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Abstract: Exhaled air contains volatile molecular compounds of endogenous origin, being products
of current metabolic pathways. It can be used for medical express diagnostics through control of
these compounds in the patient’s breath using molecular absorption spectroscopy. The fundamental
problem in this field is that the composition of exhaled air or other gas mixtures of natural origin is
unknown, and content analysis of such spectra by conventional iterative methods is unpredictable.
Machine learning methods enable the establishment of latent dependencies in spectral data and the
conducting of their qualitative and quantitative analysis. This review is devoted to the most effective
machine learning methods of exhaled air sample absorption spectra qualitative and content analysis.
The focus is on interpretable machine learning methods, which are important for reliable medical
diagnosis. Also, the steps additional to the standard machine learning pipeline and important for
medical decision support are discussed.

Keywords: IR spectroscopy; THz spectroscopy; machine learning; gas mixture analysis; qualitative
analysis; quantitative analysis; exhaled air; medical diagnostics

1. Introduction

Exhaled air contains a plethora of volatile compounds of endogenous origin, being
products of various metabolic pathways. Examination of volatile molecular biomarkers
(VMBs) in the patient’s breath is a promising way of developing new noninvasive medical
screening tests [1,2]. This approach is a kind of “omics” test (genomics, metabolomics,
proteomics, etc.), often referred to as “breathomics” [3,4]. Ideally, in the future, exhaled
air analysis can become a noninvasive analog of laboratory blood tests with detection of
the level of specific VMBs, and medical decisions can be based on analysis of the profile of
such VMBs’ concentrations. This approach is associated with qualitative and quantitative
analysis of gas mixtures. Qualitative analysis means determining the presence or absence
of a specific molecular substance in a gas sample or making decisions about the health state
of a person from whom this sample was taken. Quantitative analysis includes a volatile
substance concentration evaluation.

The qualitative and quantitative analysis of gas mixtures can be implemented experi-
mentally by methods of gas chromatography, absorption spectroscopy, and chemical sensor
arrays (e-nose) [5]. Absorption spectroscopy is simple to use and has low-cost operation,
high sensitivity, and selectivity. In breathomics, IR and THz absorption spectroscopy are
usually used [6–9] because IR spectra represent information about vibrational absorption
bands of volatile molecules, while THz spectra describe rotational absorption bands of
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polar molecules [10,11]. From the experimental techniques point of view, two options can
be highlighted: terahertz (THz) time-domain spectroscopy (THz-TDS) and THz frequency-
domain spectroscopy (THz-FDS). These classes can be referred to as time-resolved THz
spectroscopy and continuous wave THz spectroscopy, respectively [12,13]. THz-TDS is
characterized by a high-speed data acquisition rate (with femtoseconds-long pulses) but
with a relatively low spectra resolution. On the other hand, THz-FDS, as a rule, can achieve
a high resolution (10−3 Hz and higher) but requires more time to measure a wide frequency
range spectrum [14,15]. To improve the sensitivity of THz quartz-based spectroscopy, THz
quartz-based spectroscopy devices were suggested [12,13,16]. This variant involves the THz
quartz tuning fork-based light-induced thermoelastic spectroscopy and quartz-enhanced
photoacoustic spectroscopy [8]. These techniques are characterized by an enormously
high resolution and sensitivity. But experimental implementation of quartz-enhanced
photoacoustic spectroscopy requires achieving several mechanical resonances: a very sharp
resonance in a quartz fork and, in addition, tube-shape acoustic resonators [17], which is a
nontrivial task due to the influence on them of a studied gas sample pressure, temperature,
and composition.

Typical absorption spectral data (spectra) are a plot of the dependence of a studied
sample’s absorption intensity on the wavelength of light. In the absence of noise and with
sufficient resolution of the spectroscopic device, each biomarker has a unique spectrum.
However, in reality, the spectra of different substances have overlapping regions with close
values that are hard to distinguish, which causes difficulties for IR and THz absorption
spectra analysis. From a mathematical point of view, a multicomponent gas mixture
absorption spectrum S(λ) can be represented as a linear combination of the absorption
spectra si(λ) of the individual molecular substances:

S(λ) = ∑i cisi(λ), (1)

where ci is the i-th substance concentration, and λ is wavelength. This presentation allows
conducting the qualitative (ci = 0, 1) and the quantitative (ci ∈ [0, cmax]) analysis. The
problem of finding unknown ci can be formulated in a matrix form. Let us introduce a
matrix S combining absorption spectra of m known substances measured at n wavelengths:

S =

s11 · · · s1m
...

. . .
...

sn1 · · · snm

.

Let c = (c 1, . . . , cm)
T—the vector of unknown concentrations, b = (b 1, . . . , bm)

T—the
measured spectrum of gas composition of known substances with unknown concentrations.
This implies that concentrations can be found by solving the system of linear algebraic
equations in the matrix form:

Sc = b. (2)

Iterative algorithms like Multivariate Curve Resolution (MCR) [18–20] and Univariate
Calibration [21] combined with least squares [22] and Levenberg–Marquardt methods of
extreme search [23–25] were the first methods applied for Equation (2) solution. All these
techniques are based on a priori knowledge of all si(λ) relevant to a studied gas sample. The
major problem of such approaches in content analysis of exhaled air or other gas mixtures

of natural origin spectra is that their composition is unknown. In this case, S =
∼
S + SL, and

c = ĉ + cL, where
∼
S—the matrix of individual spectra of components, which are definitely

present in the studied gas mixture; SL—the matrix of unaccounted (latent) components,
ĉ—vector of unknown concentrations of accounted components, and cL—the vector of
corresponding concentrations of unaccounted components. Here, ĉ ≡ (c 1, . . . , cm)

T , a
symbol with tilde means known data. The experimentally measured matrix b contains
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random additive part R associated with noise, measurement error, etc. Therefore, b =
∼
b + R.

Then Equation (2) takes form:

∼
Sĉ =

∼
b + R − SL(ĉ + cL)−

∼
ScL (3)

Opposite to Equation (2), the system (3) is ill-posed. There are two reasons for the
latter: the presence of random noise and unaccounted (latent) components.

Regarding random noise, according to the criterion proposed by J. Adamar, the prob-
lem is well-posed if three conditions are satisfied: the solution exists, is unique, and depends
continuously on the initial conditions. Otherwise, the problem is ill-posed. In the case of
Equation (3), a solution exists, but other conditions are not met; such a task requires using
special methods. The random noise R can be reduced by preliminary noise filtration. When
continuous dependence of the solution on the initial conditions is absent, regularization
methods and iterative procedures of ĉ calculation can be used [26].

The problem of the presence of unaccounted (latent) components is related to so-
called “grey analytical systems” for which their qualitative chemical composition is incom-
plete [27]. Regression methods like principal component analysis based on the transforma-
tion of spectral responses into orthogonal latent variables (principal components) allow
estimating the number of components in a studied spectrum of a gas mixture. It can be
completed by estimating the described variance in reduced feature space or using Kaiser’s
rule [28]. However, there is no strict rule for the described variance threshold selection;
Kaiser’s rule works well when there are several principal components with eigenvalues
being much higher than their average value and the remaining principal components have
lesser eigenvalues. Another drawback is that the achieved solution of Equation (1) in
principal component space of less dimensionality compared to the initial one is not unique.

The task of qualitative and quantitative analysis in molecular absorption spectroscopy
is closely related to the machine learning (ML) field [29]. The qualitative and quantitative
absorption spectra analysis based on ML corresponds to classification and regression
problems [30]. The difference is that the ML algorithm predicts the value of a logical
(presence/absence of specific molecular components in the mixture) [29,31,32] or a real
variable (like ci) [33,34]. The ML algorithm training step is obligatory for both classification
and regression tasks. Validation is an estimation of the created data model’s efficiency on
data, which was not used in the training step.

The useful but often optional step in the ML pipeline is informative feature selection.
In the context of absorption spectra analysis, this step means finding more narrow spectral
ranges (spectral features) in the experimental data, which keep being relevant to a studied
sample. It is equivalent to removing abundant data on some frequencies, thus lowering the
dimensionality of the spectral feature space. Here, a spectral feature is any spectral parame-
ter directly or indirectly associated with the presence of a specific molecular component
and its concentration, i.e., spectrum intensity value on a definite frequency. The feature
selection/extraction depends on a concrete experimental dataset. There are no universal
recipes for conducting this step. As a rule, the properties of ML algorithms used for data
model creation are known well, and this step comes down to a choice of suitable method(s).

A typical ML pipeline is shown in Figure 1, where two workable solutions for feature
extraction are presented. A pattern recognition approach is a mathematical technique
based on the analysis of a set of features, which are not related directly to concentrations of
specific VMBs. A chemical analytics-based approach implies the usage of spectroscopic
information in the form of computed concentration profiles as the basis of a feature set for
further ML analysis.

The key characteristic of classification/regression ML data models is the possibility
or impossibility of direct interpretability [35]. The latter corresponds to a “black box”
ML method [36–39]. Interpretability can be associated with the following properties of
an ML algorithm: (a) explicit way of informative features extraction, (b) explicit rules of
decision rules, and (c) explicit dependencies between input data parameters and outputs.
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Interpretable ML methods are preferable in relation to the “black box” ones, especially in
making medical decisions using ML.
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There are novel and actual review articles for the last four years on THz and infrared
(IR) gas phase spectra analysis using ML methods, such as [36,40–44]. With respect to these
articles, the presented review includes both THz and IR spectroscopy methods combined
with ML methods applications in VMBs spectral data processing and analysis.

The main purpose of the review is to analyze the most suitable approaches in quan-
titative and qualitative analysis of THz and IR spectra of exhaled air samples using ML
methods. At the stage of classification, the focus is on interpretable ML methods. To make a
correct medical decision using indirect characteristics of a person’s condition, it is very im-
portant to have the possibility of clearly understanding reasons, for instance, of classifying
a patient as healthy or unhealthy depending on the exhaled air spectra composition. Due
to this, not only points for improving a predictive model can be found, but target molecules
and their combinations for patients with a certain disease can be identified, or steps for a
making decisions process that leads to wrong predictions can be highlighted and fixed [45].
This is a reason to pay less attention in this review to artificial neural networks (ANNs),
which lack interpretability, though this field is currently under development [45–47]. More-
over, the study of biological samples involves the complexity of sampling, so ANNs are
limited to training datasets of hundreds of examples at best. Such cases require the use
of extra sampling techniques like bootstrapping [48]. No doubt, further development of
ANNs will provide a powerful tool for such tasks.

For the review, the Google Scholar citation database and the following keywords were
used: IR spectroscopy, THz spectroscopy, time-domain spectroscopy, ML methods, gas
mixture analysis, qualitative analysis, and quantitative analysis. The period was 2019–2024,
and the initial search provided 1080 results. After removing irrelevant and repetitive results,
60 articles remained for analysis.

2. Peculiarities of Implemented ML Pipelines for IR and THz Absorption
Spectra Analysis

The main parameters of the IR spectroscopy experimental technique used in breath-
omics applications and data description, including analyzed volatile molecules, are shown in
Table S1 in Supplementary Materials. The ML methods used in the papers are described in
Table S1, and the results of their application are shown in Table S2 in Supplementary Materials.
The main parameters of the THz spectroscopy experimental technique used in breathomics
applications and data description, including analyzed volatile molecules, are shown in
Table S3 in Supplementary Materials. The ML methods used for THz spectra analysis and
the results of their application are shown in Table S4 in Supplementary Materials.
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2.1. Data Pre-Processing

Usually, this step includes noise filtration, normalization, baseline correction, and
optimizing the spectral range [49–53]. In general, higher spectral resolution provides better
identification of molecular substances in a studied sample. A quite nonstandard absorption
spectroscopy step in the ML pipeline associated with spectral resolution enhancement was
implemented in [54,55]. In our work [55], the multilayer perceptron artificial network and
convolution network models were designed and applied for spectral resolution, improving
noisy IR absorption spectra of gas mixtures of eight molecules (C2H2, CS, CO, HI, HCl,
H2O, NH3, O3). The spectral data were generated using the 2020 HITRAN database [56,57].
As a result, spectral resolution was improved from 5 cm−1 to 1 cm−1. The example of
decomposition of this gas mixture with concentrations (0.25; 0.00; 0.00; 4.00; 0.00; 0.00;
0.15; 0.20) · 105 ppm (the order of concentrations corresponds to the order of molecules
presented above) is presented in Figure 2. Here, decomposition was carried out for the high-
resolution spectrum, noisy low-resolution spectrum, and the last spectrum with restored
spectral resolution.
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Figure 2. The model spectra decomposition using canonical correlation analysis. Comparison of
method’s accuracy for original model spectrum, original spectrum with noise and artificially reduced
resolution, and the latter, after denoising and high-resolution reconstruction procedures [55]. (Reused
under license # 5882601337718).

2.2. Feature Selection and Extraction

According to Table S2, S4 PCA, t-SNE, LDA, and ICA are the most frequently used
methods of informative feature extraction. The presented list of methods is supported
by other reviews in the field of gas phase THz and IR spectroscopy [40,42–44]. Their
characterization is presented in Table 1. It should be pointed out that LDA and ICA have
quite strong requirements regarding the statistical properties of analyzed data. Artificial
neural networks hold a special place because they, as a rule, simultaneously implement
feature extraction and data modeling.

Feature selection is an extremely important step from a practical medicine point
of view because it makes the data model more interpretable, but it is used quite rarely.
The reason is that there are no formal rules for the informative feature selection, with
the exception of an individual feature importance analysis. The latter can be conducted
through a model-dependent technique at the stage of data model efficiency estimation
by removing an individual feature from the data vector and evaluating the reduced data
model efficiency variation. The negligibility of this variation means that this feature is
not important. Such a procedure combined with a suitable feature extraction method can
increase the efficiency of the latter. In the data-independent technique, latent relations
among features are established, for example, by feature correlation analysis. A partial least
squares–discriminant analysis (PLS-DA) [65] algorithm can be considered as an alternative
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to t-SNE because it can operate with high-dimensional multi-collinear data and reapplied
to unseen spectra.

Table 1. Feature selection and extraction methods.

Method Idea Advantages Disadvantages Ref.

PCA

Data are transformed into a
new system of coordinates
with the first axis (the first
principal component) oriented
along a direction of the data
maximal dispersion. If
necessary, the second and
other axes (the second
principal component, etc.), are
oriented perpendicularly to the
previous axis.

PCA reduces effectively the
data dimension.
The most important original
features can be
easily established.

PCA is not suitable for the case
of data spatial distribution
similar to a nonlinear curve
(nonlinear manifold).
This problem can be overcome
using kernel PCA.
There are no universal and
effective rules for quantity of
principal components choice.

[8,58–61]

LDA

Data are transformed into a
new system of coordinates of
less dimension being linear
combinations of original
features that should provide
maximal between-class and
minimal within-class variances
of the data. It allows reducing
data dimensionality.

This method is justified
statistically and addresses
effectively an original data
multicollinearity problem.

LDA uses strong assumption
of multivariate normal
distribution of the data, equal
covariance matrices for each
class, linear separability of the
data. This method is not
suitable for unlabeled data.

[62]

t-SNE

This method simulates data
points in high dimension space
by data points in a low
dimension space (usually 2D,
3D spaces) in a way that keeps
mutual spatial positions of
data points.

t-SNE preserves the initial data
structure.
When the output data
presentation corresponds to 2D
or 3D space, it allows one to
see explicitly the spatial
structure of the data.

t-SNE has many tunable
parameters that
affect performance.

[63]

Independent
Component

Analysis
(ICA)

Effectively uses assumption of
statistical independence of the
spectral characteristics of the
compounds and requires at
least one of them
was Gaussian.

ICA is effective in removing
noise component in
a spectrum.

ICA needs to meet very strict
conditions for its application. [64]

2.3. Classification

In the case of qualitative IR gas spectra analysis, the authors of the studied articles
report successful ML methods application for a target component presence or gas mixture
constituent identification. For instance, there is research devoted to mixture composition es-
timation relying on 15 functional molecular groups spectra [33]. According to these spectra,
it is possible to define whether a molecule belongs to one of the studied functional groups.

It can be highlighted that in the set of articles containing ML methods, the comparative
analysis as well as data model architecture variations investigation in order to determine an
optimal resulting data classification model is not large [59–61]. The characterization of the
most often used ML methods presented in Tables S3 and S5 regarding the interpretability of
their results is presented in Table 2. The main outline derived from Table 2 is the fact that,
generally, only linear and simple models are interpretable. The complex models require the
external tools mentioned above for their prediction results explanation.
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Table 2. Classification methods.

Method Idea Advantages Disadvantages Interpretability Ref.

ELM-AE

ELM-AE is a variant of
single-hidden-layer autoencoder.
The ELM-AE is based on
construction of the set of three
input data representations: (1)
decoding–the input feature space
is transformed to the
low-dimensional feature space; (2)
encoding–this low-dimensional
feature space is equivalently
mapped to the high-dimensional
feature space;
(3) autoencoding–the input
features are equivalently mapped
from the original feature space to
the equal-dimensional
feature space.

Very fast training.

Finding optimal weights
and biases for the
hidden layer is a
nontrivial problem.

“Black box”
model. [66,67]

ANN

Consists of simple computational
units (neurons) connected by
tunable weights and arranged in
layers to learn patterns from
input data and provide
output responses.

ANNs can
distinguish classes,
which are
characterized by
slightly different
shapes of spectra.

ANNs are prone to
overfitting. It is hard to
find the optimal
configuration of layers
and weights. ANNs
require a lot of
annotated data for
training.

“Black box”
model. [37,68]

CNN

Same as ANN, but 2D
convolution masks parameters
are optimized instead of weights
for neurons outputs.

Excellent
performance in
image analysis.

Same as for ANN. “Black box”
model. [58]

SVM

SVM is based on the finding the
maximum margin hyperplane,
which separates two classes. The
support vectors are data points,
which are placed on boundaries
of this hyperplane.
In kernel SVM, data are
preliminarily projected into
higher dimensional space, where
classes are linearly separable.

Good
generalization
ability.

It is hard to separate
slightly different spectra.
SVM fails when the
number of frequencies is
much larger the volume
of the dataset.

Linear model
can be
interpreted.
“Black box”
model for
non-linear
kernels.

[69–71]

RF

RF is a combination of decision
tree classifiers trained
individually. Their joint use
increases accuracy
of classification.
Initial set of spectra can be
divided into two subsets, based
on computed threshold value for
the frequency. A sequence of such
splits provides separation of
initial data into classes.

The ability to
process data with
many features,
robustness to noise
and overfitting. RF
can handle
missing data.

Many hyperparameters
are necessary to
optimize. The training
and prediction times can
be significant.

RF constructs
“white model”,
allowing to
estimate the
importance of
each feature.

[72]
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Table 2. Cont.

Method Idea Advantages Disadvantages Interpretability Ref.

GB

A sequence of decision tree
models, where each successor is
focused on correcting prediction
errors of predecessor.

High model
performance,
fast learning.

Problems with
imbalanced datasets.
High number of
hyperparameters to tune
up. Regularization does
not always
prevent overfitting.

GB except for
some versions
can
be interpreted.

[73]

K-NN

Formally, the basis of the method
is the compactness hypothesis: if
the metric of the distance in a
feature space is introduced
successfully, then neighbor
samples are much more often in
the same class than in
different ones.

Simple model, can
be used with
different
similarity metrics.

The number of nearest
neighbors (k) is chosen
beforehand and can
affect the accuracy of
classification. Low
performance,
dependence on the
similarity metrics.

K-NN model
can be
interpreted.

[74–76]

Soft inde-
pendent

modeling
by class
analogy

(SIMCA)

Based on PCA decomposition of
the spectral data. Only data with
high explained variance
value remained.

Can be used with
different similarity
metrics, robust
to noise.

Same as for PCA. Like PCA can
be interpreted. [77,78]

2.4. Regression

A summary of regression methods applications in gas sample substances concentration
estimation is given in Table 3 [61,79–83]. These methods are mostly linear and do not
always show good model performance on complex multivariate data, which include IR
and THz spectra. A viable option is multivariate methods with regularization, for example,
LASSO (least absolute shrinkage and selection operator), which also provides a selection
of variables to remove redundant and noisy data by setting regression coefficients in the
model to zero [84,85].

Table 3. Regression methods.

Method Idea Advantages Disadvantages References

LRA

Output variable approximated as
linear combination of input ones
(predictors). LRA is an extension of
regression analysis for the case of
categorical outcome variables.

Fast learning,
interpretable model.

Suitable for linear data only.
Sensitive to outliers, noise and
prone to overfitting.

[79]

PCR
This method uses PCA to transform
data into PC space and after that a
linear regression is constructed.

Model can be interpreted
by loadings matrix
analysis. The only one
tunable parameter.

It is hard to choose the
appropriate value of PCs. The
limitations are the same as
for PCA.

[61]

PLSR
This method projects predictors and
output variables into a new latent
space and after that uses LRA.

Simple, interpretable,
fast learning.

There is a risk of
misinterpretation. Sensitive to
the scaling of predictors.

[80]

SVR

Aims to find a hyperplane, which
fits the data points while
minimizing margin violations,
capturing patterns and relationships
in the data by passing through as
many data points as possible within
a specified margin.

Good generalization
ability. Linear model can
be interpreted.

Separates slightly differing
spectra. Provides fair results
when number of initial variables
is much greater than number
of spectra.

[81–83]
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The problem of unaccounted components can be solved by methods, which allow
to analyze only a target component independently on rest. An example is the Reducing
Spectrum Complexity (RSC) method developed by us [8]. RSC uses the fact that a spectrum
shape complexity reduces when the target component contribution is removed from a
gas mixture absorption spectrum entirely. The same property has Multivariate Curve
Resolution with the Addition Method (MCRAD) [86]. MCRAD is based on artificially
extending the experimental dataset by numerically adding the target component spectrum
with definite concentrations to the experimental spectrum of this component and other
unknown components in a mixture.

3. The Optimal ML Pipeline for Classification/Regression Data Model Creation

According to the analysis detailed in the previous section, the optimal ML pipeline
for the creation of a classification/regression data model based on IR and THz exhaled air
samples absorption spectra can combine (Figure 3):

1. t-SNE for the informative features visual analysis [8,37,58,63,87]. Thus, t-SNE is a
proven, reliable tool for exploratory analysis because it preserves the relative distance
between samples after projection.

2. PCA or/and PLS for the informative features extraction [8,58,59,61,87,88]. The versa-
tility of the PCA application (including loadings analysis and extra restrictions like
non-negativeness of spectra), in addition to the strong mathematical and physical
meaning of the results, allows us to conclude that PCA is extremely effective in quali-
tative and quantitative spectroscopic studies. PLS can be a good replacement for PCA
in some cases (and it can produce very similar results), but it is difficult to determine
in which case which method is preferable to use.

3. Regression methods for a gas sample substances concentration estimation do not
require a priori knowledge of the gas sample composition. This task cannot be solved
by direct iterative methods like HAMAND, based on the iteration procedure of a
system of linear equations and the additions method [89]. Thus, only the application
of an ML-based regression method can give a positive result.

4. Linear SVM, k-NN, RF, or GB are at the stage of creating a prediction data model
as methods that allow interpreting the results of classification. These methods are
simple, known for good generalization ability even on small training datasets, and
interpretable. Some recent ongoing research allows the inclusion of CNN in this list
with activation feature maps for interpretability [34].
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4. Conclusions and Future Steps

The pattern recognition approach requires the extraction of independent informative
features, which must provide the best sensitivity and selectivity of a created prediction
data model to make accurate medical decisions. Implementation of a pattern recognition
approach in breathomics using ML methods does not require solving Equation (3) directly.
Instead, an ML algorithm is trained to distinguish spectral patterns of various classes.
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In the case of IR and THz absorption spectroscopy, these patterns are absorption spectra
profiles of exhaled air samples.

Convolutional neural networks are a golden standard for pattern recognition [34,62].
The advantage of such an approach is that it does not rely on the pure substances’ spectra
linear superposition model, which is why, in the most interesting experimental spectra
processing case, the intermolecular interactions of nonlinear elements of different molecule
types are considered. Some recent works show outstanding results in joint analysis using
CNN and specially designed interpretability methods like Grad-CAM [34]. Grad-CAM can
provide results that are similar to Local Interpretable Model-Agnostic Explanations (LIME)
and the Shapley Additive explanations (SHAP) technique in a contrastive metric sense [90]
but underperforms when additional layers are placed between the last convolution and the
classification layer. Other shortcomings are the drop in localization efficiency with multiple
object instances and the poor ability to capture the whole object. These limitations can be
overcome by the application of Grad-CAM++ and Integrated Gradients [91,92]. Even so, a
full understanding of the extremely complicated deep neural network decision-making
process is far from being perfect [93,94].

Often, the application of supervised ML methods requires large-volume training
sets, especially deep neural networks. A way to obtain them without using expensive
spectrometers is to generate model spectra using spectral databases (NIST, HITRAN,
GEISHA, etc.). However, using synthetic spectra for training and validation data sets leads
to data model prediction accuracy decreasing when it is tested on new experimental data.
Hybrid datasets combine both advantages of the means of data collection: the simplicity
of obtaining synthetic spectra and considering the set of physical effects. Therefore, ML
methods offer a means of interaction between synthetic and experimental data [61].

The chemical-based approach differs only by using the VMB concentrations profile as
an informative features vector (see Figure 1). The step is related to quantitative analysis.
The chemical-based approach is based on Equation (3)’s solution [95]. In the case of
using conventional iterative methods (like MCR), the objective function is minimized by
coefficients ci prediction variation (by movement along an objective function surface). The
exhaled air sample always belongs to “grey analytical systems” [27]. This task can be
solved by using supervised ML methods like DNNs [95] and methods like HAMAND
and RSC [8,89]. With respect to supervised ML methods, a similar process of optimal
ci values estimation takes place, but with the help of similarity metric(s) relative to the
spectra contained in a training dataset. That is, the supervised ML method compares a new
spectrum with those obtained earlier and looks for the most similar to the one that was
submitted as input. All feasible solutions of Equation (3) (sets of ci) form a surface with
many local extrema. Finding a universal optimal solution is a hard task, and ML methods
are specially designed for that, outperforming conventional methods. A comparison of
conventional and ML techniques is presented in Figure 4. Therefore, only a chemical-based
approach provides interpretability of medical decisions due to the possibility of discovering
VMBs of a pathological process.

From the point of view of a typical ML pipeline (see Figure 1), the last steps are the
creation of a prediction data model for new data classification and its validation (mostly
cross-validation). The step of creating the data model for classification using supervised
ML methods is based on pattern recognition and relates to qualitative analysis.

The interpretability of the data model for classification is based on the possibility
of analyzing spatial distribution data points in a feature space. When initial spectral
data were transformed into new independent variables, for example, using PCA, the
biochemical meaning of such new variables was not obvious. It means that for approving
a data model designed for a medical decision support system, additional ML pipeline
steps could be required. These steps consist of establishing the relationships between
informative features and key molecular biomarkers, which are associated with differences
in informative features of the target group and the control group. In breathomics studies,
such molecular biomarkers are the composition of volatile molecules contained in the
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breath, reflecting the shift in metabolism caused by pathology. Therefore, the step of
qualitative and quantitative analysis of exhaled air sample composition is obligatory. In
the case of the pattern recognition approach, this step should be implemented after cross-
validation of the created data model. In the case of a chemical-based approach, a profile of
the most specific volatile molecular biomarker concentrations should be established before
the data model creation.
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spectra analysis task.

To our surprise, only a few works related to medical diagnostics using spectral analysis
of exhaled air samples using IR and THz absorption spectroscopy combined with ML
were found [8,58–60]. The only implementation of pattern recognition and chemical-based
approaches on the same date set regarding this task was conducted by us [8]. Two prediction
data models were created for acute myocardial infarction diagnosis through exhaled air
spectral analysis with IR laser photo-acoustic spectroscopy and ML. The predictive model
based on the exhaled air absorption spectrum provided 0.86 of the mean values of both the
sensitivity and specificity when linear SVM combined with PCA was used. The created
predictive model based on using six VMBs (C5H12, N2O, NO2, C2H4, CO, and CO2)
provided 0.82 and 0.93 of the mean values of the sensitivity and specificity, respectively,
when linear SVM was used.

Approving this profile of VMB concentrations requires recovery of the most significant
metabolic pathways of pathological processes underlying a target disease. Obviously, such
knowledge is very limited at the current stage. It means that bringing breathomics into
clinical practices is associated with establishing the key volatile molecular biomarkers in
the breath and discovering their metabolic origin. Perhaps the crucial step in these studies
can be aimed at finding relationships between molecular biomarkers in breath and in the
blood. It means that a more suitable ML pipeline should be transformed into something
like the one shown in Figure 5.
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It should be noted that all these additional steps require more complex experimental
equipment, time, and expense (see Figure 6).
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The bottom layer of the pyramid is common processing resulting in predictive model
construction without understanding biochemical mechanisms, which are hidden behind.
The second layer (orange) necessary for the pattern recognition approach is to extract
concentration profiles for specific metabolites for further analysis. The third level (yellow)
confirms the relationship between the presence of metabolites in exhaled air and blood and
allows screening of metabolites not related to the pathological processes under study. The
top-level (green) is associated with establishing a link between the biochemical processes
occurring in the body and the detected metabolites. From the bottom to the top of the
pyramid, the complexity of the tasks increases, and the number of relevant publications
decreases accordingly. The more complicated the step, the less work that will have been
completed. In any case, these steps should be completed to bring breathomics methods
into routine medical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app142411521/s1, Table S1: IR spectra analysis: input data,
materials, and experimental conditions description; Table S2: exhaled air samples IR absorption
spectra analysis: ML pipeline description; Table S3: THz spectra analysis: input data, materials, and
experimental conditions description; Table S4: THz spectra analysis: ML pipeline description [96].
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and machine learning methods review. D.V. THz, IR spectroscopy, and machine learning methods
review, draft preparation. A.S. conceptualization, introduction, discussion. V.Z. THz, IR spectroscopy,
and machine learning methods review. All authors have read and agreed to the published version of
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