Radiological Reporting Systems in Multiple Sclerosis
<p>Geographical distribution of participants, with numbers divided by Italian regions based on their workplace.</p> "> Figure 2
<p>Pie charts showing (<b>A</b>) the years of experience of the participants, defined as the number of years from the Board Certification in Neurology, and (<b>B</b>) the average number of patients with suspected/confirmed Multiple Sclerosis usually seen in a month.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- general information about the respondents’ demographics and level of expertise;
- (2)
- participants’ opinion about the clinical relevance, in terms of therapeutic decisions and prognostic evaluation in real-life practice, of qualitative/semiquantitative/quantitative MRI-derived biomarkers (global T2w/FLAIR lesion load, new/enlarging T2w/FLAIR lesions, T1w hypointense lesions, post-gadolinium enhancing lesions and cerebral atrophy);
- (3)
- participants’ opinion about the impact of different reporting systems in the clinical practice, in terms of utility, clarity, and readability;
- (4)
- participants’ opinion about the inclusion, in a structured report, of quantitative data/automatically generated report with graphs and/or annotated images.
3. Results
3.1. Respondents’ Demographics and Level of Expertise
3.2. Impact of MRI-Derived Biomarkers on Therapeutic Decisions and Prognostic Evaluation
Global T2w/FLAIR Lesion Load | New or Enlarging T2w/FLAIR Lesions | T1w Hypointensities (“Black Holes”) | Enhancing Lesions | |||||
---|---|---|---|---|---|---|---|---|
Answers | Number of Answers (Percentages) | Median Value (Range) | Number of Answers (Percentages) | Median Value (Range) | Number of Answers (Percentages) | Median Value (Range) | Number of Answers (Percentages) | Median Value (Range) |
How would you prefer to find this information in a radiological report? | ||||||||
Purely descriptive | 10 (16.1%) | n.a. | 8 (12.9%) | n.a. | 15 (24.2%) | n.a. | 8 (12.9%) | n.a. |
Lesion range | 22 (35.5%) | 17 (27.4%) | 25 (40.3%) | n.a. | ||||
Lesion number | 18 (29.0%) | 37 (59.7%) | 14 (22.6%) | 51 (82.3%) | ||||
Lesion volume in mL | 11 (17.7%) | 0 (0.0%) | 7 (11.3%) | 3 (4.8%) | ||||
Other | 1 (1.6%) | 0 (0.0%) | 0 (0.0%) | n.a. | ||||
Does this information influence your therapeutic decisions? | ||||||||
Yes | 48 (77.4%) | n.a. | 62 (100.0%) | n.a. | 38 (61.3%) | n.a. | 59 (95.2%) | n.a. |
Yes, but only in case of new diagnoses | 13 (21.0%) | n.a. | n.a. | n.a. | ||||
No | 1 (1.6%) | 0 (0.0%) | 24 (38.7%) | 3 (4.8%) | ||||
If yes: Please rate how much each of these aspects of therapeutic management is affected | ||||||||
Starting a therapy | 58 (95.1%) | 4 (1–5) | 57 (91.9%) | 4 (2–5) | 33 (53.2%) | 4 (1–5) | 55 (88.7%) | 4 (2–5) |
Choosing the type of therapy | 60 (98.4%) | 4 (2–5) | 59 (95.2%) | 4 (3–5) | 35 (56.3%) | 4 (2–5) | 55 (88.7%) | 4 (2–5) |
Modifying the current therapy | 59 (96.7%) | 4 (1–5) | 59 (95.2%) | 4 (3–5) | 33 (53.2%) | 4 (1–5) | 56 (90.3%) | 4 (3–5) |
Which of the following ways of presenting this information would be more useful to you? | ||||||||
Qualitative evaluation | 7 (11.5%) | n.a. | 9 (14.5%) | n.a. | 8 (21.1%) | n.a. | 6 (10.3%) | n.a. |
Semiquantitative evaluation (lesion range) | 16 (26.2%) | 6 (9.7%) | 9 (23.7%) | n.a. | ||||
Quantitative evaluation (lesion number) | 25 (41.0%) | 33 (53.2%) | 13 (34.2%) | 42 (72.4%) | ||||
Quantitative evaluation (lesion volume) | 11 (18.0%) | 14 (22.6%) | 8 (21.1%) | 10 (17.2%) | ||||
Indifferent | 2 (3.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||||
Does this information influence your prognostic evaluation? | ||||||||
Yes | 60 (96.8%) | n.a. | 61 (98.4%) | n.a. | 53 (85.5%) | n.a. | 48 (77.4%) | n.a. |
No | 2 (3.2%) | 1 (1.6%) | 9 (14.5%) | 14 (22.6%) | ||||
If yes: Which of the following ways of presenting information would be more useful to you? | ||||||||
Qualitative evaluation | 6 (10.0%) | n.a. | 8 (13.1%) | n.a. | 12 (22.6%) | n.a. | 5 (10.6%) | n.a. |
Semiquantitative evaluation (lesion range) | 16 (26.7%) | 7 (11.5%) | 14 (26.4%) | n.a. | ||||
Quantitative evaluation (lesion number) | 21 (35.0%) | 30 (49.2%) | 17 (31.1%) | 33 (70.2%) | ||||
Quantitative evaluation (lesion volume) | 16 (26.7%) | 14 (23.0%) | 10 (18.9%) | 9 (19.1%) | ||||
Indifferent | 1 (1.7%) | 2 (3.3%) | 0 (0.0%) | 0 (0.0%) | ||||
How much would you like information about T2w/FLAIR lesion load to be separated by “macro-areas”? | ||||||||
Juxtacortical | 59 (95.2%) | 4 (1–5) | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Periventricular | 57 (91.9%) | 4 (1–5) | ||||||
Infratentorial | 59 (95.2%) | 4 (3–5) | ||||||
Spinal | 59 (95.2%) | 5 (3–5) |
Answers | Number of Answers (Percentages) | Median Value (Range) |
---|---|---|
How would you prefer to find this information in a radiological report? | ||
Qualitative evaluation | 8 (12.9%) | n.a. |
Evaluation with semi-quantitative scale | 8 (12.9%) | |
Evaluation with quantitative software (ml of volume) | 13 (21.0%) | |
Evaluation with quantitative software (normative percentile) | 33 (53.2%) | |
Other (please specify) | 0 (0.0%) | |
Does information about cerebral atrophy influence your decisions about therapeutic management? | ||
Yes | 47 (75.8%) | n.a. |
No | 15 (24.2%) | |
If yes: Please rate how much each of these aspects of therapeutic management is affected: | ||
Starting a therapy | 40 (64.5%) | 4 (1–5) |
Choosing the type of therapy | 41 (66.2%) | 4 (2–5) |
Modifying the current therapy | 41 (66.2%) | 4 (2–5) |
Which of the following ways of presenting this information would be more useful to you? | ||
Qualitative evaluation | 6 (12.8%) | |
Semiquantitative evaluation (semi-quantitative scale) | 8 (17.0%) | n.a. |
Quantitative evaluation (quantitative software) | 33 (70.2%) | |
Indifferent | 0 (0.0%) | |
Does information about cerebral atrophy influence your prognostic evaluation? | ||
Yes | 56 (90.3%) | n.a. |
No | 6 (9.7%) | |
If yes: Which of the following ways of presenting information would be more useful to you? | ||
Qualitative evaluation | 5 (8.9%) | n.a. |
Semiquantitative evaluation (semi-quantitative scale) | 12 (21.4%) | |
Quantitative evaluation (quantitative software) | 38 (67.9%) | |
Indifferent | 1 (1.8%) | |
Which information would you prefer to find in a radiological report? (Select one or more) | ||
Global atrophy | 22 (35.5%) | n.a. |
Atrophy of “macro-areas” of the brain | 44 (71.0%) |
3.3. Reporting Systems
Answers | Number of Answers (Percentages) |
---|---|
Conclusions in the report | |
In your clinical practice, do you usually find a section with “conclusions” at the end of MRI reports? | |
Yes | 45 (72.6%) |
No | 17 (27.4%) |
If this section is present: | |
It clarifies the report | 22 (48.9%) |
It reduces my reading time | 17 (37.8%) |
It adds helpful information in patients’ management | 16 (35.6%) |
It is not helpful | 1 (2.2%) |
Other (please specify) | 0 (0.0%) |
Practical implications and clinical impact of descriptive/structured reports | |
Average time spent to read a descriptive report: | |
<2 min | 25 (40.3%) |
2–5 min | 30 (48.4%) |
5–10 min | 7 (11.3%) |
>10 min | 0 (0.0%) |
I do not usually see these reports | 0 (0.0%) |
Average time spent to read a structured report: | |
<2 min | 25 (40.3%) |
2–5 min | 27 (43.5%) |
5–10 min | 7 (11.3%) |
>10 min | 0 (0.0%) |
I do not usually see these reports | 3 (4.8%) |
After reading a descriptive report, do you usually review MR images before taking decisions about the management of MS patients? | |
Yes, always | 47 (75.8%) |
Yes, often | 14 (22.6%) |
Yes, rarely | 1 (1.6%) |
No, I do not | 0 (0.0%) |
If you answered yes, please specify: | |
I review MR images only if the report lacks necessary information | 5 (8.1%) |
I always review MR images, regardless of the quality/type of report | 57 (91.9%) |
Other (please specify) | 0 (0.0%) |
After reading structured reports, do you usually review MR images before taking decisions about the management of MS patients? | |
Yes, always | 40 (64.5%) |
Yes, often | 14 (22.6%) |
Yes, but rarely | 7 (11.3%) |
No | 1 (1.6%) |
If you answered yes, please specify: | |
I review MR images only if the report lacks necessary information | 8 (13.1%) |
I always review MR images, regardless of the quality/type of report | 53 (86.9%) |
Other (please specify) | 0 (0.0%) |
When do you find the review of MR images more useful? | |
After reading a descriptive report | 53 (86.9%) |
After reading a structured report | 8 (13.1%) |
In your opinion, a structured report is more informative than a descriptive one in relation to which parameters? | |
Global T2w/FLAIR lesion load | 30 (53.6%) |
New or enlarging T2w/FLAIR lesions | 41 (73.2%) |
T1w hypointensities (“black holes”) | 21 (37.5%) |
Infratentorial lesions | 26 (46.4%) |
Cerebral atrophy | 29 (51.8%) |
Enhancing lesions | 23 (41.1%) |
Conclusions | 13 (23.2%) |
None of the above | 6 (9.7%) |
Is there any information that you do not usually see in a report but that you think it would be useful for your clinical management? | |
Yes | 30 (48.4%) |
No | 32 (51.6%) |
The average quality of the descriptive reports you usually see in your clinical practice is: | |
Excellent | 4 (7.5%) |
Good | 10 (18.9%) |
Average | 22 (41.5%) |
Poor | 14 (26.4%) |
Insufficient | 3 (5.7%) |
I do not usually see these reports | 1 (1.6%) |
The average quality of the structured reports you usually see in your clinical practice is: | |
Excellent | 3 (17.6%) |
Good | 4 (23.5%) |
Average | 9 (52.9%) |
Poor | 1 (5.9%) |
Insufficient | 0 (0.0%) |
I do not usually see these reports | 42 (67.7%) |
Which type of report is easier to understand? | |
Descriptive report | 15 (24.2%) |
Structured report | 47 (75.8%) |
Which type of report is more informative for the clinical management of the patient? | |
Descriptive report | 7 (11.3%) |
Structured report | 55 (88.7%) |
Which of these findings affect your decisions regarding the patient management? | |
Global T2w/FLAIR lesion load | 23 (37.1%) |
New or enlarging T2w/FLAIR lesions | 53 (85.5%) |
T1w hypointensities (“black holes”) | 12 (19.4%) |
Infratentorial lesions | 22 (35.5%) |
Cerebral atrophy | 19 (30.6%) |
Enhancing lesions | 41 (66.1%) |
Conclusions | 2 (3.2%) |
3.4. The Role of Software for Medical Imaging Quantification
Answers | Number of Answers (Percentages) | Median Value (Range) |
---|---|---|
Did you know that quantitative volumetric reporting tools are available for MS? | ||
Yes | 49 (79.0%) | n.a. |
No | 13 (21.0%) | |
Do you think that finding this type of information in a structured report could be helpful in the management of MS patients? | ||
Yes | 61 (98.4%) | n.a. |
No | 1 (1.6%) | |
If yes:Which aspect would be more affected? | ||
Prognostic evaluation | 52 (83.9%) | n.a. |
Choice of therapy | 0 (0.0%) | |
Start/switch of therapy | 46 (74.2%) | |
Start/switch of symptomatic drug therapy | 12 (19.4%) | |
Start/switch of rehabilitation therapy | 10 (16.1%) | |
Other (follow-up) | 1 (1.6%) | |
These tools provide different quantitative information. Which of the following do you think could be most helpful in the clinical management of MS patients, compared with a structured report? | ||
T2w/FLAIR lesion load | 33 (53.2%) | n.a. |
T1w hypointensities (“black holes”) volume | 29 (46.8%) | |
Enhancing lesions volume | 14 (22.6%) | |
Whole brain volume and normative percentile | 43 (69.4%) | |
Gray matter volume and normative percentile | 34 (54.8%) | |
White matter volume and normative percentile | 19 (30.6%) | |
Cortical gray matter volume (by cerebral lobe) | 16 (25.8%) | |
Regional T2w/FLAIR lesion load volume | 25 (40.3%) | |
Do you think that finding graphs that summarize this quantitative information in a report could be helpful in your clinical practice? | ||
Yes | 59 (95.2%) | 4 (2–5) |
No | 3 (4.8%) | |
Do you think that finding annotated images that summarize this quantitative information in a report could be helpful in your clinical practice with MS patients? | ||
Yes | 54 (87.1%) | 4 (2–5) |
No | 8 (12.9%) | |
Do you think that having some or all this information might have an impact on your clinical management of MS patients? | ||
Yes, I think that it would help me manage MS patients better | 57 (91.9%) | n.a. |
No, I think that these tools have only research applications | 5 (8.1%) | |
Which of the following do you perceive as more reliable? | ||
A radiologist writing a report without quantitative tools | 0 (0.0%) | n.a. |
A radiologist writing a report containing only information obtained by a quantitative tool | 4 (6.5%) | |
A radiologist writing a report containing some information obtained by a quantitative tool, integrated by her/his experience | 58 (93.5%) | |
Do you think that the integration of quantitative information processed by a software in radiological reports could reduce variability in reporting and/or can help standardize descriptive reports as well? | ||
Yes | 59 (95.2%) | 4 (3–5) |
No | 3 (4.8%) |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vågberg, M.; Axelsson, M.; Birgander, R.; Burman, J.; Cananau, C.; Forslin, Y.; Granberg, T.; Gunnarsson, M.; von Heijne, A.; Jönsson, L.; et al. Guidelines for the use of magnetic resonance imaging in diagnosing and monitoring the treatment of multiple sclerosis: Recommendations of the Swedish Multiple Sclerosis Association and the Swedish Neuroradiological Society. Acta Neurol. Scand. 2017, 135, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Brisset, J.-C.; Vukusic, S.; Cotton, F. Update on brain MRI for the diagnosis and follow-up of MS patients. Presse Medicale 2021, 50, 104067. [Google Scholar] [CrossRef] [PubMed]
- Gasperini, C.; Prosperini, L.; Tintoré, M.; Sormani, M.P.; Filippi, M.; Rio, J.; Palace, J.; Rocca, M.A.; Ciccarelli, O.; Barkhof, F.; et al. Unraveling treatment response in multiple sclerosis A clinical and MRI challenge. Neurology 2019, 92, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Wattjes, M.P.; Ciccarelli, O.; Reich, D.S.; Banwell, B.; de Stefano, N.; Enzinger, C.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Gasperini, C.; et al. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021, 20, 653–670. [Google Scholar] [CrossRef] [PubMed]
- Riederer, I.; Mühlau, M.; Wiestler, B.; Bender, B.; Hempel, J.M.; Kowarik, M.; Huber, T.; Zimmer, C.; Andrisan, T.; Patzig, M.; et al. Structured Reporting in Multiple Sclerosis—Consensus-Based Reporting Templates for Magnetic Resonance Imaging of the Brain and Spinal Cord. Rofo 2023, 195, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Shinagare, A.B.; Lacson, R.; Boland, G.W.; Wang, A.; Silverman, S.G.; Mayo-Smith, W.W.; Khorasani, R. Radiologist Preferences, Agreement, and Variability in Phrases Used to Convey Diagnostic Certainty in Radiology Reports. J. Am. Coll. Radiol. 2019, 16, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Storelli, L.; Rocca, M.A.; Pagani, E.; Van Hecke, W.; Horsfield, M.A.; De Stefano, N.; Rovira, A.; Sastre-Garriga, J.; Palace, J.; Sima, D.; et al. Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis: Assessment with MR Imaging. Radiology 2018, 288, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Bermel, R.; Bullen, J.; Ruggieri, P.; Jones, S.E. Structured Reporting in Multiple Sclerosis Reduces Interpretation Time. Acad. Radiol. 2021, 28, 1733–1738. [Google Scholar] [CrossRef]
- Alessandrino, F.; Pichiecchio, A.; Mallucci, G.; Ghione, E.; Romani, A.; Bergamaschi, R.; Bastianello, S. Do MRI Structured Reports for Multiple Sclerosis Contain Adequate Information for Clinical Decision Making? Am. J. Roentgenol. 2018, 210, 24–29. [Google Scholar] [CrossRef]
- Mey, G.M.; Mahajan, K.R.; DeSilva, T.M. Neurodegeneration in multiple sclerosis. WIREs Mech. Dis. 2022, 15, e1583. [Google Scholar] [CrossRef]
- Prosperini, L.; Mancinelli, C.; Haggiag, S.; Cordioli, C.; De Giglio, L.; De Rossi, N.; Galgani, S.; Rasia, S.; Ruggieri, S.; Tortorella, C.; et al. Minimal evidence of disease activity (MEDA) in relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Elliott, C.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Wei, W.; Belachew, S.; Arnold, D.L. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. J. 2019, 25, 1915–1925. [Google Scholar] [CrossRef] [PubMed]
- Frischer, J.M.; Weigand, S.D.; Guo, Y.; Kale, N.; Parisi, J.E.; Pirko, I.; Mandrekar, J.; Bramow, S.; Metz, I.; Brück, W.; et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 2015, 78, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Prineas, J.W.; Kwon, E.E.; Cho, E.; Sharer, L.R.; Barnett, M.H.; Oleszak, E.L.; Hoffman, B.; Morgan, B.P. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 2001, 50, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Absinta, M.; Sati, P.; Masuzzo, F.; Nair, G.; Sethi, V.; Kolb, H.; Ohayon, J.; Wu, T.; Cortese, I.C.M.; Reich, D.S. Association of Chronic Active Multiple Sclerosis Lesions with Disability In Vivo. JAMA Neurol. 2019, 76, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Dal-Bianco, A.; Grabner, G.; Kronnerwetter, C.; Weber, M.; Höftberger, R.; Berger, T.; Auff, E.; Leutmezer, F.; Trattnig, S.; Lassmann, H.; et al. Slow expansion of multiple sclerosis iron rim lesions: Pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 2017, 133, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Elliott, C.; Belachew, S.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Fecker, J.; Model, F.; Wei, W.; et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain 2019, 142, 2787–2799. [Google Scholar] [CrossRef] [PubMed]
- Klistorner, S.; Barnett, M.H.; Yiannikas, C.; Barton, J.; Parratt, J.; You, Y.; Graham, S.L.; Klistorner, A. Expansion of chronic lesions is linked to disease progression in relapsing-remitting multiple sclerosis patients. Mult. Scler. J. 2021, 27, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Klistorner, S.; Barnett, M.H.; Graham, S.L.; Yiannikas, C.; Parratt, J.; Klistorner, A. Mechanisms of central brain atrophy in multiple sclerosis. Mult. Scler. J. 2022, 28, 2038–2045. [Google Scholar] [CrossRef]
- Honce, J.M.; Nair, K.V.; Hoyt, B.D.; Seale, R.A.; Sillau, S.; Engebretson, E.; Schurr, B.; Corboy, J.R.; Vollmer, T.L.; Alvarez, E. Brain Atrophy Rates for Stable Multiple Sclerosis Patients on Long-Term Fingolimod versus Glatiramer Acetate. Front. Neurol. 2020, 11, 1045. [Google Scholar] [CrossRef]
- Kappos, L.; De Stefano, N.; Freedman, M.S.; Cree, B.A.; Radue, E.-W.; Sprenger, T.; Sormani, M.P.; Smith, T.; A Häring, D.; Meier, D.P.; et al. Inclusion of brain volume loss in a revised measure of ‘no evidence of disease activity’ (NEDA-4) in relapsing–remitting multiple sclerosis. Mult. Scler. J. 2016, 22, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Sormani, M.P.; Arnold, D.L.; De Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol. 2014, 75, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Marinescu, R.V.; Young, A.L.; Firth, N.C.; Prados, F.; Cardoso, M.J.; Tur, C.; De Angelis, F.; Cawley, N.; Brownlee, W.J.; et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018, 141, 1665–1677. [Google Scholar] [CrossRef] [PubMed]
- Haider, L.; Zrzavy, T.; Hametner, S.; Höftberger, R.; Bagnato, F.; Grabner, G.; Trattnig, S.; Pfeifenbring, S.; Brück, W.; Lassmann, H. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 2016, 139 Pt 3, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Pontillo, G.; Penna, S.; Cocozza, S.; Quarantelli, M.; Gravina, M.; Lanzillo, R.; Marrone, S.; Costabile, T.; Inglese, M.; Morra, V.B.; et al. Stratification of multiple sclerosis patients using unsupervised machine learning: A single-visit MRI-driven approach. Eur. Radiol. 2022, 32, 5382–5391. [Google Scholar] [CrossRef] [PubMed]
- Preziosa, P.; Pagani, E.; Mesaros, S.; Riccitelli, G.C.; Dackovic, J.; Drulovic, J.; Filippi, M.; Rocca, M.A. Progression of regional atrophy in the left hemisphere contributes to clinical and cognitive deterioration in multiple sclerosis: A 5-year study. Hum. Brain Mapp. 2017, 38, 5648–5665. [Google Scholar] [CrossRef] [PubMed]
- Steenwijk, M.D.; Geurts, J.J.G.; Daams, M.; Tijms, B.M.; Wink, A.M.; Balk, L.J.; Tewarie, P.K.; Uitdehaag, B.M.J.; Barkhof, F.; Vrenken, H.; et al. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 2016, 139, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Pontillo, G.; Cocozza, S.; Lanzillo, R.; Russo, C.; Stasi, M.D.; Paolella, C.; Vola, E.; Criscuolo, C.; Borrelli, P.; Palma, G.; et al. Determinants of Deep Gray Matter Atrophy in Multiple Sclerosis: A Multimodal MRI Study. Am. J. Neuroradiol. 2019, 40, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.J.; Cen, S.Y.; Khadka, S.; Liu, S.; Kornak, J.; Shi, Y.; Zheng, L.; Hauser, S.L.; Pelletier, D. Thalamic atrophy in multiple sclerosis: A magnetic resonance imaging marker of neurodegeneration throughout disease. Ann. Neurol. 2018, 83, 223–234. [Google Scholar] [CrossRef]
- Bischof, A.; Papinutto, N.; Keshavan, A.; Bs, A.R.; Kirkish, G.; Zhang, X.; Mallott, J.M.; Asteggiano, C.; Sacco, S.; Bs, T.J.G.; et al. Spinal Cord Atrophy Predicts Progressive Disease in Relapsing Multiple Sclerosis. Ann. Neurol. 2022, 91, 268–281. [Google Scholar] [CrossRef]
- Hänninen, K.; Viitala, M.; Paavilainen, T.; Karhu, J.O.; Rinne, J.; Koikkalainen, J.; Lötjönen, J.; Soilu-Hänninen, M. Thalamic Atrophy Without Whole Brain Atrophy Is Associated with Absence of 2-Year NEDA in Multiple Sclerosis. Front. Neurol. 2019, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, S.; Petracca, M.; De Giglio, L.; De Luca, F.; Giannì, C.; Gurreri, F.; Petsas, N.; Tommasin, S.; Pozzilli, C.; Pantano, P. A matter of atrophy: Differential impact of brain and spine damage on disability worsening in multiple sclerosis. J. Neurol. 2021, 268, 4698–4706. [Google Scholar] [CrossRef] [PubMed]
- Štecková, T.; Hluštík, P.; Sládková, V.; Odstrčil, F.; Mareš, J.; Kaňovský, P. Thalamic atrophy and cognitive impairment in clinically isolated syndrome and multiple sclerosis. J. Neurol. Sci. 2014, 342, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Zivadinov, R.; Havrdová, E.; Bergsland, N.; Tyblova, M.; Hagemeier, J.; Seidl, Z.; Dwyer, M.G.; Vaneckova, M.; Krasensky, J.; Carl, E.; et al. Thalamic Atrophy Is Associated with Development of Clinically Definite Multiple Sclerosis. Radiology 2013, 268, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Cocozza, S.; Petracca, M.; Mormina, E.; Buyukturkoglu, K.; Podranski, K.; Heinig, M.M.; Pontillo, G.; Russo, C.; Tedeschi, E.; Russo, C.V.; et al. Cerebellar lobule atrophy and disability in progressive MS. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Inglese, M.; Petracca, M.; Mormina, E.; Achiron, A.; Straus-Farber, R.; Miron, S.; Fabian, M.; Krieger, S.; Miller, A.; Lublin, F.; et al. Cerebellar volume as imaging outcome in pro-gressive multiple sclerosis. PLoS ONE 2017, 12, e0176519. [Google Scholar] [CrossRef] [PubMed]
- Petracca, M.; Cutter, G.; Cocozza, S.; Freeman, L.; Kangarlu, J.; Margoni, M.; Moro, M.; Krieger, S.; El Mendili, M.M.; Droby, A.; et al. Cerebellar pathology and disability worsening in relapsing-remitting multiple sclerosis: A retrospective analysis from the CombiRx trial. Eur. J. Neurol. 2022, 29, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, A. Cerebellar Dysfunction in Multiple Sclerosis. Front. Neurol. 2017, 8, 312. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, Z.; Pemberton, H.G.; Gray, J.; Goodkin, O.; Carrasco, F.P.; Scheel, M.; Nawabi, J.; Barkhof, F. Commercial volumetric MRI reporting tools in multiple sclerosis: A systematic review of the evidence. Neuroradiology 2022, 65, 5–24. [Google Scholar] [CrossRef]
- Pemberton, H.G.; Zaki, L.A.; Goodkin, O.; Das, R.K.; Steketee, R.M.; Barkhof, F.; Vernooij, M.W. Technical and clinical validation of commercial automated volumetric MRI tools for dementia diagnosis-a systematic review. Neuroradiology 2021, 63, 1773–1789. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaravilli, A.; Tranfa, M.; Pontillo, G.; Carotenuto, A.; Lapucci, C.; Nistri, R.; Signoriello, E.; Moccia, M.; Tortorella, C.; Capra, R.; et al. Radiological Reporting Systems in Multiple Sclerosis. Appl. Sci. 2024, 14, 5626. https://doi.org/10.3390/app14135626
Scaravilli A, Tranfa M, Pontillo G, Carotenuto A, Lapucci C, Nistri R, Signoriello E, Moccia M, Tortorella C, Capra R, et al. Radiological Reporting Systems in Multiple Sclerosis. Applied Sciences. 2024; 14(13):5626. https://doi.org/10.3390/app14135626
Chicago/Turabian StyleScaravilli, Alessandra, Mario Tranfa, Giuseppe Pontillo, Antonio Carotenuto, Caterina Lapucci, Riccardo Nistri, Elisabetta Signoriello, Marcello Moccia, Carla Tortorella, Ruggero Capra, and et al. 2024. "Radiological Reporting Systems in Multiple Sclerosis" Applied Sciences 14, no. 13: 5626. https://doi.org/10.3390/app14135626
APA StyleScaravilli, A., Tranfa, M., Pontillo, G., Carotenuto, A., Lapucci, C., Nistri, R., Signoriello, E., Moccia, M., Tortorella, C., Capra, R., Lus, G., Inglese, M., Gasperini, C., Lanzillo, R., Pozzilli, C., Brescia Morra, V., Brunetti, A., Petracca, M., & Cocozza, S. (2024). Radiological Reporting Systems in Multiple Sclerosis. Applied Sciences, 14(13), 5626. https://doi.org/10.3390/app14135626