorithm [46] to remove redundant anchor boxes from multiple detections, retaining only
the boxes that are most likely to contain objects (see Figure 3). The NMS process involves
calculating the IoU between the highest-confidence predicted boxes. An IoU threshold
is established to dictate the maximum allowable overlap between two boxes, typically
set between 0.3 and 0.5. Any boxes with an IoU greater than the specified threshold are
suppressed (i.e., removed from the list). For multiple anchor boxes with high IoU values, a
weighted average based on confidence is computed to create a new bounding box, which is
then preserved as the final predicted box.

In this paper, the loss function is primarily composed of two components: confidence
loss Lconf and localization loss CIoU. Confidence loss is utilized to calculate the probability
of an object being present within each predicted bounding box. This is achieved using the
binary cross-entropy loss function [47]:

Lconf = −
2

∑
n=1

y∗
nlog(yn) + (1 − y∗

n)log(1 − yn) (2)

where N represents the total number of classes, yn is the predicted probability for the
current class after applying the Sigmoid activation function, and y∗

n is the true label for that
class, where 0 indicates background and 1 indicates the presence of an object.

Localization loss measures the error between the predicted bounding box and the
ground truth box. In YOLOv5m, commonly employed localization loss functions include
Generalized Intersection over Union (GIoU) loss and Complete Intersection over Union
(CIoU) loss. These loss functions enhance the original IoU loss to better accommodate

https://cloud.tencent.com/developer/article/1118040
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cases of non-overlapping or partially overlapping boxes. The CIoU loss is defined by the
following formula, which integrates IoU loss, center distance loss, and aspect ratio loss:

CIoU = 1 − IoU +
ρ2(b, bg)

c2 + αv (3)

where IoU represents the Intersection over Union between the predicted and ground truth
boxes, ρ2(b, bg) denotes the diagonal length of the smallest enclosing box that contains both
the predicted and ground truth boxes, where b and bg represent the center coordinates of
the predicted box and the ground truth box, respectively. α serves as a balancing parameter
to weigh the IoU loss against the aspect ratio loss, and v quantifies the difference in aspect
ratios between the predicted and ground truth boxes.

To compute the Intersection over Union (IoU), it is essential to first derive the coor-
dinates of the predicted bounding box, which are represented by offsets. These offsets
indicate the displacement of the bounding box’s center point relative to the top-left corner
of the predicted grid, as well as the scaling of the bounding box’s width and height in
relation to the anchor box. Let the predicted offsets be denoted as

(
tx, ty

)
. The coordinates

of the ground truth bounding box (bx, by, bw, bh) can be calculated using the following
equations [45,48]:

bx = σ(tx) + cx (4)

by = σ
(
ty
)
+ cy (5)

bw = pwew (6)

bh = pheh (7)

In these equations, the bx and by represent the center coordinates of the bounding box,
predicted as offsets from the grid cell centers and then adjusted by the grid’s coordinates.
The bw and bh represent the width and height of the bounding box, predicted in a log-space
(using the exponential function) and scaled by anchor box sizes to ensure that the predicted
bounding boxes can handle varying object sizes. The cx and cy represents the coordinates
of the top-left corner of the grid, while pw and ph denote the widths and heights of the
prior anchor boxes. The function σ is the sigmoid function, which constrains the offsets
to the range (0, 1). The model’s optimal weights are obtained by minimizing the overall
loss function, which is a weighted sum of the localization loss and the confidence loss. The
model consists of three output layers, with each layer generating a set of bounding box
predictions that include the bounding boxes for objects and their corresponding confidence
probabilities. When calculating the loss function, the outputs from these three feature maps
are considered, and the losses from each layer are computed and accumulated to form the
total loss. By conducting loss calculations and optimizations across all three feature maps,
YOLOv5m effectively detects objects of varying sizes. This multi-scale loss calculation
approach ensures that the model achieves robust detection performance for objects across a
range of dimensions.

4. The Training of YOLOv5m

Our model underwent secondary training based on the initial weights of YOLOv5m,
which were obtained through pre-training on a large dataset. Specifically, the initial
weights of YOLOv5m are typically pre-trained on the COCO (Common Objects in Context)
dataset [49]. The COCO dataset is a standard resource that contains hundreds of thousands
of annotated images across 80 categories, widely utilized for various tasks in the field of
computer vision.

Utilizing these pre-trained weights enables the model to recognize common object
features right from the start of secondary training (Figure 4). This capability allows the
model to achieve good detection results in a shorter timeframe, thereby reducing overall
training time and enhancing final performance.
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To facilitate the secondary training and fine-tuning of YOLOv5m for detecting airwave
noise, we constructed a dedicated training dataset. The samples were collected from
5000 two-dimensional seismic recordings gathered in Ningqiang County, Shaanxi Province,
in August 2023. This area presents complex seismic geological conditions characterized
by significant terrain fluctuations and numerous cliffs. The exposed strata range from the
Jurassic to the Sinian period, predominantly consisting of layers from the Triassic, Sinian,
and Proterozoic. Notably, the dip angles of these strata vary considerably, typically between
45◦ and 70◦. The lithology is primarily limestone, with lower proportions of sandstone and
mudstone, leading to overall poor excitation and reception conditions, which results in
substantial airwave noise.

In our dataset, we manually marked the locations of airwave noise in each sample,
as illustrated by the green boxes in Figure 1. After screening, we identified a total of
580 samples exhibiting clear airwave noise, with 80% allocated for training and 20% for
testing. The training and prediction processes were accelerated using a GPU (NVIDIA
GeForce RTX 3070 with 128 GB of memory (NVIDIA Corporation, Santa Clara, CA, USA)).
The secondary training comprised a total of 100 iterations, taking approximately 1 h to
complete. Upon finishing the training, the prediction time for a single two-dimensional
seismic recording was under 0.5 s, while the prediction time for three-dimensional seismic
recordings was under 2 s.

Due to the slower propagation speed of airwaves compared to seismic waves, the
acquisition window often closes before the acoustic waves reach the distant detectors. As
a result, airwaves are only observed within a radius Ra = vat around the source, where
va is speed of airwaves propagation and t is travel time. To enhance prediction efficiency,
we crop the original seismic images, selecting only a portion of the seismic recordings for
analysis. For two-dimensional seismic recordings, we extract data centered around the
source with a radius of Ra. In the case of three-dimensional seismic recordings, we extract
seismic data from a rectangular area defined by Ra × 0.7Ra, treating each two-dimensional
profile line as an individual sample.

After preparing all the data, we construct profile images from the two-dimensional
seismic recordings to serve as input for the model. To ensure consistent input dimensions,
the samples undergo pixel interpolation. The 2D seismic data with one channel needs to be
first mapped into images with three RGB color channels during training and prediction
process (Figure 4). The model then outputs the locations of airwave noise along with their
corresponding confidence.

Figure 5 illustrates the evolution curves of loss and precision-recall during the sec-
ondary training process of YOLOv5m. As shown in the figure, both the localization loss
and confidence loss for the training set decrease rapidly, while the precision and recall
steadily increase. This indicates that the model performs well in learning the mapping from
two-dimensional seismic images to airwave locations. Specifically, precision refers to the



Appl. Sci. 2024, 14, 11636 9 of 16

proportion of actual positive samples among those predicted as positive (i.e., indicating the
presence of airwave noise) by the model, while recall represents the proportion of correctly
predicted positive samples out of all actual positive samples.
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of YOLOv5m.

5. Results

Figure 6 shows the statistical distribution of the test dataset samples. In Figure 6a,
the predicted locations of airwave noise closely align with the actual positions, with the
coordinate origin at the top-left corner of the predicted image. This creates an “inverted
V” pattern in the distribution of airwave noise. In Figure 6b, the width of the predicted
bounding boxes varies linearly with height, as the boxes for airwave noise are not elongated
(see Figure 1). Figure 6c illustrates the precision and recall curves as a function of the confi-
dence threshold. Regions with confidence above the threshold are classified as containing
airwave noise. A lower confidence threshold generally yields higher recall and lower
precision, meaning the model may produce more false positives but is less likely to miss
any detection. On the other hand, a higher confidence threshold results in lower recall but
higher precision, reducing false positives while increasing the chance of missed detections.
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Figure 6. Statistical distribution of samples in the test dataset: (a) A distribution map of predicted
locations of airwave noise, where x and y represent the two spatial dimensions of the image, with
the top-left corner of the image set as the coordinate origin. (b) Statistical distribution of widths and
heights of predicted airwave noise boxes. (c) The relationship between recall and accuracy at different
confidence levels.

Figure 7 presents several prediction results from the test dataset. Overall, the model
effectively identifies prominent airwave noise, with higher-confidence bounding boxes indi-
cating more pronounced interference. The detection of interference locations is also highly
accurate. These results confirm the robustness and effectiveness of the YOLOv5 model.
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6. Field Data Validation

In practical applications, we usually focus on whether airwave noise is present, rather
than pinpointing the airwave region. Moreover, we classify interference as significant only
when it is detected on both sides of the seismic source. Interference detected on just one
side is not considered significant, as it may result from other sources and may not be strong
enough to qualify as substantial interference. To determine the presence of airwave noise,
we follow these steps: (1) Extract seismic images from within the acoustic range, based on
2D or 3D seismic records, and use these as input for YOLOv5m; (2) Check the YOLOv5m
predictions to see if two predicted targets are detected. If no targets are detected in any
input image, airwave noise is considered absent. If targets are detected, proceed to the next
step; (3) Assess whether both predicted bounding boxes have confidence scores greater
than 0.35 and are spatially separated. For 3D seismic profiles, if at least one image (one line
data) contains a pair of boxes meeting these criteria, airwave noise is confirmed; otherwise,
it is deemed absent.

To further assess the model’s effectiveness, we tested it using 456 shots of 2D seismic
data from the same region, which were excluded from both the training and test datasets.
As shown in Table 2, the model achieved an overall accuracy of 96.4% on this dataset,
indicating that it can reliably detect the presence or absence of airwave noise in most cases
(see Table 2). Notably, in the instances where airwave was present, the model’s recall was
significantly higher than its precision, suggesting a tendency towards false positives rather
than missed detections. The high values of the Dice Index and Jaccard Index suggest that
the model has performed very well in detecting airwave cases. The formulas for different
evaluation metrics used are shown as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)
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TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

Dice =
2 × TP

2 × TP + FP + FN
(12)

Jaccard =
TP

TP + FP + FN
(13)

where TP = True Positives (correctly predicted positive cases), and FN = False Negatives
(actual positives that were incorrectly predicted as negatives); FP = False Positives (actual
negatives that were incorrectly predicted as positives); TN = True Negatives (correctly
predicted negative cases). TPR measures how well the model can identify positive instances.
A higher TPR means fewer false negatives, indicating better performance in detecting
positive cases. FPR measures the proportion of actual negative instances that are incorrectly
identified as positive by the model. The Dice Index is a measure of overlap between two sets
(predicted and actual), commonly used in binary classification tasks, especially in medical
imaging and object detection. The Jaccard Index is another measure of similarity between
two sets, commonly used to compare the overlap of predicted and actual positive instances.

Table 2. Predictions of airwave noise in the 456-shot two-dimensional seismic records from Ningqiang
County (accuracy and recall statistics).

Category Precision Recall F1-Score Support TPR FPR Dice Index Jaccard Index

0 (No airwave) 1.0 0.98 0.99 410
0.9565 0.0220 0.8889 0.8

1 (airwave) 0.83 0.96 0.89 46

The model’s recall rate was higher than its performance on the YOLO test dataset
(Figure 5), because we defined interference as present if at least one 2D seismic record
from a shot satisfied the interference condition, thereby minimizing missed detections.
The model’s precision on airwave was slightly lower compared to the YOLO test dataset,
because the airwave noises are weak, which was not represented in the training data. In
practical applications, such weak interference is usually negligible, but during prediction,
it can result in low-confidence scores. When these scores exceed the threshold, they are
classified as airwave noise (Figure 8).
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To assess the model’s transferability, we applied the model, initially trained on 2D
data, to 55 shots of 3D seismic exploration data collected from the Xiushui Town area in
Sichuan, China. The predictions are partially illustrated in Figure 9. For the points close
to the seismic source, the airwave noise appears as symmetrical diagonal lines, closely
resembling predictions from the 2D records. In contrast, for survey lines farther from the
source, the interference takes on an arc-shaped pattern, which differs from the 2D seismic
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recordings. Nonetheless, the model perform well, accurately predicting the airwave on
both sides of the arc.
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Figure 9. Randomly selected airwave noise prediction results from the Xiushui three-dimensional
seismic data. The green boxes indicate YOLOv5m predictions of airwave noise, with the first and
second rows representing seismic records corresponding to different seismic sources.

As shown in Table 3, the overall prediction accuracy in this region reached 94%, sur-
passing the results obtained in the Qiangning area. The values of the Dice Index and Jaccard
Index are higher than that in 2D case, suggesting a good performance in detecting 3D air-
wave cases. In addition, the missed detections were primarily attributed to the airwave
being too weak to exceed the confidence threshold of 0.35. These findings confirm that the
proposed model possesses strong predictive accuracy and robust generalization capabilities.

Table 3. Predictions of airwave noise in the 54-shot 3D seismic records from Xiushui County.

Category Precision Recall F1-Score Support TPR FPR Dice Index Jaccard Index

0 (No airwave) 0.94 1.0 0.97 31
1.0 0.06 0.954 0.913

1 (airwave) 1.0 0.91 0.95 23

Furthermore, the YOLOv5m model demonstrated its ability to identify unilateral
acoustic waves (Figure 10). When the shot point is positioned near a mountain, the terrain
can obstruct and reflect the propagation path of the acoustic waves. This results in the
waves being reflected and absorbed on the mountain side, leading to a predominance
of wave propagation toward the flat side, which creates the unilateral airwave wave
phenomenon. Since this type of interference is mainly caused by the terrain, it can generally
be disregarded in practical evaluations unless the interference energy is exceptionally high.
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7. Discussion

We compared the training and testing results of all models within the YOLOv5 family:
YOLOv5l, YOLOv5m, YOLOv5s, and YOLOv5n. These models exhibit differences in
parameter quantities, network scales, and computational costs, with YOLOv5m achieving
a better balance between computational precision, efficiency, and storage space (Table 4).

Table 4. Comparison of YOLOv5 family training.

Train Time (h) Precision Recall mAP@0.5 mAP50:95 Inference (ms) Parameter (MB) FLOPs@640 (B)

yolov5l 0.88 0.997 1 0.995 0.98 10.1 46.5 109.1

yolov5m 0.554 0.97 1 0.995 0.945 8.2 21.2 49

yolov5s 0.318 0.987 0.951 0.992 0.847 6.4 7.2 16.5

yolov5n 0.24 0.975 0.94 0.992 0.772 6.3 1.9 4.5

Note: mAP@0.5 (Mean Average Precision at IoU = 0.5 thresholds); mAP@0.5:0.95 (Mean Average Precision at
IoU = 0.5:0.95 thresholds); FLOPs@640 refers to the number of floating-point operations.

The YOLO model is a method based on computer vision, so 2D seismic data needs
to be first mapped into images during the training and prediction process. OpenCV
provides a variety of predefined color mappings that can map pixel intensity values in
grayscale images to color values, commonly used in scientific data visualization or image
processing [50]. Different mappings exhibit varying performance in identifying airwave
anomalies. In this study, through testing multiple mappings, we selected TWILIGHT as
the primary color mapping for training and prediction samples. Table 5 and Figure 11
show the prediction performance for different mappings, where TWILIGHT demonstrates
significantly higher accuracy compared to CIVIDIS.

Table 5. Comparison of YOLOv5 test result of Twilight and Cividis colormap.

P R mAP50 mAP50:95

Twilight 0.97 1 0.995 0.945

Cividis 0.825 0.85 0.826 0.805
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8. Conclusions

In recent years, significant advancements in neural network technology, driven by
rapid increases in computational power, have led to its widespread application across vari-
ous fields, including Earth sciences [20,23,51–53]. While manual identification of airwave
noise can be somewhat intuitive, processing vast amounts of three-dimensional seismic
data through manual operations is not only time-consuming but also introduces subjec-
tive judgment. This paper effectively addresses these challenges through the application
of YOLOv5.



Appl. Sci. 2024, 14, 11636 14 of 16

We present a comprehensive workflow for identifying airwave noise in seismic data
based on YOLOv5m, encompassing model construction, loss function establishment,
dataset creation, model training, and prediction. Training results indicate that the model
achieves an accuracy and recall of approximately 85% on the test dataset, successfully
predicting airwave noise locations and confidence levels.

To further validate the model’s effectiveness, we applied the YOLOv5m model, trained
on two-dimensional data, to seismic records from the Ningqiang area of Shaanxi and three-
dimensional seismic records from the Xiushui area of Sichuan. The overall prediction
accuracy in both regions exceeded 90%, with accuracy and recall rates for airwave noise
reaching over 83% and 90%, respectively. Notably, the evaluation speed for single-shot
three-dimensional seismic data (over 8000 traces) was less than 2 s, demonstrating the
model’s excellent transferability, generalization ability, and efficiency, making it suitable
for detecting airwave noise in raw seismic data across diverse regions. Additionally, our
algorithm can differentiate between unilateral and bilateral airwave noise, facilitating a
comprehensive assessment of seismic data quality.

This study represents the first automated, real-time detection of airwave noise, signifi-
cantly enhancing operational efficiency. It also enables timely noise reduction measures,
improving data quality and, consequently, increasing the reliability and accuracy of seismic
data processing. This method can be extended to the recognition of various seismic signals
or noise signals, which will be part of our future work.
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