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Abstract: Joint localization and synchronization (JLAS) is a technology that simultaneously deter-
mines the spatial locations of user nodes and synchronizes the clocks between user nodes (UNs) and
anchor nodes (ANs). This technology is crucial for various applications in wireless sensor networks.
Existing solutions for JLAS are either computationally demanding or not resilient to noise. This
paper addresses the challenge of localizing and synchronizing a mobile user node in broadcast-based
JLAS systems using sequential one-way time-of-arrival (TOA) measurements. The AN position
uncertainty is considered along with clock offset and skew. Two redundant variables that couple the
unknowns are introduced to pseudo-linearize the measurement equation. In projecting the equation
to the nullspace spanned by the coefficients of the redundant variables, the affection of them can
be eliminated. While the closed-form projection solution provides an initial point for iteration, it is
suboptimal and may not achieve the Cramér-Rao lower bound (CRLB) when noise or AN position
error is relatively large. To improve performance, we propose a novel robust iterative solution (RIS)
formulated through factor graphs and developed via message passing. The RIS outperforms the com-
mon Gauss–Newton iteration, especially in high-noise scenarios. It exhibits a lower root mean-square
error (RMSE) and a higher probability of converging to the optimal solution, while maintaining
manageable computational complexity. Both analytical results and numerical simulations validate
the superiority of the proposed solution in terms of performance, resilience, and computational load.

Keywords: joint localization and synchronization; sequential one-way time-of-arrival; anchor position
error; nullspace projection; robust iteration

1. Introduction

The past two decades have witnessed an increasing demand for location information
in wireless communication and sensor networks. In an era where all things interconnect
through a ubiquitous network, knowing the position of each node is fundamental for
supporting a variety of location-based applications, including node surveillance, emer-
gency response, logistics tracking, commercial activities and oil and gas industries [1–6].
Driven by this demand, numerous localization methods have been proposed to address
the localization problem across different types of equipment, environments, and resource
constraints. Although radio frequency (RF) signal-based communication and sensing face
challenges such as multipath effects, limited spectrum resources, and electromagnetic safety
concerns, it remains the optimal technology for providing node positions.

In wireless sensor networks (WSNs) that facilitate communication between user nodes
(UNs) and anchor nodes (ANs) using RF signals such as WiFi, Bluetooth, and ZigBee,
localizing the UN through ANs at known positions is not particularly difficult if the ANs
can measure the time-of-flight (TOF) from the captured signals. The TOF can be converted
to the range between the AN and UN, and the localization problem can be formulated
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through the geometric relationship of AN and UN positions. However, obtaining the
TOF requires perfect synchronization between ANs and UNs, which incurs additional
communication and computation costs [7–11]. In contrast, measuring the time-of-arrival
(TOA) does not necessitate synchronization between ANs and UNs. If the emitted signals
contain a time label, the TOA can be determined by comparing the emission time to the
local time. However, the lack of synchronization means that the TOA includes the clock
offset between ANs and UNs, introducing additional errors when converting the TOA to
a range, which can result in significant errors in UN position estimation. Thanks to the
emergence of joint localization and synchronization (JLAS) [9–11], the issues of finding the
position of the UN and achieving synchronization can be addressed simultaneously.

JLAS is a technique in wireless communication and sensor networks that simultane-
ously determines node positions and synchronizes their clocks [12–16]. By exchanging
signals and processing measurements like TOA and signal strength, JLAS reduces errors
and enhances efficiency compared to separate localization and synchronization methods.
It is essential for applications like environmental monitoring, the Internet of Things (IoT),
and autonomous systems. Despite challenges such as non-line-of-sight conditions and
clock drift, JLAS provides robust performance in diverse environments. JLAS operates by
transmitting signals from ANs to UNs, which capture and parse these signals to obtain
measurements such as the TOA [10] and TOF. Without synchronization between ANs and
UN, the TOA is a more popular and widely used measurement type in JLAS since it can
provide high precision and simple implementation. In TOA schemes, three methods com-
monly to identify the signals from ANs to UN are frequency division (FD), code division
(CD), and time division (TD). FD distinguishes ANs in the frequency domain, allowing
TOAs between ANs and the UN to be obtained within one time slot. However, it requires
separating signals from the ANs into different frequency bands [17], which occupies a
large bandwidth, consumes more energy, and increases the complexity of the RF front-end
design. CD allows multiple ANs to share the same frequency band using unique codes to
spread their signals to UN, but it is susceptible to the near-far effect [18]. In contrast to FD
and CD, the TD scheme does not suffer from the above issues, albeit generating sequential
TOA measurements would require a longer temporal duration for the ANs to finish their
signal transmission [11]. Multiple signal transmissions may consume more energy, but this
consumption is minimal compared to emitting a large bandwidth signal in the FD scheme.
Additionally, FD is constrained by RF spectrum resources and sensitivity, not to mention
the complexity of the RF front-end design. Therefore, the TD scheme offers significant
advantages for practical applications. The TD broadcasting system allows the UN to obtain
sequential one-way TOA measurements, facilitating JLAS without the need to send signals
back to the ANs, thereby enhancing the security of UNs. The comparison between FD, CD,
and TD technologies is tabulated in Table 1. Due to the advantages of using sequential
TOA, a significant amount of research work has been emerging on developing methods to
address the JLAS problem [7,8,19–24].

Table 1. Comparisons between different communication technologies.

Commun. Tech. Bandwidth
Occupation Commun. Mode Short Comings Advantages TOA Measurements

Frequency division Large Simultaneous Energy-consuming,
complex RF design

Obtain TOAs
after one
communication round

Non-sequential

Code division Small Simultaneous Near-far effect
Obtain TOAs
after one
communication round

Non-sequential

Time division Small One pair
by one pair

Longer temporal
duration

Energy-saving, frequency
spectrum resource-saving,
simple design

Sequential
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In recent years, research focused on localization based on the TD broadcast sequential
TOA measurements has received considerable attention, as shown in Table 2. Two-way
TOA ranging relaxes the synchronization between nodes, making it more practical in WSN
applications. The research in [20] addressed the cooperative localization problem for dis-
tributed nodes in wireless networks using shared transmission scheduling. The author’s
approach has low complexity and does not require node synchronization. The proposed
weighted least squares (WLS) and iterative WLS estimator can attain the Cramér-Rao Lower
Bound (CRLB). In underwater WSNs, where AN positions are perfectly known but their
clocks are asynchronous, Ref. [23] leveraged sequential transmission protocols and the
broadcasting characteristics of underwater acoustic media to obtain a set of measurements.
However, solving the optimization problem for finding the position of the UN is based on
an exhaustive search and a multi-grid search, which lacks practicality in engineering appli-
cations, although it achieves the CRLB. To improve the computational efficiency, Ref. [25]
addressed JLAS by proposing a closed-form solution. The recent work in [26] tackled
the two-way TOA JLAS problem using semidefinite relaxation, which relaxes the original
problem into a convex one, a semidefinite programming (SDP) problem. The proposed
SDP consistently converges to a globally optimal solution, reducing the localization error
by over 40%. Additionally, the performance of this method is not affected by the speed of
the UN. However, none of the aforementioned research considered the position error of the
ANs, which may significantly deteriorate localization and synchronization performances.

One-way TOA does not require transmission back to the ANs, unlike two-way TOA,
thus saving half of the communication overhead in the TOA measuring process. UNs do
not need to equip transmitters designed for measuring TOA, reducing the complexity of
hardware design. Moreover, because UNs only need to passively receive signals from ANs
and then complete positioning at the UN end, the number of locatable UNs will not be
limited. For a WSN using the TD scheme to generate sequential one-way TOA measure-
ments, researchers have proposed various methods. Ref. [19] introduced a distributed state
estimation method utilizing inter-node information through time division broadcasting to
address the JLAS problem. While their method supports an unlimited number of UNs, it is
computationally complex and unsuitable for moving UNs. To reduce complexity, ref. [7]
further explored the use of a two-step weighted least squares (TSWLS) method to jointly
estimate the positions, velocities, and clock parameters of UNs, considering the challenge
of AN position uncertainty. However, TSWLS only achieves the CRLB under low-noise
conditions and performs inadequately when noise levels are high. The best achievable
estimator, the maximum likelihood estimator (MLE), was used in [8], which resorted to
Gauss–Newton iteration to asymptotically implement optimal localization and synchro-
nization parameter estimation. However, this method is sensitive to initial values. Ref. [11]
proposed a closed-form solution that avoids dependence on initial values, achieving an
asymptotically optimal solution without iteration. Nonetheless, the closed-form solution
in [11] only reaches the CRLB under low-noise conditions, and its root mean square error
(RMSE) deviates from the CRLB if the measurement noise or AN position error is relatively
large. Ref. [27] extended the study of JLAS to cases where ANs are not synchronized, and
the motion of UNs is arbitrary. It proposed three methods for different UN motion models,
with three of them being simple variants of the Gauss–Newton (GN) method, thus suffering
from similar divergence problems or local minima.

This paper focuses on the JLAS problem using sequential one-way TOAs when the
positions of ANs are not accurately known. A new approach to estimating the location of
the UN and clock parameters is proposed. We transform the nonlinear relationship between
TOAs, UN position, clock offset, and clock drift by squaring the measurement equation to
pseudo-linearize the problem. The pseudo-linearization introduces redundant variables,
which are eliminated by projecting the equation to the nullspace of the space of their
coefficients. In ignoring the constraints that would make the problem complex to solve, a
WLS solution of the UN position, clock offset, and clock drift is obtained straightforwardly.
We then formulate a new equation with respect to the estimation error by applying the
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constraints, generating the correction that improves the accuracy. The corrected solution is
not optimal and cannot attain the CRLB; thus, further refinement is necessary. The solution
is referred to as the closed-form projection solution (CFPS). To enhance robustness to noise
and convergence to the optimal solution, a new iterative solution called the robust iterative
solution (RIS) is proposed. The RIS is formulated through factor graphs and derived using
message passing. It relaxes the requirement of initialization, so the CFPS can serve as an
adequate initial guess that guarantees convergence to the optimum. In comparison with
the GN initialized by the CFPS, the proposed RIS is superior in robustness and convergence
assurance. Even when the noise or AN position error is relatively large, where the CFPS
does not provide a guess close to the true value, the RIS still has a higher probability of
converging to the global minimum. Theoretical mean-square analysis is conducted for
the RIS, where the result corroborates that the RIS asymptotically achieves the CRLB if
the noise and error are mild. Numerical simulations validate the analysis and illustrate
the advantages compared to existing solutions. Moreover, the complexity of the RIS is
manageable, similar to GN in terms of processing time.

The main contributions of this paper include the following:

1. A new closed-form solution using nullspace projection to generate the initial guess.
2. A robust iteration solution based on factor graphs and message passing, resilient to

noise and AN position error, ensuring global convergence.
3. Theoretical analysis corroborating the optimality in the RMSE of the proposed RIS.
4. Extensive simulations validating the analytical results, demonstrating the best bias

performance, and confirming the manageable computational complexity.

The remaining sections of this paper are structured as follows. Section 2 elucidates
the measurement model and formulates the JLAS problem based on sequential TOA for
mobile UNs. Section 3 presents the proposed method that firstly solves the JLAS problem
using two-stage weighted least squares, followed by a novel robust iteration. The CRLB
and theoretical analysis are performed in Section 4. Section 5 presents the simulation
experiments conducted to assess the performance of the proposed method. The summary
and future research of this paper are concluded in Section 6.

To enhance readability, this paper uses bold uppercase letters and symbols to represent
matrices and bold lowercase for vectors. ∥ · ∥, ⊤, and −1 are the Euclidean norm, transpose,
and inverse operators. x(i) is the i-th element of x. x(i : j) denotes a subvector constructed
by the i-th to j-th elements of x. X(:, i) means the i-th column of matrix X. Notations with a
superscript ·o denote true values. Letters and symbols with a hat ·̂ represent the estimate
values, while those without any superscript signify measured values. The notations used
in this paper are listed at the end of this paper.

Table 2. Category of the related works.

Paper Measurements Methods Complexity

[7] One-way TOA TSWLS Low
[8,27] One-way TOA GN Medium
[11] One-way TOA WLS Low
[19] One-way TOA Distributed state estimation High
[20] Two-way TOA WLS Low
[23] Two-way TOA Exhaustive search and a multi-grid search High
[25] Two-way TOA WLS Low
[26] Two-way TOA SDP Medium

2. One-Way TOA Measurement Model

The WSN consists of M ANs and one mobile UN in a N-dimensional space, where
N = 2 or 3, as depicted in Figure 1. The true position of AN #i is so

i , i = 1, 2, · · · , M,
which is static. ANs are synchronized so the clock offset υi, i = 1, 2, · · · , M, among the
ANs that are known. As discussed in the Introduction, the system considered in this
paper employs a TD broadcasting at ANs that transmit packets in a synchronized and
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pre-arranged sequential order. The UN passively receives these packets to obtain sequential
TOA measurements, enabling JLAS. Since the transmission is one-way from the ANs to the
UN, only one-way TOA measurements are available to the UN. The position and velocity
of the mobile UN are unknown, denoted by po and vo. Assume that the velocity is constant
within a TD broadcasting cycle. Since the clock of the UN is not synchronized to that of the
ANs, the clock offset and clock skew are unknown. The one-way TOA from AN #i to the
UN is

τo
i =

∥po + voti − so
i ∥

c
+ τo

o f f + τo
d f tti − υi, (1)

where ti represents the known time interval between the start time of the TD broadcasting
cycle and AN #i’s launch time, c is the light speed, τo

o f f is the clock offset, τo
d f t is the clock

skew, and υi is the clock offset of AN #i. In assuming that c is a known constant for the
WSN, the TOA is interchangeable with the range-of-arrival:

ro
i = ∥po + voti − so

i ∥+ γo + ιoti − γi, (2)

where ro
i = cτo

i , γo = cτo
o f f , ιo = cτo

d f t, γi = cυi, and γo and ιo are the distance form of the
clock offset and clock skew. So, the measured TOA is

ri = ro
i + εi, i = 1, . . . , M, (3)

where εi represents the measurement noise, following an independent zero-mean Gaussian
distribution with a variance of σ2

i , i.e., εi ∼ N (0, σ2
i ). The measurements from all ANs are

r = ro + ε, (4)

where r = [r1, r2, · · · , rM]T , ro = [ro
1, ro

2, · · · , ro
M]T , and ε = [ε1, ε2, . . . , εM]T . The covariance

matrix of ε is Qε = E[εεT ].

AN #1 AN #M

AN #iAN #2

.

.

.

.   .   .

UN

2nd TOA

1st TOA

i-th TOA

M-th TOA

Figure 1. Localization scenario of JLAS system using the TD broadcasting scheme.

Typically, the true position of AN #i is not known, which is usually obtained through
measurement or estimation; hence, it may contain an error represented by ∆si. The erro-
neous position of AN #i is

si = so
i − ∆si, i = 1, . . . , M. (5)

where the error ∆si follows a zero-mean Gaussian distribution, ∆si ∼ N (0, σ2
si
). In collect-

ing all position errors in vector form, ∆s = [∆sT
1 , ∆sT

2 , · · · , ∆sT
M]T , the covariance matrix of

position errors is Qs = E[∆s∆sT ].
The goal of this study was to assess the position, velocity, and clock parameters of

a mobile UN using sequential TOA measurements provided in (3) when the positions
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of the ANs are not accurately known, improving the robustness to noise and error with
manageable complexity.

3. Proposed Solutions
3.1. Problem Formulation

The measurement model given in (4) is nonlinear. We shall first formulate an optimiza-
tion problem related to the unknown UN position, velocity, clock offset, and clock drift.

Let us start with (2). Keeping the norm on the right side, moving the rest of the terms
to the left, and substituting (3) yield

ri + γi − γo − ιoti − εi = ∥po + voti − si − ∆si∥, i = 1, . . . M. (6)

Squaring both sides of (6) above and using the mathematical truth ∥x∥2 = xTx,
we have

∥si∥2 − α2
i − t2

i (ι
o2 − ∥vo∥2)− 2sT

i po − 2tisT
i vo + 2αiγ

o + 2tiαiι
o

− 2ti(γ
o ιo − poTvo)− (γo2 − ∥po∥2) = ϱi + ε2

i − 2∆sT
i ∆si, i = 1, . . . M,

(7)

where αi = ri + γi, and the first-order noise and error term ϱi = −2(αi − γo − ιoti)εi +
2(poT + tivoT − soT

i )∆si.
To remove the term γo2 − ∥po∥2, we can subtract (7) with that with a fixed i. Without

loss of generality, we choose the subtracted equation with subscript i = 1 and obtain

∥s1∥2 − α2
1 − t2

1(ι
o2 − ∥vo∥2)− 2sT

1 po − 2t1sT
1 vo + 2α1γo + 2t1α1ιo

− 2t1(γ
o ιo − poTvo)− (γo2 − ∥po∥2) = ϱ1 + ε2

1 − 2∆sT
1 ∆s1.

(8)

Subtracting (8) from (7) and ignoring the noise and error terms higher than the first
order yield

∥si∥2 − ∥s1∥2 − (α2
i − α2

1)− 2(sT
i − sT

1 )p
o − 2(tisoT

i − t1soT
1 )vo − 2(α1 − αi)γ

o

− 2(t1α1 − tiαi)ι
o + (t2

1 − t2
i )(ι

o2 − ∥vo∥2) + 2(t1 − ti)(γ
o ιo − poTvo)

= ϱi − ϱ1, i = 2, . . . , M.

(9)

The equation above is a pseudolinear equation associated with po, vo, γo, and ιo. Let
the unknown parameters be ϕo = [poT , voT , γo, ιo, ιo2 − ∥vo∥2, γo ιo − poTvo]T , and (9) can be
collected in matrix form. We have

h − Gϕo = Bε + C∆s, (10)

where

h =

 ∥s2∥2 − ∥s1∥2 − (α2
2 − α2

1)
...

∥sM∥2 − ∥s1∥2 − (α2
M − α2

1)

, (11)

G(:, 1 : 2N + 1) =

 2(s2 − s1)
T 2(t2s2 − t1s1)

T 2(α1 − α2)
...

...
...

2(sM − s1)
T 2(tMsM − t1s1)

T 2(α1 − αM)

, (12)

G(:, 2N + 2 : 2N + 4) =

 2(t1α1 − t2α2) −(t2
1 − t2

2) −2(t1 − t2)
...

...
...

2(t1α1 − tMαM) −(t2
1 − t2

M) −2(t1 − tM)

, (13)
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B =

2(α1 − γo − ιot1) −2(α2 − γo − ιot2) · · · 0
...

...
. . .

...
2(α1 − γo − ιot1) 0 · · · −2(αM − γo − ιotM)

, (14)

and

C =

−2(po + t1vo − s1)
T 2(po + t2vo − s2)

T · · · 0T
N

...
...

. . .
...

−2(po + t1vo − s1)
T 0N · · · 2(po + tMvo − sM)T

. (15)

Finding the estimation of po, vo, γo, and ιo can be formulated as an optimization problem:

min
p,v,γ,ι

(h − Gϕ)TW(h − Gϕ) (16)

s.t. ϕ(2N + 3) = ϕ(2N + 2)2 − ∥ϕ(N + 1 : 2N)∥2, (17)

ϕ(2N + 4) = ϕ(2N + 1)ϕ(2N + 2)− ϕ(1 : N)Tϕ(N + 1 : 2N), (18)

where

W = (BQεBT + CQsCT)−1. (19)

3.2. Closed-Form Solution by Nullspace Projection

The optimization problem (16)–(18) is nonconvex and cannot be solved straightfor-
wardly. The pseudo-linearization introduces two redundant variables. We shall first
eliminate them from ϕo to reduce the dimension of unknowns, and solve po, vo, γo, and ιo

in two stages. In partitioning ϕo into two parts ϕo = [µoT , νoT ]T , where

µo = ϕo(1 : 2N + 2), (20)

νo = ϕo(2N + 3 : 2N + 4). (21)

νo contains the redundant variables only. Thus, (10) can be reformulated as

h − G3µo − G4νo = Bε + C∆s, (22)

where G3 = G(:, 1 : 2N + 2), and G4 = G(:, 2N + 3 : 2N + 4).
In order to eliminate the term related to νo, we shall project the equation above to the

nullspace of G4. Let V be the matrix consisting of the columns from an orthonormal basis
of GT

4 , satisfying

VTG4 = O. (23)

We shall note that V is not unique, since pre-multiplying any appropriately sized
matrix on V can guarantee the relationship in (23). A selection of V is from any M − 3
columns from the orthogonal projection matrix of G4, G⊥

4 = I − G4(GT
4 G4)

−1GT
4 . Pre-

multiplying (22) by VT yields

z1 − A1µo = Dε + F∆s, (24)

where

z1 = VTh, A1 = VTG3, D = VTB, F = VTC. (25)

The estimation of µo in terms of WLS is

µ̂ = (AT
1 W1A1)

−1AT
1 W1z1, (26)
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where

W1 = (DQεDT + FQsFT)−1. (27)

Projecting (22) to the nullspace of G4 ignores the constraints among the eliminated
variables and the interested unknowns; thus, the WLS solution above is suboptimal. We
now leverage the constraints to improve the coarse solution above. Denoting the errors in
(26) as ∆µ, ∆p, ∆v, ∆γ, and ∆ι, respectively, we have

po = p − ∆p, (28)

vo = v − ∆v, (29)

γo = γ − ∆γ, (30)

ιo = ι − ∆ι, (31)

where p = µ̂(1 : N), v = µ̂(N + 1 : 2N), γ = µ̂(2N + 1), and ι = µ̂(2N + 2). Substituting
(28)–(31) with the last to elements of ϕo and neglecting the second-order error terms yield

ιo2 − ∥vo∥2 = (ι − ∆ι)2 − (v − ∆v)T(v − ∆v)

≈ ι2 − ∥v∥2 + 2vT∆v − 2ι∆ι, (32)

γo ιo − poTvo = (γ − ∆γ)(ι − ∆ι)− (p − ∆p)T(v − ∆v)

≈ γι − pTv + vT∆p + pT∆v − ι∆γ − γ∆ι. (33)

Substituting (28)–(33) into ϕo and organizing it into matrix form give

ϕo = ϕ − H∆µ , (34)

where

ϕ =



p
v
γ
ι

ι2 − ∥v∥2

γι − pTv

, H =



IN ON 0 0
ON IN 0 0
ON ON 1 0
ON ON 0 1
ON −2vT 0 2ι

−vT pT ι γ

, ∆µ =


∆p
∆v
∆γ
∆ι

. (35)

Inserting (34) into (10) gives a new equation with respect to the estimation errors:

h − Gϕ + GH∆µ = Bε + C∆s, (36)

Similarly, the estimation of ∆µ can be obtained through the WLS as

∆µ̂ = −(HTGTW2GH)−1HTGTW2(h − Gϕ) (37)

where the weighting matrix

W2 = (BQεBT + CQsCT)−1. (38)

Finally, subtracting the estimated error ∆µ̂ from µ̂, we obtain a better solution:

µ̌ = µ̂ − ∆µ̂. (39)

The weighting matrices W1 and W2 depend on unknown parameters to be estimated.
We shall set them as identity matrices to generate a pre-estimation, which will be put
back to update W1 and W2 to obtain a better result. Repeating this one or two times is
sufficient for an accurate solution, as the estimation is not very sensitive to the weighting
matrices [28–30].
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3.3. Robust Iterative Solution

The solution above is not optimal, due to the optimization problem (16)–(18) not consid-
ering the inner relationship between the last two elements of ϕo; thus, the result cannot attain
the CRLB, as shown in Section 5. Ref. [11] formulated the same optimization problem and
solved it using a constrained WLS (CWLS), but the CWLS does not reach the CRLB either.
Ref. [11] applied Taylor expansion to formulate a new problem that refines the accuracy.
Although the final solution has an appropriate mean square error (MSE) for the CRLB level
when the noise is small, it is not sufficiently robust to noise and deviates from the CRLB if the
noise is relatively large. Factor graphing (FG) has been applied to the complex localization
problem [31–33]. Once the problem is formulated through factor graphs, finding an effective
solution using the sum-product algorithm (SPA) operated by message passing is trivial. FG
can provide an iteration solution resilient to noise and initialization [34], which is feasible
to the sequential TOA JLAS problem. FG can converge to the optimal, notwithstanding the
estimator in Section 3.2 being suboptimal.

Factor graphs of sequential TOA JLAS are shown in Figure 2. The rounded rectangles
represent the factor nodes, and the circles are variable nodes. Edges connect factor nodes,
and variable nodes are the arguments of a local function. Let us start from the maximum
likelihood (ML) cost function:

J (µ) = exp
{
(r − r(µ))TW(r − r(µ))

}
, (40)

where

W−1 = Qε +

(
∂ro

∂soT Qs
∂roT

∂so

)
. (41)

In assuming that W is diagonal, although it is commonly not, the conclusion does not
affect this assumption. ML cost (40) can be rewritten as

J (µ) =
M

∏
i=1

exp
{

wi(ri − ri(µ))
2
}

, (42)

where wi is the i-th diagonal element of W . Denote

hi(ςi, µ) = δ(ςi − ri(µ)), (43)

qi(ςi) = exp
{

wi(ri − ςi)
2
}

, (44)

where δ(·) is the Dirac delta function. Figure 2 indicates that the marginal or belief of µ is
the product of all M incoming messages:

B(µ) =
M

∏
i=1

ϖhi→µ(µ). (45)

Since the noise and errors are assumed to be Gaussian, the message from node qi to ςi is

ϖqi→ςi (ςi) ∼ N (ς; ri, wi). (46)

The message ϖqi→ςi (ςi) is forwarded to the function node hi by

ϖςi→hi
(ςi) = ϖqi→ςi (ςi), (47)
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which follows a Gaussian distribution. In applying the SPA, the outgoing message from the
factor node hi to the variable node µ is the integration of the product of hi and all incoming
messages to hi over the variable ςi:

ϖhi→µ(µ) =
∫

hi(ςi, µ)ϖςi→hi
(ςi)dςi. (48)

𝜍1
h1

qi 𝜍i hi

qM 𝜍M hM

The 𝑖-th TOA measurement

...
...

μ

q1

Figure 2. Factor graph of sequential TOA JLAS.

Expanding ri(µ) in hi(ςi, µ) by the first-order Taylor series at the estimate µ̌ results in

ri(µ) ≈ ri(µ̌) + aT
i (µ − µ̌), (49)

where
ai = ∂ri(µ)/∂µ|µ=µ̌, (50)

and

∂ri(µ)

∂µ
= [−lT

i ,−li
Tti, 1, ti], (51)

where

li =
si − µ(1 : N)− µ(N + 1 : 2N)ti

∥si − µ(1 : N)− µ(N + 1 : 2N)ti∥
. (52)

Substituting (49) into (43) approximates hi(ςi, µ) to

hi(ςi, µ) ≈ δ(ςi − (aT
i µ + bi)), (53)

where bi = ri(µ̌)− aT
i µ̌. In considering that ϖςi→hi

(ςi) is Gaussian as well, it is concluded
from (53) that ϖhi→µ(µ) in (48) obeys

ϖhi→µ(µ) ∼ N (µ; mhi→µ, X−1
hi→µ), (54)

where

Xhi→µ = aiwiaT
i , (55)

Xhi→µmhi→µ = aiwi(ri − bi). (56)

Therefore, the marginal (45) is also Gaussian due to (54), where B(µ) ∼ N (µ; µ̂, X−1
µ ), and

Xµ =
M

∑
i=1

Xhi→µ =
M

∑
i=1

aiwiaT
i . (57)
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In denoting

wµ =
M

∑
i=1

aiwi(ri − bi), (58)

the refined estimation of µo is given by

µ̂ = X−1
µ

M

∑
i=1

Xhi→µmhi→µ = X−1
µ wµ. (59)

Starting the iteration following (59) can lead to an inaccurate estimate if the initializa-
tion is poor, resulting in worse values for Xµ and wµ, which can cause divergence. Through
retaining some information from previous iterations in Xµ and wµ, this divergence may
be mitigated, potentially allowing the iteration to converge asymptotically. The strategy
above conducts an improved iteration with a dumping factor κ > 0:

X̃(k)
µ = κX̃(k−1)

µ + X̃k, (60)

w̃(k)
µ = κw̃(k−1)

µ + w̃k, (61)

where X̃(k)
k = ∑M

i=1 a(k)i wia
(k)T

i , w̃(k)
k = ∑M

i=1 a(k)i wi(ri − b(k)i ), a(k)i = ∂ri(µ)/∂µ|µ=µ̌(k−1) , and

b(k)i = ri(µ̌
(k−1))− a(k)

T

i µ̌(k−1). Obviously, the values of X̃(k)
µ and w̃(k)

µ increase with the
iterative progress, creating a potential risk of overflow. In order to avoid the numerical
problem during the iteration, (60) and (61) shall be replaced by

X(k)
µ = ρkX̃(k)

µ , (62)

w(k)
µ = ρkw̃(k)

µ , (63)

where ρk is a modified dumping factor updating during the iteration.

ρk =

{
(1 − κ)/(1 − κk), κ ̸= 1,

1/k, κ = 1.
(64)

As a result, the improved iteration solution, referred to as the robust iterative solution
(RIS), is

µ̂(k) = X(k)
µ

−1
w(k)

µ . (65)

There are two conditions for exiting the iteration: (1) the residual threshold is reached,
∥µ̂(k)(1 : 2N) − µ̂(k−1)(1 : 2N)∥ < ϵ, where ϵ is a small number; or (2) the number of
iterations exceeds the set of upper bound K. Finally, the estimation is then given by
µ̃ = µ̂(k).

The introduction of κ into (60)–(61) alleviates the risk of divergence, although it may
decelerate the convergence. Compared to the GN method that suffers from rapid divergence
to the optimal if the initial guess is poor or the noise/error is relatively large, the proposed
RIS provides a better guarantee of convergence. An example is shown in Figure 3 when
κ = 1.



Appl. Sci. 2024, 14, 6069 12 of 25

0 20 40 60 80 100

Iteration Number

100

105

1010

1015

1020

1025

1030

1035

E
rr

or
(m

)

GN
RIS

Figure 3. Example of divergence behavior: position error of each iteration.

4. Analysis
4.1. CRLB Derivation

The CRLB serves as a standard measure for assessing the accuracy of an unbiased esti-
mator. Although the estimators for JLAS are biased, their biases asymptotically approach
zeros if the noise and errors are not significant. Different from the CRLB, the Ziv-Zakai
bound (ZZB) provides a more comprehensive lower bound on the MSE, tightly covering a
wide range of noise [35–37]. However, the derivation and computation of the ZZB can be
complex, making it less accessible for practical use in some situations. Thus, in this paper,
we utilize the CRLB as a reference benchmark [38]. The CRLB of JLAS using sequential
one-way TOAs was presented in [11]. We used for the comparison convenience. The
expression of CRLB is

CRLB(θo) =

(
∂moT

∂θo Q
∂mo

∂θoT

)−1

, (66)

where Q = Blkdiag{Qε, Qs}, and Blkdiag{· · · } is the block diagonal operator. The partial
derivative of mo with respect to θo is

∂mo

∂θoT =


∂ro

∂µoT
∂ro

∂soT

∂so

∂µoT
∂so

∂soT

 =

[
J S

OM×(2N+2) IMN

]
, (67)

where

mo =
[
roT , soT

]T
, (68)

θo = [µoT , soT ]T = [poT , voT , γo, ιo, soT ], (69)

and so = [so
1

T , . . . , so
M

T ]T .
The blocks in (67) are

J(i, :) =
[
−loT

i ,−loT
i ti, 1, ti

]
, (70)

where

lo
i =

so
i − po − voti

∥so
i − po − voti∥

, i = 1, . . . , M, (71)
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and

S =


loT
1

loT
2

. . .
loT
M

. (72)

In applying block inverse lemma [39] to (66), the upper-left block is the CRLB of µo:

CRLB(µo) =

(
∂ro

∂µoT W
∂roT

∂µo

)−1

. (73)

The CRLB above indicates the best achievable MSE performance of one-way sequential
TOA-based localization. The optimization of the AN placement may improve the geometric
dilution of precision and lower the CRLB [40], which can also realize better localization
accuracy for the UN. The discussion of placement optimization is out of the scope of this
paper, but it is valuable to be studied further in the future.

4.2. Theoretical Error Analysis

The analytical performance of the proposed RIS is investigated in this part.
Equations (55) and (56) can be rewritten in matrix form:

Xµ = ATWA, (74)

wµ = ATW(r − b), (75)

where A = [a∗1 , . . . , a∗M]T , a∗i = ∂ri(µ)/∂µ|µ=µ̃∗ , b = [b∗1 , . . . , b∗M]T , and b∗i = ri(µ̃
∗)− aT

i µ̃∗.
µ̃∗ represents the solution that reaches one of the threshold conditions. When the noise
is relatively small so the convergence approaches, we have X̃k ≃ Xµ and w̃k ≃ wµ. The
iteration converges after K∗ times, obtaining the final values of (62)–(63):

X(K∗)
µ ≈ c(K∗) · ρK∗ATWA = ATWA, (76)

w(K∗)
µ ≈ c(K∗) · ρK∗ATW(r − b) = ATW(r − b), (77)

where c(K∗) = (1 − κK∗
)/(1 − κ) for κ ̸= 1 and K∗ if κ = 1. In this case, the converged

solution is

µ̃ = µ̂(K∗) ≈ (ATWA)−1ATW(r − b), (78)

after substituting (76) and (77) into (65). In using (49), bi is approximated by

bi = ri(µ̃
∗)− aT

i µ̂1 ≈ ri(µ
o)− aT

i µo, (79)

where µ is asymptotically replaced by µo. Substituting (79) into (78) leads to

µ̃ ≈ (ATWA)−1ATW(r − r(µo)) + µo. (80)

Moving the true value to the left side, the estimation error is

δµ = µ̃ − µo ≈ (ATWA)−1ATW(r − ro), (81)

leading to the bias and covariance matrix of the RIS as

bias(µ̃) = E[δµ], (82)

cov(µ̃) = E[δµδµT ] ≈ (ATWA)−1. (83)
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When the noise is not significant so that µ̃ ≈ µo holds, the bias (82) approximately
equals zero. From (50), we have A ≈ ∂ro

∂µoT . Comparing (83) with (73) can conclude that the
covariance of the proposed RIS attains the CRLB if the noise and error are not significant.

4.3. Complexity Analysis

We evaluate the computational complexity of the proposed RIS at each iteration.
Let N represent the dimension of localization. Calculating a(k)i requires 2N2 + 2N + 2

multiplications and N2 + 3N − 2 additions, while b(k)i involves 3N + 1 multiplications

and 4N + 3 additions. The computation of X̃(k)
µ demands M(N2 + N) multiplications and

MN2 + N2 additions. The inversion of X̃(k)
µ has a complexity of O(N3). Equation (65)

necessitates MN + 2N2 + M multiplications and N2 + M − N additions. Consequently,
the overall computational cost per iteration of our method is O(MN2). This complexity is
comparable to that of the Gauss–Newton iteration, which is also O(MN2).

5. Numerical Results

Consider a large warehouse that uses automatic guided vehicles (AGVs) for cargoes.
The AGVs are treated as independent UNs that will locate themselves. To avoid network
overload and lower the energy consumption, the communication between UNs and ANs
is one-way and sequential, so the one-way sequential TOAs are measurable. Therefore,
simulation experiments shall be carried out in a scenario where N = 2. Ten anchor nodes
are deployed at so

1 = [0, 0]T m, so
2 = [0, 800]T m, so

3 = [500, 800]T m, so
4 = [700, 600]T m,

so
5 = [900, 400]T m, so

6 = [700, 200]T m, so
7 = [500, 0]T m, so

8 = [0, 400]T m, so
9 = [250, 800]T m,

and so
10 = [250, 0]T m. The true position of the user node is denoted as po = [400, 400]T m.

The geometric deployment is shown in Figure 4. The velocity of a UN is randomly gen-
erated within the range of 0 to 50 m/s, and the moving direction is random as well. ANs
transmit signals sequentially with a fixed time interval of 5 ms; thus, ti = 5(i − 1)× 10−3 s.
For each simulation test, the initial clock offset and clock drift of the UN are selected
from uniform distributions. Specifically, the initial clock offset γ follows a distribution
of U (−10−5, 10−5) s, while the clock drift ι follows a distribution of U (−20, 20) parts per
million (ppm). The known clock offsets γi, i = 1, 2, . . . , M between ANs were also random
in each test, obeying U (−10−5, 10−5) s. The covariance matrices of the measurement noise
and anchor position errors were set as Qε = σ2IM and Qs = σ2

s I2M. Comparisons were con-
ducted among the proposed CFPS (39), RIS (65), MLE implemented using GN iteration [9],
and Guo’s CFJLAS [11]. Both the RIS and GN were initialized through the CFPS. The
performance was evaluated using the RMSE and bias. Additionally, we utilized the CRLB
as a benchmark for the performance evaluation. The ensemble runs for assessing the RMSE
and bias was T = 1000, unless specified otherwise. The RMSE and bias are defined as

RMSE(p) =

√√√√ 1
T

T

∑
t=1

∥p(t) − po∥2 (84)

RMSE(v) =

√√√√ 1
T

T

∑
t=1

∥v(t) − vo∥2 (85)

bias(p) =

√√√√ 1
T

T

∑
t=1

∥p(t) − po∥ (86)

bias(v) =

√√√√ 1
T

T

∑
t=1

∥v(t) − vo∥ (87)
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where p(t) and v(t) are the estimation result at the t-th test. The maximum number of
iterations for the RIS and GN is K = 100,000, and the iteration residual threshold was set as
ϵ = 0.1.
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(250,0)

UN
(400,400)

Figure 4. ANs and UN in the simulation scene.

We first evaluated the RMSE and bias performance under varying noise levels. The
position error level of the ANs was fixed at σs = 0.5 m. After testing the dumping
factor κ from 0 to 5, the results allowed us to determine the optimal selection. We chose
κ = 1 to yield the most favorable results, striking a balance between reducing divergence
and maintaining convergence speed. The performance in terms of the RMSE and bias is
illustrated in Figures 5–8. The compared solutions can achieve CRLB accuracy when the
noise is small, except the CFPS. It is reasonable that the CFPS ignores the inner connection
between the redundant variables. The RIS can keep the CRLB’s level of accuracy when
the noise reaches 30 dB, and slightly deviates from the CRLB if the noise increases further.
The RMSE of the RIS is about 7 dB lower than that of CFJLAS when 10 log10(σ

2) = 35 dB.
The GN diverges from the CRLB when the noise level surpasses 25 dB, exhibiting a lower
noise tolerance compared to the RIS. CFJLAS performs comparably to the RIS and GN
when the noise is below 20 dB, but its RMSE deteriorates rapidly as the noise exceeds 20 dB.
Regarding the bias, the RIS, GN, and CFJLAS behave at the same level if the noise is not
significant. CFJLAS gradually deviates from the others, due to it applying the first-order
Taylor expansion that drops the noise terms higher than the first order. The influence
of dropping higher-order noise terms is reasonable and does not affect the performance
since they are not significant if the noise is relatively small. However, when the noise is
large where the higher-order noise terms cannot be neglected, the approximation error
may dominate the performance, leading to rapid deterioration. The GN suffers from the
divergence problem after 30 dB. The RIS is the best, and the bias of the RIS is better than
that of its counterparts in large noise regions.

Next, we investigate the performance behavior as the position errors of the ANs
change. The noise is fixed at 0 dB, and the variance of the AN position error varies from
10 to 105 m2. The RMSE and bias of each algorithm are illustrated in Figures 9–12. When
the error level is below 103.5, the RMSE of the RIS, GN, and CFJLAS achieve the CRLB.
However, if σ2

s > 103.5 m2, the RMSE of the GN diverges from the CRLB, and CFJLAS
begins to deviate from the CRLB. The RIS maintains a performance close to the CRLB,
demonstrating that it is better than the GN and CFJLAS. The bias behaves similar to the
RMSE. The biases of the RIS, GN, and CFJLAS are comparable under the small-error
condition, but the RIS shows its superiority if the error is significant.
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Figure 5. The RMSE of the UN location estimation as the noise power increases.
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Figure 6. The bias of the UN location estimation as the noise power increases.
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Figure 7. The RMSE of the UN velocity estimation as the noise power increases.
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Figure 8. The bias of the UN velocity estimation as the noise power increases.
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Figure 9. The RMSE of the UN location estimation as the position error of the AN increases.
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Figure 10. The bias of the UN location estimation as the position error of the AN increases.
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Figure 11. The RMSE of the UN velocity estimation as the position error of the AN increases.
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Figure 12. The bias of the UN velocity estimation as the position error of the AN increases.

The simulations validated that the RIS is robust to measurement noise and position
errors of ANs compared to the methods. We then investigated the performance of the RIS
through convergence, comparing it to the GN, the other iterative solution. Convergence
is obtained if the residual between adjacent iterations reaches the threshold ∥µ̂(k+1)(1 :
2N)− µ̂(k)(1 : 2N)∥ < ϵ. ℘ϵ is the probability of attaining the threshold. The maximum
number of iterations was set to 100,000, and the threshold ϵ was set to 0.01. In each trial,
the initial estimate µ(0) was randomly generated as µ(0) = µo + e∆§, where e represents the
error coefficient. ∆§ is a 2N + 2-dimensional random vector, where the 1 to N, N + 1 to 2N,
2N + 1-th, and 2N + 2-th elements are uniformly distributed within the range (−0.5, 0.5) m,
(−0.05, 0.05) m/s, (−5, 5) ns, and (−0.05, 0.05) ppm. e was fixed at 100. The error σs was
set as 0.5 m. Figure 13 reveals the convergence probability as the noise level increases.
When the noise is relatively low, such as below 35 dB, both the RIS and GN converge to the
threshold ϵ with probability 1. However, as the noise increases, the RIS still maintains a
significantly high convergence probability that is over 80%. Compared to the GN’s results,
the RIS’s results highlight the superior robustness of the RIS and explain the reason why
the RMSEs in Figures 5 and 9 of the RIS are the best.
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Figure 13. Convergence probability as the noise power increases.

The RIS was also found to be resilient to an initial guess. The next simulation fixed
the noise and AN position error levels at 10 dB and 0.25 m2 and examined the influence of
the initialization error by varying e from 10 m to 104 m. The other parameters remained
the same as in the previous settings. The convergence probability is shown in Figure 14.
Figure 14 indicates that the RIS exhibits a higher convergence probability, even when the
initial point is distant from the true value. For instance, when e equals 103.5 m, the RIS
method still achieves a convergence probability of 1, whereas the GN method fails to do so.
This simulation experiment validates that the RIS is robust to an initial guess. Therefore,
although the CFPS cannot provide an accurate solution to start the RIS, it can converge to
the optimal and perform better than the GN.
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Figure 14. Influence of initialization error on convergence.

We also evaluated the performance as the number of ANs varies. The AN positions
were selected from Table 3, with the first M ANs used for testing. The noise power and
position error of ANs are set to σ2 = 0.1 m2 and σ2

s = 1 m2, respectively. Notably, the
number of unknowns in the first stage is 2N + 4, and the number of equations is M − 1.
Therefore, the minimum number of ANs must satisfy M − 1 ≥ 2N + 4. For the simulation
scenario with N = 2, we start with M = 9 ANs. Figures 15–18 show the RMSE and bias
performances of all compared solutions, which improve as the number of ANs increases.
The accuracy of theh CFPS declines significantly when M is less than 10, yet it still provides
a satisfactory initial guess, ensuring that the RIS converges to an optimum. Processing
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times are depicted in Figure 19, confirming the analytical results in Section 4.3. The
computational complexity rises with an increasing number of ANs. It is important to note
that the processing times for the RIS and GN are similar in Figure 19, differing from those
in Table 4 of Section 5. This is because both the RIS and GN converge after a similar number
of iterations due to the relatively low noise power and position error.

Table 3. Positions of ANs

Anchor Position Anchor Position

AN #1 [0, 0]Tm AN #8 [0, 400]Tm
AN #2 [0, 800]Tm AN #9 [250, 800]Tm
AN #3 [500, 800]Tm AN #10 [250, 0]Tm
AN #4 [700, 600]Tm AN #11 [0, 600]Tm
AN #5 [900, 400]Tm AN #12 [0, 200]Tm
AN #6 [700, 200]Tm AN #13 [400, 800]Tm
AN #7 [500, 0]Tm AN #14 [600, 450]Tm

9 10 11 12 13 14

Number of ANs

1

2

3

4

5

6

7

8

9

R
M

S
E

(p
) 

(m
)

CFPS
RIS
GN
CFJLAS
CRLB

Figure 15. RMSE of the UN location estimation as the number of ANs increases.
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Figure 16. Bias of the UN location estimation as the number of ANs increases.
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Figure 17. RMSE of the UN velocity estimation as the number of ANs increases.
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Figure 18. Bias of the UN velocity estimation as the number of ANs increases.
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Table 4. Processing times of compared solutions.

Method RIS GN CFPS CFJLAS

Times (s) 60.2648 26.6622 1.8245 2.7523
Rel. Times 21.89 9.69 0.66 1

The computational times of generating the results in Figures 5–8 were recorded by
Matlab 2022 on a typical personal computer with an AMD 5800H CPU @3.2 GHz, with 16 G
of RAM and an AMD Radeon Vega8 GPU. The processing times and relative processing
times are depicted in Table 4. Although the RIS is more robust than the GN in measurement
noise, AN position error, and initial guess, the processing times of the RIS and GN are
comparable. The RIS requires 226% more time than the GN, but the computational load is
on the same order of magnitude. Again, we confirm the superior performance of the RIS,
particularly under large-noise/error conditions or poor initialization, but the complexity
is manageable.

6. Conclusions

This study investigated the JLAS problem for mobile UNs using sequential one-way
TOA measurements. We formulate the JLAS as a CWLS optimization problem, addressing
it by projecting the equation into the nullspace of the redundant variables introduced
during pseudo-linearization, resulting in a coarse solution. A refinement step follows to
enhance accuracy, and this solution is termed CFPS. As CFPS is suboptimal, we propose an
RIS from the perspective of FG. Through introducing a damping factor into the iteration,
the robustness to measurement noise, position errors of the ANs, and initial guess are
significantly enhanced. Theoretical analysis proves that the proposed RIS can attain the
CRLB when the noise and errors are mild. Simulations validated the analytical results
and demonstrated the superiority of the RIS in terms of the RMSE, bias, and convergence
probability. The RIS can maintain CRLB-level RMSEs even when the noise or error is
relatively large and exhibits a lower bias than current solutions. It also has a higher
probability of convergence than the GN, making it less sensitive to initial guesses. Despite
the RIS’s better performance compared to existing solutions, its computational complexity
does not increase significantly, remaining on the same magnitude as the GN and CFJLAS.
This work assumed that ANs are static and that the clock offset of each AN is perfectly
known. Future research interests may include JLAS using moving ANs, anchor node
placement optimization, and mitigating unknown AN clock offsets. Another challenge is
high AN position uncertainty or high measurement noise, which can occur in practical
applications. While the proposed RIS significantly improves robustness to AN position
uncertainty and measurement noise, further study is needed in this area.
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Notations

Symbol Explanation
lowercase a scalar
bold lowercase x vector
bold uppercase X matrix
∥x∥ Euclidean norm of a vector
x(i : j) subvector constructed by the i-th to j-th elements of x
x(i) the i-th element of x
X(:, i) the i-th column of the matrix X
δ(·) Dirac delta function
M number of ANs
N dimension of the ANs and UNs
si, γi, ιi position, clock offset, and clock drift of AN #i
p, v UN’s position and velocity vector
γ, ι UN’s clock offset and skew
ri measured TOA from AN #i
τ collective form of ri
∆a the error of vector a
ti time interval from the beginning of the TD broadcast round to

AN #i’s transmission time
εi, ∆si measurement noise and position error from AN #i
σ2

i , σ2
si

variance of measurement noise and position error for AN #i
ε, ∆s collective of noise εi and error ∆si

ϕ parameter vector, ϕ =
[
pT , vT , γ, ι, ι2 − ∥v∥2, γι − pTv

]T

Qε, Qs covariance matrices of ε and ∆s, respectively
li unit vector from the UN to AN #i
OM×N the M × N zero matrix
IM the M × M identity matrix

Acronyms

Acronyms Full words
TOA Time-of-arrival
JLAS Joint localization and synchronization
UNs User nodes
ANs Anchor nodes
CRLB Cramér-Rao lower bound
RIS Robust iterative solution
RMSE Root mean square error
RF Radio frequency
WSNs Wireless sensor networks
TOF Time-of-flight
IoT Internet of Things
FD Frequency division
CD Code division
TD Time division
WLS Weighted least squares
SDP Semidefinite programming
TSWLS Two-step weighted least squares
MLE Maximum likelihood estimator
GN Gauss-Newton
CFPS Closed-form projection solution
CWLS Constrained WLS
MSE Mean-square error
FG Factor graph
SPA Sum-product algorithm



Appl. Sci. 2024, 14, 6069 24 of 25

ML Maximum likelihood
ZZB Ziv-Zakai bound
AGVs Automatic guided vehicles
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