Comparative Study of the Phytochemical Profile and Biological Activity of Ajuga reptans L. Leaf and Root Extracts
<p>The selected active compounds present in <span class="html-italic">A. reptans</span> according to the literature: (<b>a</b>) 20-hydroxyecdysone (<b>b</b>) harpagoside (<b>c</b>) stigmasterol (<b>d</b>) ajugavensin A (<b>e</b>) ecdysterone (<b>f</b>) verbascoside (<b>g</b>) quercetin (<b>h</b>) 1-octen-3-ol.</p> "> Figure 2
<p>UV–Vis spectrum of freeze—dried plants (L_L—freeze-dried leaves and R_L—freeze-dried root).</p> "> Figure 3
<p>UV–Vis spectrum of plants dried at 40 °C (L_D—dried leaves and R_D—dried roots).</p> "> Figure 4
<p>Relative tissue viability with the application of A. reptans (L_D—dried leaves, R_D—dried roots, L_L—freeze-dried leaves, R_L—freeze-dried roots, NC—negative control, DPBS, PC—positive control, 5% sodium dodecyl sulphate).</p> ">
Abstract
:1. Introduction
Part of a Plant | Name of the Compounds | References |
---|---|---|
Roots | Phytoecdysteroids: ajugasterone, 20-hydroxyecdysone, castasterone, norcyasterone, reptansterone, 28-epi-sengosterone, 2-dehydroajugalactone. | [5,16] |
Above-ground parts | Iridoids: ajugoside, reptoiside, 8-acetylharpagide, harpagide, acubin, catalpol, harpagoside. | [5,13,17,18] |
Phytosterols: Β-sitosterol, stigmasterol. | ||
Polyphenols: p-coumaric acid, ferulic acid, rutin, luteolin, apigenin, quercetin. | ||
Diterpenoids: ajugareptansin, ajugavensin A, ajugorientin,14,15-dehydroajugareptansin, 3α-hydroxyajugamarin F4, areptin A, areptin B, ajugatannin B1, ajugatannin D1. | ||
Phytoecdysteroids: 22-dehydro-12-hydroxycyasterone, 22-dehydro-12-hydroxy-29-norsengosterone. | ||
Whole plant | Steroids: ecdysterone, ajugalactone, ajugasterone A, ajugasterone B, 29-northosterone, 29-norsengosterone, 25-hydroxyecdysone acetate, clerosterol, 22,23-didehydroclerosterol, reptanslactone A, reptanslactone B. | [5,7,13,17,19,20] |
Diterpenoids: ajugareptanzone A, ajugareptanzone B, ajugachin A. | ||
Iridoids: reposide, ajugol, ajureptazide A, ajureptazide B, ajureptazide C, ajureptazide D. | ||
Phenylpropanoid glycosides: teupolide, martinoside, verbascoside, isovascoside. | ||
Leaves | Ecdysteroids: Β-ecdysone, ajuga-lactone. | [5,7,13,17,21] |
Essential oils: 1-octen-3-ol, hexadecanoic acid, terpinolene and 6,10,14-trimethyl-2 pentadecanone. |
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extraction Procedure
2.4. HPLC–DAD Analyses
2.5. Antioxidant Property Assays
2.5.1. DPPH Assay
2.5.2. FRAP Assay
2.5.3. ABTS Assay
2.5.4. Metal Chelating Ability
2.6. Total Polyphenols Content
2.7. UV–VIS Characteristic of the Extracts
2.8. Enzymatic Studies
2.8.1. Inhibition of Collagenase
2.8.2. Inhibition of Tyrosinase
2.9. Cytotoxicity Tests
3. Results and Discussion
3.1. Extraction Procedure
3.2. HPLC–DAD Analyses
3.3. Antioxidant Properties
3.3.1. DPPH Assay
3.3.2. FRAP and ABTS Assays
3.4. The Measurements of Total Polyphenol Content
3.5. UV–VIS Characteristics of the Extracts
3.6. Enzymatic Studies
Inhibition of Collagenase and Tyrosinase
3.7. Cytotoxicity Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Israili, Z.H.; Lyoussi, B. Ethnopharmacology of the Plants of Genus Ajuga. Pak. J. Pharm. Sci. 2009, 22, 425–462. [Google Scholar] [PubMed]
- Kalwij, J.M. Review of “The Plant List, a Working List of All Plant Species”. J. Veg. Sci. 2012, 23, 998–1002. [Google Scholar] [CrossRef]
- Penev, L.; Paton, A.; Nicolson, N.; Kirk, P.; Pyle, R.L.; Whitton, R.; Georgiev, T.; Barker, C.; Hopkins, C.; Robert, V.; et al. A common registration-to-publication automated pipeline for nomenclatural acts for higher plants (International Plant Names Index, IPNI), fungi (Index Fungorum, MycoBank) and animals (ZooBank). Zookeys 2016, 2016, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Szafer, W.; Kulczyński, S.; Pawłowski, B. Rośliny Polskie; PWN: Warsaw, Poland, 1953. [Google Scholar]
- Rana, S.; Kaur, N.; Devi, P. A Review on Pharmacognostic Profile of Ajuga Reptans. Research & Reviews. J. Pharmacogn. 2020, 7, 9–18. [Google Scholar]
- Činčura, F.; Feráková, V.; Májovský, J.; Ladislav Šomšák, J.Z. Pospolite Rośliny Środkowej Europy; Państwowe Wydawnictwo Rolnicze i Leśne: Warsaw, Poland, 1990. [Google Scholar]
- Esposito, T.; Sansone, F.; Auriemma, G.; Franceschelli, S.; Pecoraro, M.; Picerno, P.; Aquino, R.P.; Mencherini, T. Study on Ajuga Reptans Extract: A Natural Antioxidant in Microencapsulated Powder Form as an Active Ingredient for Nutraceutical or Pharmaceutical Purposes. Pharmaceutics 2020, 12, 671. [Google Scholar] [CrossRef] [PubMed]
- Toiu, A.; Vlase, L.; Gheldiu, A.M.; Vodnar, D.; Oniga, I. Evaluation of the Antioxidant and Antibacterial Potential of Bioactive Compounds from Ajuga Reptans Extracts. Farmacia 2017, 65, 353–354. [Google Scholar]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.; Moldovan, C.; Oniga, I. Phytochemical Composition, Antioxidant, Antimicrobial and in Vivo Anti-Inflammatory Activity of Traditionally Used Romanian Ajuga Laxmannii (Murray) Benth. (“Nobleman’s Beard”—Barba Împăratului). Front. Pharmacol. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Popova, E.; Titova, M.; Tynykulov, M.; Zakirova, R.P.; Kulichenko, I.; Prudnikova, O.; Nosov, A. Sustainable Production of Ajuga Bioactive Metabolites Using Cell Culture Technologies: A Review. Nutrients 2023, 15, 1246. [Google Scholar] [CrossRef]
- Vertuani, S.; Ziosi, P.; Toso, R.D.; Vicentini, C.B.; Manfredini, S. Dualistic Properties of Cosmetic Formulations Based on Phenylpropanoids from Ajuga Reptans. J. Cosmet. Dermatol. Sci. Appl. 2013, 3, 64–72. [Google Scholar] [CrossRef]
- Frezza, C.; Venditti, A.; Serafini, M.; Bianco, A. Phytochemistry, Chemotaxonomy, Ethnopharmacology, and Nutraceutics of Lamiaceae. Stud. Nat. Prod. Chem. 2019, 62, 125–178. [Google Scholar] [CrossRef]
- Qing, X.; Yan, H.M.; Ni, Z.Y.; Vavricka, C.J.; Zhang, M.L.; Shi, Q.W.; Gu, Y.C.; Kiyota, H. Chemical and Pharmacological Research on the Plants from Genus Ajuga. Heterocycl. Commun. 2017, 23, 245–268. [Google Scholar] [CrossRef]
- Aslan Bayhan, S.; Bayhan, H.A.; Çölgeçen, E.; Gürdal, C. Effects of Topical Acne Treatment on the Ocular Surface in Patients with Acne Vulgaris. Contact Lens Anterior Eye 2016, 39, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Karłowicz-Bodalska, K.; Han, S.; Bodalska, A.; Freier, J.; Smoleński, M. Przeciwzapalne Właściwości Wybranych Roślin Zawierających Związki Irydoidowe. Postępy Fitoter. 2017, 18, 229–234. [Google Scholar] [CrossRef]
- Tanaka, N.; Uozumi, N.; Kobayashi, T. Genetic Transformation of Ajuga Replans. In Transgenic Medicinal Plants, 45th ed.; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; ISBN 364258439X. [Google Scholar]
- Göger, G.; Köse, Y.B.; Demirci, F.; Göger, F. Phytochemical Characterization of Phenolic Compounds by LCMS/MS and Biological Activities of Ajuga reptans L., Ajuga salicifolia (L.) Schreber and Ajuga genevensis L. from Turkey. Turk. J. Pharm. Sci. 2021, 10, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.; Moldovan, C.; Oniga, I. Comparative Phytochemical Profile, Antioxidant, Antimicrobial and In Vivo Anti-Inflammatory Activity of Different Extracts of Traditionally Used Romanian Ajuga genevensis L. and A. reptans L. (Lamiaceae). Molecules 2019, 24, 1597. [Google Scholar] [CrossRef] [PubMed]
- Camps, F.; Coll, J.; Cortel, A. 29-Norsengosterone and 29-Norcyasterone, New C-28 Phytoecdysteroids from Ajuga reptans (Labiatae). Chem. Lett. 1982, 11, 1313–1316. [Google Scholar] [CrossRef]
- Alekseeva, L.I.; Volodin, V.V.; Luksha, V.G.; Lafont, R. Ecdysteroid Acetates from Ajuga reptans. Chem. Nat. Compd. 1999, 35, 532–534. [Google Scholar] [CrossRef]
- Giuliani, G.; Benedusi, A.; Bellinvia, S. Composition Based on Vegetal Extracts of Ajuga Reptans for Preventing Hair Loss, Stimulating the Growth of Hair, Regulating the Production of. Sebum. Patent WO2006100101, 28 September 2006. [Google Scholar]
- Ellnain-Wojtaszek, M.; Zgórka, G. High-Performance Liquid Chromatography and Thin-Layer Chromatography of Phenolic Acids from Ginkgo Biloba L. Leaves Collected within Vegetative Period. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1457–1471. [Google Scholar] [CrossRef]
- Szopa, A.; Starzec, A.; Ekiert, H. The Importance of Monochromatic Lights in the Production of Phenolic Acids and Flavonoids in Shoot Cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × Prunifolia. J. Photochem. Photobiol. B Biol. 2018, 179, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Szopa, A.; Kokotkiewicz, A.; Bednarz, M.; Jafernik, K.; Luczkiewicz, M.; Ekiert, H. Bioreactor Type Affects the Accumulation of Phenolic Acids and Flavonoids in Microshoot Cultures of Schisandra chinensis (Turcz.) Baill. Plant Cell. Tissue Organ Cult. 2019, 139, 199–206. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Kokotkiewicz, A.; Miceli, N.; Gniewosz, M.; Elansary, H.O.; Mahmoud, E.A.; El-ansary, D.O. Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena Officinalis and Biological Properties of Biomass Extracts. Molecules 2020, 25, 5609. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, M.; Billet, K.; Drouet, S.; Tungmunnithum, D.; Malinowska, M.A.; Marchal, C.; Dedet, S.; Giglioli-Guivarc’h, N.; Hano, C.; Lanoue, A. Identifying Major Drivers of Antioxidant Activities in Complex Polyphenol Mixtures from Grape Canes. Molecules 2022, 27, 4029. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 671. [Google Scholar] [CrossRef]
- Gaidhani, K.A.; Harwalkar, M.; Bhambere, D.; Nirgude, P.S. Lyophilization/Freeze Drying—A Review. World J. Pharm. Res. 2015, 4, 516–543. [Google Scholar]
- Bisht, D.; Iqbal, Z. Lyophilization—Process and Optimization for Pharmaceuticals. Int. J. Drug Regul. Aff. 2018, 3, 30–40. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, P.P. Design of Hot Air Drying for Better Foods. Trends Food Sci. Technol. 2006, 17, 153–163. [Google Scholar] [CrossRef]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A Review of Drying Methods for Improving the Quality of Dried Herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Florczak, J.; Karmańska, A.; Karwowski, B. Badanie Zawartości Związków Polifenolowych Oraz Aktywności Przeciwutelniającej Niektórych Jadanych Grzybów Wieloowocnikowych. Bromatol. Chemiia Toksykol. 2016, 49, 719–724. [Google Scholar]
- Olejnik, A.; Gościańska, J.; Nowak, I. Zastosowanie Modeli Sztucznej Skóry Do Badań Kosmetyków Innowacyjnych. Chemik 2011, 65, 76–81. [Google Scholar]
Sample Name | Extraction Yield [%] |
---|---|
R_D | 18.10 ± 2.16 |
L_D | 19.04 ± 1.37 |
R_L | 30.13 ± 2.07 |
L_L | 27.13 ± 1.19 |
Target Compounds | LEAVES | ROOTS |
---|---|---|
Chlorogenic acid | 49.75 ± 5.55 | nd * |
3,4-Dihydroxyphenylacetic acid | 227.65 ± 2.93 | 166.64 ± 4.73 |
Gallic acid | 56.12 ± 0.52 | 14.17 ± 0.55 |
Caffeic acid | 7.26 ± 0.76 | 0.60 ± 0.04 |
Neochlorogenic acid | 44.76 ± 6.04 | nd |
Rosmarinic acid | 166.75 ± 1.13 | 163.65 ± 11.01 |
Ferulic acid | 48.95 ± 3.71 | nd |
Vanillic acid | 19.83 ± 2.91 | 3.57 ± 0.35 |
Apigenin | 99.26 ± 1.86 | nd |
Quercetin | 71.55 ± 7.25 | nd |
Rutin | 51.18 ± 4.80 | nd |
Verbascoside | 1114.64 ± 5.08 | 951.80 ± 17.14 |
Isoverbascoside | 333.99 ± 12.08 | 277.79 ± 15.03 |
Inhibition Value of A. reptans Extracts (%) | |||
---|---|---|---|
L_L | R_L | L_D | R_D |
46.13 ± 0.02 | 16.60 ± 0.12 | 47.76 ± 0.02 | 16.47 ± 0.02 |
Studied Extract | Fe3+ Ions Reducing Ability TROLOX eq. (µM/mL) | Fe3+ Ions Reducing Ability (mM TE/g) | Free Radical Scavenging Activity TROLOX eq. (µM/mL) | Free Radical Scavenging Activity (mM TE/g) |
---|---|---|---|---|
R_D | 833.0 ± 0.01 | 2648.89 ± 0.02 | 69.27 ± 0.02 | 138.53 ± 0.02 |
L_D | 1569.7 ± 0.03 | 4122.22 ± 0.04 | 97.47 ± 0.02 | 194.98 ± 0.02 |
R_L | 1031.0 ± 0.02 | 3044.44 ± 0.02 | 73.47 ± 0.01 | 146.98 ± 0.02 |
L_L | 1383.0 ± 0.03 | 3748.89 ± 0.03 | 129.6 ± 0.02 | 259.20 ± 0.04 |
Iron (II) Ion Chelating Capacity of A. reptans Extracts (%) | ||||
---|---|---|---|---|
EDTA | L_L | R_L | L_D | R_D |
55.48 ± 0.009 | 55.48 ± 0.01 | 84.68 ± 0.002 | 76.61 ± 0.002 | 57.74 ± 0.007 |
Tested Extract | Total Polyphenol Content | |
---|---|---|
(mg/mL) | (mg GAE/g) | |
R_D | 0.10 ± 0.02 | 204.53 ± 0.03 |
L_D | 0.16 ± 0.04 | 315.49 ± 0.04 |
R_L | 0.12 ± 0.03 | 234.99 ± 0.03 |
L_L | 0.14 ± 0.03 | 271.98 ± 0.02 |
Inhibition collagenase value of A. reptans extracts (%) | |
L_L | R_L |
49.37 ± 0.03 | 66.96 ± 0.02 |
Inhibition tyrosinase value of A. reptans extracts (%) | |
L_L | R_L |
41.33 ± 0.04 | 47.52 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziki, A.; Malinowska, M.A.; Szopa, A.; Sikora, E. Comparative Study of the Phytochemical Profile and Biological Activity of Ajuga reptans L. Leaf and Root Extracts. Appl. Sci. 2024, 14, 5105. https://doi.org/10.3390/app14125105
Dziki A, Malinowska MA, Szopa A, Sikora E. Comparative Study of the Phytochemical Profile and Biological Activity of Ajuga reptans L. Leaf and Root Extracts. Applied Sciences. 2024; 14(12):5105. https://doi.org/10.3390/app14125105
Chicago/Turabian StyleDziki, Anna, Magdalena Anna Malinowska, Agnieszka Szopa, and Elżbieta Sikora. 2024. "Comparative Study of the Phytochemical Profile and Biological Activity of Ajuga reptans L. Leaf and Root Extracts" Applied Sciences 14, no. 12: 5105. https://doi.org/10.3390/app14125105
APA StyleDziki, A., Malinowska, M. A., Szopa, A., & Sikora, E. (2024). Comparative Study of the Phytochemical Profile and Biological Activity of Ajuga reptans L. Leaf and Root Extracts. Applied Sciences, 14(12), 5105. https://doi.org/10.3390/app14125105