Statistical Characterization of Full-Scale Thermophilic Biological Systems to Inform Process Optimization
<p>Scheme of the TMR and sampling points (X). TBR: Thermophilic biological reactor; UF: Ultrafiltration.</p> "> Figure 2
<p>Violin Plot of the loads [kg/week] fed to the TMR relating to the following pollutants: COD, Ntot, N-NO<sub>3</sub><sup>−</sup>, N-NH<sub>4</sub><sup>+</sup>, N<sub>org</sub>, TP, TAS, MBAS.</p> "> Figure 3
<p>Violin Plot of the loads in output to the TBR relating to the parameters COD, Ntot, N-NO<sub>x</sub>, N-NH<sub>4</sub><sup>+</sup>, Norg, Ptot, TAS, MBAS [kg/week].</p> "> Figure 4
<p>Time series decomposition of the loads fed to the TBR relating to the parameters COD, Ntot, Ptot, MBAS, N−NH<sub>4</sub><sup>+</sup>, Norg, N−NO3, TAS [kg/week]. Each subplot shows the original data (<b>upper plot</b>), the long-term trend (<b>middle plot</b>) and monthly boxplot over the years, where the blue line shows the boxplots and the red lines the average value (<b>lower plot</b>).</p> ">
Abstract
:1. Introduction
- The application of advanced descriptive statistics (violin graphs) to describe the variability of each parameter monitored over the five years; this allowed reporting univariate probability distributions of the values observed based on the density profile kernel estimation;
- Correlation analysis (Spearman and Pearson correlation matrices) of the nitrogenous forms;
- The application of multivariate statistical analysis to evaluate the correlation between the different pollutants released and the energy and oxygen consumption of the plant to provide a useful tool to optimize TMR;
- The reconstruction of the trends of the parameters studied taking into account periodic and random components [23].
- In this work, we present a case-study that analyzes the data coming from monitoring a full-scale aerobic thermophilic biological plant in the period 2018 (last trimester)—2023 (first trimester); along this period the plant treated different high-strength AW in continuous mode.
2. Materials and Methods
2.1. TMR Configuration
2.2. Monitoring Plan
2.3. Data Processing
3. Results and Discussion
3.1. Monitoring of the Biological Thermophilic System-Violin Plot
3.2. Data Analysis
3.3. Multivariate Linear Regressions
3.4. Time Series Decomposition
- Decomposition of time series: we have assumed an additive decomposition model, which assumes that a time series Y can be written as follows: Y = T + S + R, where T is a trend component, S is a seasonal component and R is a random component. For finding the components we have exploited the algorithm called STL (“Seasonal and Trend decomposition using Loess”) [29] a robust approach able to deal with handle any type of seasonality, and capable of handling outliers and non-linear trends. In our case, we looked for yearly seasonality (i.e., we wanted to highlight if there were regularities in the loadings of the same month over different years).
- Data visualization: STL decomposition was used to visualize data by plotting long term trends and monthly seasonality.
4. Future Outlooks and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ata, R.; Merdan, G.F.; Töre, G.Y. Activated Sludge Process for Refractory Pollutants Removal. In Removal of Refractory Pollutants from Wastewater Treatment Plants; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Buttiglieri, G.; Knepper, T.P. Removal of Emerging Contaminants in Wastewater Treatment: Conventional Activated Sludge Treatment. In Emerging Contaminants from Industrial and Municipal Waste: Removal Technologies; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–35. [Google Scholar]
- Gurung, K.; Ncibi, M.C.; Fontmorin, J.M. Incorporating Submerged MBR in Conventional Activated Sludge Process for Municipal Wastewater Treatment: A Feasibility and Performance Assessment. J. Membr. Sci. Technol. 2016, 6, 1000158. [Google Scholar] [CrossRef]
- Camargo, F.P.; Sérgio Tonello, P.; dos Santos, A.C.A.; Duarte, I.C.S. Removal of Toxic Metals from Sewage Sludge through Chemical, Physical, and Biological Treatments—A Review. Water Air Soil Pollut. 2016, 227, 433. [Google Scholar] [CrossRef]
- Robinson, S.; Abdullah, S.Z.; Bérubé, P.; Le-Clech, P. Ageing of Membranes for Water Treatment: Linking Changes to Performance. J. Membr. Sci. 2016, 503, 177–187. [Google Scholar] [CrossRef]
- Lackner, K.S.; Wendt, C.H.; Butt, D.P.; Joyce, E.L.; Sharp, D.H. Carbon Dioxide Disposal in Carbonate Minerals. Energy 1995, 20, 1153–1170. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Nghiem, L.D.; Liu, Y.; Ni, B.; Hai, F.I. Insight into Greenhouse Gases Emissions from the Two Popular Treatment Technologies in Municipal Wastewater Treatment Processes. Sci. Total Environ. 2019, 671, 1302–1313. [Google Scholar] [CrossRef]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G. Treatment of High Strength Pharmaceutical Wastewaters in a Thermophilic Aerobic Membrane Reactor (TAMR). Water Res. 2014, 63, 190–198. [Google Scholar] [CrossRef]
- Simstich, B.; Beimfohr, C.; Horn, H. Lab Scale Experiments Using a Submerged MBR under Thermophilic Aerobic Conditions for the Treatment of Paper Mill Deinking Wastewater. Bioresour. Technol. 2012, 122, 11–16. [Google Scholar] [CrossRef]
- Yang, S.-J.; Kataeva, I.; Hamilton-Brehm, S.D.; Engle, N.L.; Tschaplinski, T.J.; Doeppke, C.; Davis, M.; Westpheling, J.; Adams, M.W.W. Efficient Degradation of Lignocellulosic Plant Biomass, without Pretreatment, by the Thermophilic Anaerobe “Anaerocellum thermophilum” DSM 6725. Appl. Environ. Microbiol. 2009, 75, 4762–4769. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Manenti, S.; Todeschini, S.; Bertanza, G.; Pedrazzani, R. Treatment of Aqueous Wastes by Means of Thermophilic Aerobic Membrane Reactor (TAMR) and Nanofiltration (NF): Process Auditing of a Full-Scale Plant. Environ. Monit. Assess. 2019, 191, 708. [Google Scholar] [CrossRef]
- LaPara, T.M.; Nakatsu, C.H.; Pantea, L.; Alleman, J.E. Phylogenetic Analysis of Bacterial Communities in Mesophilic and Thermophilic Bioreactors Treating Pharmaceutical Wastewater. Appl. Environ. Microbiol. 2000, 66, 3951–3959. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Setti, M.; Barbieri, G.; Frattarola, A. Integrating Novel (Thermophilic Aerobic Membrane Reactor-TAMR) and Conventional (Conventional Activated Sludge-CAS) Biological Processes for the Treatment of High Strength Aqueous Wastes. Bioresour. Technol. 2018, 255, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Caccamo, F.M.; Argiolas, S.; Bellazzi, S.; Baldi, M.; Bertanza, G. Strong Minimization of Biological Sludge Production and Enhancement of Phosphorus Bioavailability with a Thermophilic Biological Fluidized Bed Reactor. Process Saf. Environ. Prot. 2021, 155, 262–276. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Todeschini, S.; Bellazzi, S.; Carnevale Miino, M.; Caccamo, F.M.; Calatroni, S.; Baldi, M.; Manenti, S. Understanding the Influence of Diverse Non-Volatile Media on Rheological Properties of Thermophilic Biological Sludge and Evaluation of Its Thixotropic Behaviour. Appl. Sci. 2022, 12, 5198. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Pedrazzani, R.; Bellazzi, S.; Carnevale Miino, M.; Caccamo, F.M.; Baldi, M.; Abbà, A.; Bertanza, G. Numerical Analysis of a Full-Scale Thermophilic Biological System and Investigation of Nitrate and Ammonia Fates. Appl. Sci. 2022, 12, 6952. [Google Scholar] [CrossRef]
- Boldrin, A.; Neidel, T.L.; Damgaard, A.; Bhander, G.S.; Møller, J.; Christensen, T.H. Modelling of Environmental Impacts from Biological Treatment of Organic Municipal Waste in EASEWASTE. Waste Manag. 2011, 31, 619–630. [Google Scholar] [CrossRef]
- Aguado, D.; Rosen, C. Multivariate Statistical Monitoring of Continuous Wastewater Treatment Plants. Eng. Appl. Artif. Intell. 2008, 21, 1080–1091. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.; Sun, Z.; Huang, D. Statistical Monitoring of Wastewater Treatment Plants Using Variational Bayesian PCA. Ind. Eng. Chem. Res. 2014, 53, 3272–3282. [Google Scholar] [CrossRef]
- Wang, X.; Ratnaweera, H.; Holm, J.A.; Olsbu, V. Statistical Monitoring and Dynamic Simulation of a Wastewater Treatment Plant: A Combined Approach to Achieve Model Predictive Control. J. Environ. Manag. 2017, 193, 1–7. [Google Scholar] [CrossRef]
- O’Brien, G.J.; Teather, E.W. A Dynamic Model for Predicting Effluent Concentrations of Organic Priority Pollutants from an Industrial Wastewater Treatment Plant. Water Environ. Res. 1995, 67, 935–942. [Google Scholar] [CrossRef]
- Arismendy, L.; Cárdenas, C.; Gómez, D.; Maturana, A.; Mejía, R.; Quintero M., C.G. Intelligent System for the Predictive Analysis of an Industrial Wastewater Treatment Process. Sustainability 2020, 12, 6348. [Google Scholar] [CrossRef]
- Piterina, A.V.; Bartlett, J.; Pembroke, J.T. Morphological Characterisation of ATAD Thermophilic Sludge; Sludge Ecology and Settleability. Water Res. 2011, 45, 3427–3438. [Google Scholar] [CrossRef]
- Rice, E.W.; Bridgewater, L.; American Public Health Association (Eds.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Aitchison, J.; Lauder, I.J. Kernel Density Estimation for Compositional Data. Appl. Stat. 1985, 34, 129. [Google Scholar] [CrossRef]
- Azami, H.; Sarrafzadeh, M.H.; Mehrnia, M.R. Influence of Sludge Rheological Properties on the Membrane Fouling in Submerged Membrane Bioreactor. Desalin. Water Treat. 2011, 34, 117–122. [Google Scholar] [CrossRef]
- Siwek, K.; Osowski, S. Data Mining Methods for Prediction of Air Pollution. Int. J. Appl. Math. Comput. Sci. 2016, 26, 467–478. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Golyandina, N.; Zhigljavsky, A. Singular Spectrum Analysis for Time Series; SpringerBriefs in Statistics; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-34912-6. [Google Scholar]
- Lopetegui, J.; Sancho, L. Aerated Thermophilic Biological Treatment with Membrane Ultrafiltration: Alternative to Conventional Technologies Treating Paper Mill Effluents. Water Supply 2003, 3, 245–252. [Google Scholar] [CrossRef]
- Pianosi, F.; Wagener, T. Distribution-Based Sensitivity Analysis from a Generic Input-Output Sample. Environ. Model. Softw. 2018, 108, 197–207. [Google Scholar] [CrossRef]
- Fatone, F.; Di Fabio, S.; Bolzonella, D.; Cecchi, F. Fate of Aromatic Hydrocarbons in Italian Municipal Wastewater Systems: An Overview of Wastewater Treatment Using Conventional Activated-Sludge Processes (CASP) and Membrane Bioreactors (MBRs). Water Res. 2011, 45, 93–104. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Molinari, R. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability 2020, 12, 7538. [Google Scholar] [CrossRef]
- Mañas, A.; Biscans, B.; Spérandio, M. Biologically Induced Phosphorus Precipitation in Aerobic Granular Sludge Process. Water Res. 2011, 45, 3776–3786. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.-J.; Ma, W.-L.; Xu, T.-F.; Ding, Y.; Zhao, X.; Li, W.-L.; Liu, L.-Y.; Song, W.-W.; Li, Y.-F.; Zhang, Z.-F. Removal Characteristic of Surfactants in Typical Industrial and Domestic Wastewater Treatment Plants in Northeast China. Ecotoxicol. Environ. Saf. 2018, 153, 84–90. [Google Scholar] [CrossRef]
- Chang, I.-S.; Chung, C.-M.; Han, S.-H. Treatment of Oily Wastewater by Ultrafiltration and Ozone. Desalination 2001, 133, 225–232. [Google Scholar] [CrossRef]
- Arogo, J.; Westerman, P.W.; Heber, A.J.; Robarge, W.P.; Classen, J.J. Ammonia in Animal Production—A Review. In Proceedings of the 2001 Annual Meeting of the American Society of Association Executives, Philadelphia, PA, USA, 4–7 August 2001. [Google Scholar]
- de Winter, J.C.F.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman Correlation Coefficients across Distributions and Sample Sizes: A Tutorial Using Simulations and Empirical Data. Psychol. Methods 2016, 21, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley and Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Cheng, T.; Dairi, A.; Harrou, F.; Sun, Y.; Leiknes, T. Monitoring Influent Conditions of Wastewater Treatment Plants by Nonlinear Data-Based Techniques. IEEE Access 2019, 7, 108827–108837. [Google Scholar] [CrossRef]
Parameter | 2018 [n = 20] | 2019 [n = 52] | 2020 [n = 48] | 2021 [n = 52] | 2022 [n = 52] | 2023 [n = 13] | 2018–2023 [n = 237] |
---|---|---|---|---|---|---|---|
COD IN [kg week−1] µ COD [%] | 20,842 ± 3332 78.8 ± 4.3 | 19,174 ± 1756 80.9 ± 2.3 | 20,038 ± 1671 73.4 ± 2.9 | 25,735 ± 2508 66.2 ± 3.0 | 26,502 ± 2531 63.1 ± 3.1 | 25,484 ± 2971 74.1 ± 1.9 | 22,928 ± 1061 71.8 |
N-NOX IN [kg week−1] µ N-NOX [%] | 138.8 ± 72.8 73.2 ± 10.3 | 235.0 ± 64.3 79.4 ± 6.9 | 277.9 ± 141.7 76.6 ± 9.5 | 849.6 ± 157.6 89.1 ± 3.4 | 575.4 ± 187.7 81.0 ± 8.6 | 789.7 ± 330.8 79.3 ± 7.0 | 469 ± 73 81.3 |
N-NH4+ IN [kg week−1] µ N-NH4+ | 208.3 ± 53.7 −51.3 ± 8.3 | 141.9 ± 34.6 −58.5 ± 7.3 | 111.7 ± 36.8 −66.3 ± 6.7 | 123.6 ± 47.8 −51.5 ± 9.3 | 132.9 ± 24.7 −52.5 ± 8.1 | 260.7 ± 63.7 −16.7 ± 3.2 | 140 ± 17.1 −55.8 |
Norg IN [kg week−1] µ Norg [%] | 688.5 ± 190.9 43.2 ± 13.6 | 564.5 ± 88.4 54.0 ± 5.9 | 749.6 ± 160.1 39.8 ± 8.6 | 894.8 ± 137.0 30.9 ± 6.7 | 989.3 ± 182.0 32.8 ± 5.7 | 989.3 ± 182.0 29.0 ± 4.4 | 776 ± 69 40.5 |
TN IN [kg week−1] µ Ntot [%] | 1020.1 ± 210.7 24.7 ± 10.7 | 950.8 ± 127.5 34.4.6 ± 6.2 | 1166.3 ± 222.9 42.7 ± 8.2 | 1834.6 ± 207.2 41.2 ± 6.0 | 1662.8 ± 205.0 39.1 ± 5.1 | 1624.5 ± 250.4 23.0 ± 9.2 | 1376 ± 96 37.5 |
TP IN [kg week−1] µ Ptot [%] | 62.1 ± 27.9 61.9 ± 12.1 | 103.2 ± 20.9 65.2 ± 6.7 | 65.7 ± 18.2 58.8 ± 8.1 | 72.9 ± 14.2 49.9 ± 8.2 | 76.9 ± 15.2 45.9 ± 6.8 | 17.5 ± 14.9 22.9 ± 9.2 | 75 ± 8 55.3 |
TAS IN [kg w−1] µ TAS [%] | 246.3 ± 66.9 85.2 ± 5.2 | 475.7 ± 81.3 91.2 ± 3.2 | 402.9 ± 60.5 84.6 ± 6.1 | 605.6 ± 82.7 69.4 ± 5.9 | 639.5 ± 100.5 54.9 ± 6.4 | 101.1 ± 40.3 40.8 ± 3.9 | 486 ± 41 77.4 |
MBAS IN [kg week−1] µ MBAS [%] | 115.0 ± 63.3 82.1 ± 9.3 | 252.0 ± 75.4 91.2 ± 3.0 | 311.9 ± 67.9 89.2 ± 3.9 | 325.0 ± 74.8 76.6 ± 6.0 | 279.3 ± 52.1 80.6 ± 4.4 | 52.8 ± 24.8 70.9 ± 9.8 | 267 ± 32 84.0 |
Norg IN | TN IN | N-NH4+ IN | N-NOx IN | |
---|---|---|---|---|
Norg IN | 1.00 | \ | \ | \ |
TN IN | 0.57 | 1.00 | \ | \ |
N-NH4+ IN | −0.06 | 0.20 | 1.00 | \ |
N-NOx IN | −0.17 | 0.66 | 0.10 | 1.00 |
Norg IN | TN IN | N-NH4+ IN | N-NOx IN | |
---|---|---|---|---|
Norg IN | 1.00 | \ | \ | \ |
TN IN | 0.45 | 1.00 | \ | \ |
N-NH4+ IN | −0.12 | 0.25 | 1.00 | \ |
N-NOx IN | −0.19 | 0.69 | 0.24 | 1.00 |
COD, in [kg/week] | Norg, in [kg/week] | TN, in [kg/week] | N−NH4, in [kg/week] | N−NO3, in [kg/week] | TP, in [kg/week] | TAS, in [kg/week] | MBAS, in [kg/week] | KgO2 in [kgO2/week] | |
---|---|---|---|---|---|---|---|---|---|
N | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
B | \ | 0.1382 | \ | \ | \ | \ | \ | \ | |
Pval | 0.0175 | ||||||||
Rmse | 0.1226 | ||||||||
COD, in [kg/week] | N−Org, in [kg/week] | N−tot, in [kg/week] | N−NH4, in [kg/week] | N−NO3, in [kg/week] | P, in [kg/week] | TAS, in [kg/week] | MBAS, in [kg/week] | kWh in [kWh/week] | |
N | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | |
B | \ | \ | 0.1297 | \ | \ | \ | \ | 0.2643 | |
Pval | 71.44 × 10−7 | ||||||||
Rmse | 0.1042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Bellazzi, S.; Caccamo, F.M.; Sordi, M.; Crotti, B.; Abbà, A.; Baldi, M. Statistical Characterization of Full-Scale Thermophilic Biological Systems to Inform Process Optimization. Environments 2024, 11, 36. https://doi.org/10.3390/environments11020036
Collivignarelli MC, Bellazzi S, Caccamo FM, Sordi M, Crotti B, Abbà A, Baldi M. Statistical Characterization of Full-Scale Thermophilic Biological Systems to Inform Process Optimization. Environments. 2024; 11(2):36. https://doi.org/10.3390/environments11020036
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Stefano Bellazzi, Francesca Maria Caccamo, Marco Sordi, Barbara Crotti, Alessandro Abbà, and Marco Baldi. 2024. "Statistical Characterization of Full-Scale Thermophilic Biological Systems to Inform Process Optimization" Environments 11, no. 2: 36. https://doi.org/10.3390/environments11020036
APA StyleCollivignarelli, M. C., Bellazzi, S., Caccamo, F. M., Sordi, M., Crotti, B., Abbà, A., & Baldi, M. (2024). Statistical Characterization of Full-Scale Thermophilic Biological Systems to Inform Process Optimization. Environments, 11(2), 36. https://doi.org/10.3390/environments11020036