Zeolite and Winery Waste as Innovative By-Product for Vineyard Soil Management
<p>Location of the wine-growing area and experimental design of the treatments. C: control soil; Z: zeolite; 30 ZEO: 30% zeolite and 70% winery waste compost; 10 ZEO: 10% zeolite and 90% winery waste compost; COM: commercial compost.</p> "> Figure 2
<p>The effect of treatments (C, Z, 10 ZEO, 30 ZEO, and COM) on the electrical conductivity of the vineyard soil immediately after treatment (T0) and after 6 months (T1), 18 months (T2), and 30 months (T3). Mean ± standard error. Lowercase letters indicate significantly different values at <span class="html-italic">p</span> < 0.05 between the treatments at each sampling time. Capital letters indicate significantly different values at <span class="html-italic">p</span> < 0.05 between the sampling times in the same treatment.</p> "> Figure 3
<p>The effect of treatments (C, Z, 10 ZEO, 30 ZEO, and COM) on soil Total Organic Carbon (TOC) and total nitrogen (TN) of the vineyard soil immediately after treatment (T0) and after 6 months (T1), 18 months (T2), and 30 months (T3). Mean ± standard error. Lowercase letters indicate significantly different values at <span class="html-italic">p</span> < 0.05 between the treatments at each sampling time. Capital letters indicate significantly different values at <span class="html-italic">p</span> < 0.05 between the sampling times in the same treatment.</p> "> Figure 4
<p>The effect of treatments (C, Z, 10 ZEO, 30 ZEO, and COM) on total humus, fulvic acids, and humic acids of the vineyard soil immediately after treatment (T0) and after 6 months (T1), 18 months (T2), and 30 months (T3). Mean ± standard error. Lowercase letters indicate significantly different values at <span class="html-italic">p</span> < 0.05 between the treatments at each sampling time. Capital letters indicate significantly different values at <span class="html-italic">p</span> < 0.05 between the sampling times in the same treatment.</p> "> Figure 5
<p>The effect of treatments (C, Z, 10 ZEO, 30 ZEO, and COM) on soil enzyme activities of the vineyard soil immediately after treatment (T0) and after 6 months (T1), 18 months (T2), and 30 months (T3). Mean ± standard error. Lowercase letters indicate significantly different values at <span class="html-italic">p</span> < 0.05 between the treatments at each sampling time. Capital letters indicate significantly different values at <span class="html-italic">p</span> < 0.05 between the sampling times in the same treatment.</p> "> Figure 6
<p>Biplot of factor scores and loadings in each treatment (C, Z, 30 ZEO, 10 ZEO, and COM) at T0 (grey), T1 (green), T2 (blue), and T3 (yellow) sampling times. CEC: Cation Exchange Capacity; EC: electrical conductivity; TOC: Total Organic Carbon; TN: total nitrogen; TP: total phosphorus; AP: available phosphorus; TK: total potassium; AK: available potassium; TH: total humus; FA: fulvic acids; HA: humic acids; Glu: b-glucosidase activity; Pho: phosphatase activity; BE: butyrate esterase activity; AS: aryl sulphatase activity; WAS: wet aggregate stability; AW: available water.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemical Parameters
2.2. Biochemical Parameters
2.3. Physical Parameters
2.4. Statistical Analysis
3. Results
3.1. Chemical Parameters
3.2. Biochemical Parameters
3.3. Physical Parameters
4. Discussion
Principal Component Analysis (PCA)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toreti, A.; Bavera, D.; Acosta Navarro, J.; Cammalleri, C.; de Jager, A.; Di Ciollo, C.; Hrast Essenfelder, A.; Maetens, W.; Magni, D.; Masante, D.; et al. Drought in Europe August 2022; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Salomé, C.; Coll, P.; Lardo, E.; Metay, A.; Villenave, C.; Marsden, C.; Blanchart, E.; Hinsinger, P.; Le Cadre, E. The soil quality concept as a framework to assess management practices in vulnerable agroecosystems: A case study in Mediterranean vineyards. Ecol. Indic. 2016, 61, 456–465. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in. Europe Earth Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresour. Technol. 2000, 72, 9–17. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Xing, B.; Herbert, S.J.; Meng, K.; Han, X.; Zhang, X. Effects of Long-Term Continuous Cropping, Tillage, and Fertilization on Soil Organic Carbon and Nitrogen of Black Soils in China. Commun. Soil Sci. Plant Anal. 2005, 36, 1229–1239. [Google Scholar] [CrossRef]
- Biddoccu, M.; Zecca, O.; Audisio, C.; Godone, F.; Barmaz, A.; Cavallo, E. Assessment of long-term soil erosion in a mountain vineyard, Aosta Valley (NW Italy). Land Degrad. Dev. 2018, 29, 617–629. [Google Scholar] [CrossRef]
- Kabasiita, J.K.; Opolot, E.; Malinga, G.M. Quality and Fertility Assessments of Municipal Solid Waste Compost Produced from Cleaner Development Mechanism Compost Projects: A Case Study from Uganda. Agriculture 2022, 12, 582. [Google Scholar] [CrossRef]
- OIV State of the World Vine and Wine Sector 2021. 2022. Available online: https://www.oiv.int/public/medias/8778/eng-state-of-the-world-vine-and-wine-sector-april-2022-v6.pdf (accessed on 3 June 2022).
- Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chatuverdi, P. Current trends and possibilities for explotation of grape pomace as a potential source for value addition. Environ. Pollut. 2021, 278, 116796. [Google Scholar] [CrossRef]
- Garcia-Perez, J.V.; Blasco, M.; Carcel, J.A.; Clemente, G.; Mulet, A. Drying Kinetics of Grape Stalk. In Defect and Diffusion Forum; Trans Tech Publications Ltd.: Baech, Switzerland, 2006; Volume 258–260, pp. 225–230. [Google Scholar]
- Zhou, G.; Qiu, X.; Chen, L.; Zhang, C.; Ma, D.; Zhang, J. Succession of organics metabolic function of bacterial community in response to addition of earthworm casts and zeolite in maize straw composting. Bioresour. Technol. 2019, 280, 229–239. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Aghaalikhani, M.; Dolatabadian, A.; Joghan, A.K.; Zakikhani, H. Decreasing N leaching and increasing canola forage yield in a sandy soil by application of natural zeolite. Agron. J. 2012, 104, 1467–1475. [Google Scholar] [CrossRef]
- Soudejani, H.T.; Kazemian, H.; Inglezakis, V.J.; Zorpas, A.A. Application of zeolites in organic waste composting: A review. Biocatal. Agric. Biotechnol. 2019, 22, 101396. [Google Scholar] [CrossRef]
- Manu, M.K.; Wang, C.; Li, D.; Varjani, S.; Wong, J.W.C. Impact of zeolite amendment on composting of food waste digestate. J. Clean. Prod. 2022, 371, 133408. [Google Scholar] [CrossRef]
- Joghan, A.K.; Ghalavand, A.; Aghaalikhani, M.; Gholamhoseini, M.; Dolatabadian, A. Comparison among different integrated nutrition management for soil micro and macro elements after winter Wheat harvesting and yield. Not. Sci. Biol. 2010, 2, 107–111. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Ghalavand, A.; Khodaei-Joghan, A.; Dolatabadian, A.; Zakikhani, H.; Farmanbar, E. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil Tillage Res. 2013, 126, 193–202. [Google Scholar] [CrossRef]
- Mardini, B.; Shibusawa, S.; Kojima, Y.; Hosaka, S. Effect of natural zeolite (clinoptilolite) on ammonia emissions of leftover food- rice hulls composting at the initial stage of the thermophilic process. J. Agric. Meteorol. 2016, 72, 12–19. [Google Scholar] [CrossRef]
- Campisi, T.; Abbondanzi, F.; Faccini, B.; Di Giuseppe, D.; Malferrari, D.; Coltorti, M.; Laurora, A.; Passaglia, E. Ammonium-charged zeolitite effects on crop growth and nutrient leaching: Greenhouse experiments on maize (Zea mays). Catena 2016, 140, 66–76. [Google Scholar] [CrossRef]
- Doni, S.; Peruzzi, E.; Manzi, D.; Masini, C.M.; Mattii, G.B.; Macci, C.; Masciandaro, G. Co-composting winery waste and zeolite: A sustainable valorisation example. J. Mater. Cycles Waste Manag. 2023. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2014.
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; ASA and SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Helmke, P.A.; Sparks, D.L. Lithium, sodium, potassium, rubidium, and cesium. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 551–574. [Google Scholar]
- Jakubus, M.; Spychasky, W. Evaluation of agricultural value of composts prepared from municipal biowastes in different conditions of composting process. Agronomy 2022, 12, 1438. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity, and exchange coefficients. In Methods of Soil Analysis. Part 2: Chemical Properties, 3rd ed.; Sparks, D.L., Ed.; ASA, SSSA, CSSA: Madison, WI, USA, 1996. [Google Scholar]
- Marx, M.C.; Wood, M.; Jarvis, S.C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Kukkonen, S.; Vestberg, M.; Sirviö, H.; Niemi, R.M. Application of soil enzyme activity test kit in a field experiment. Soil Biol. Biochem. 2001, 33, 1665–1672. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soil; Handbook 60; US Salinity Lab. Staff, US Department of Agriculture, Agricultural Research Service: Washington DC, USA, 1954; 160p.
- Ollat, N.; Peccoux, A.; Papura, D.; Esmenjaud, D.; Marguerit, E.; Tandonnet, J.P.; Bordenave, L.; Cookson, S.J.; Barrieu, F.; Rossdeutsch, L.; et al. Rootstocks as a component of adaptation to environment. In Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective Eds Gers; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 68–108. [Google Scholar] [CrossRef]
- Cramer, G.R.; Ergül, A.; Grimplet, J.; Tillett, R.L.; Tattersall, E.A.R.; Bohlman, M.C.; Vincent, D.; Sonderegger, J.; Evans, J.; Osborne, C.; et al. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Funct. Integr. Genom. 2007, 7, 111–134. [Google Scholar] [CrossRef]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Correll, R.L. Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L cv Sultana): 1 yield vigour inter-relationships. Aust. J. Grape Wine Res. 2002, 8, 3–14. [Google Scholar] [CrossRef]
- Chan, M.T.; Selvam, A.; Wong, J.W.C. Reducing nitrogen loss and salinity during “struvite” food waste composting by zeolite amendment. Bioresour. Technol. 2016, 200, 838–844. [Google Scholar] [CrossRef]
- Yousefian, M.; Jafari, M.; Tavili, A.; Arzani, H.; Jafarian, Z. The effects of superabsorbent polymer on Atriplex lentiformis growth and soil characteristics under drought stress (case study: Desert research Station, Semnan, Iran). J. Rangel Sci. 2018, 8, 65–75. [Google Scholar]
- Doni, S.; Gispert, M.; Peruzzi, E.; Macci, C.; Mattii, G.B.; Manzi, D.; Masini, C.M.; Masciandaro, G. Impact of natural zeolite on chemical and biochemical properties of vineyard soils. Soil Use Manag. 2020, 37, 832–842. [Google Scholar] [CrossRef]
- Bastida, F.; Torres, I.F.; Hernandez, T.; García, C. The impacts of organic amendments: Do they confer stability against drought on the soil microbial community? Soil Biol. Biochem. 2017, 113, 173–183. [Google Scholar] [CrossRef]
- Bastida, F.; García, C.; Fierer, N.; Eldridge, D.J.; Bowker, M.A.; Abades, S.; Alfaro, F.D.; Asefaw Berhe, A.; Cutler, N.A.; Gallardo, A.; et al. Global ecological predictors of the soil priming effect. Nat. Commun. 2019, 10, 3481. [Google Scholar] [CrossRef] [PubMed]
- Guenet, B.; Camino-Serrano, M.; Ciais, P.; Tifafi, M.; Maignan, F.; Soong, J.L.; Janssens, I.A. Impact of priming on global soil carbon stocks. Glob. Chang. Biol. 2018, 24, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Singh, B.; Dijkstra, F.A. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry 2022, 160, 145–158. [Google Scholar] [CrossRef]
- Kavvadias, V.; Ioannou, Z.; Vavoulidou, E.; Paschalidis, C. Short Term Effects of Chemical Fertilizer, Compost and Zeolite on Yield of Lettuce, Nutrient Composition and Soil Properties. Agriculture 2023, 13, 1022. [Google Scholar] [CrossRef]
- Brombin, V.; Salani, G.M.; De Feudis, M.; Mistri, E.; Precisvalle, N.; Bianchini, G. Soil Organic Carbon Depletion in Managed Temperate Forests: Two Case Studies from the Apennine Chain in the Emilia-Romagna Region (Northern Italy). Environments 2023, 10, 156. [Google Scholar] [CrossRef]
- Truc, M.T.; Yoshida, M. Effect of Zeolite on the Decomposition Resistance of Organic Matter in Tropical Soils under Global Warming. Int. J. Innov. Sci. Res. 2011, 5, 664–668. [Google Scholar]
- Aminiyan, M.M.; Safari Sinegani, A.A.; Sheklabadi, M. The effect of zeolite and some plant residues on soil organic carbon changes in density and soluble fractions: Incubation study. Eurasian J. Soil Sci. 2016, 5, 74. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Gonzaga, M.I.; da Silva, T.O.; da Silva, T.L.; da Silva Dias, N.; Matias, M.I. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef]
- Beqiraj, E.; Gjoka, F.; Muller, F.; Baillif, P. Use of zeolitic material from Munella Region (Albania) as fertilizer in the sandy soils of Divjaka Region (Albania). Carpth. J. Earth Environ. Sci. 2008, 3, 33–47. [Google Scholar]
- Allen, A.S.; Schlesinger, W.H. Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biol. Biochem. 2004, 36, 581–589. [Google Scholar] [CrossRef]
- Conde, E.; Cardenas, M.; Ponce-Mendoza, A.; Dendooven, L. The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming ef- fect in saline alkaline soil. Soil Biol. Biochem. 2005, 37, 681–691. [Google Scholar] [CrossRef]
- Baldi, E.; Polidori, G.; Germani, M.; Larocca, G.N.; Mazzon, M.; Allegro, G.; Pastore, C.; Quartieri, M.; Marzadori, C.; Filippetti, I.; et al. Fertilizer Potential of Organic-Based Soil Amendments on cv. Sangiovese (V. vinifera L.) Vines: Preliminary Results. Agronomy 2022, 12, 1604. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of zeolites in agriculture and other potential uses: A review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Sikora, J.L. Effect of compost-fertilizer blends on crop growth. In The Science of Composting; Bertoldi, M., Sequi, P., Lammers, B., Papi, T., Eds.; Blackie Academic & Professional Publications: Glasgow, UK, 1995; pp. 423–430. [Google Scholar]
- Baerlocher, C.H.; Meier, W.M.; Olson, D.H. Atlas of Zeolite Framework Types, 5th ed.; Published on behalf of the Structure Commission of the International Zeolite Association by Elsevier: Amsterdam, The Netherlands, 2001; p. 299. [Google Scholar]
- Hedström, A. Ion exchange of ammonium in zeolites: A literature review. J. Environ. Eng. 2001, 127, 673–681. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Bolan, N.S. Removal and re-recovery of phosphate from water using sorption. Crit. Rev. Environ. Sci. Technol. 2014, 44, 847–907. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, K.; Zhang, H.; Sun, Q.; Wu, Z.; Zhou, Y.; Zhong, Y.; Ke, F. Phosphorus removal from aqueous solutions using a synthesized adsorbent prepared from mineralized refuse and sewage sludge. Environ. Technol. 2013, 34, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Li, Y.; Zhang, T.; Chen, J.; Xu, P.; Song, C.; Fan, L.; Qiu, L. Influences of environmental factors on lanthanum/aluminum-modified zeolite adsorbent (La/Al-ZA) for phosphorus adsorption from wastewater. Water Air Soil Pollut. 2013, 224, 1556. [Google Scholar] [CrossRef]
- Onyango, M.S.; Kuchar, D.; Kubota, M.; Matsuda, H. Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite. Ind. Eng. Chem. Res. 2007, 46, 894–900. [Google Scholar] [CrossRef]
- Ozbahce, A.; Tari, A.F.; Gonulal, E.; Simsekli, N. Zeolite for enhancing yield and quality of potatoes cultivated under water-deficit conditions. Potato Res. 2018, 61, 247–259. [Google Scholar] [CrossRef]
- Ramesh, K.; Biswas, A.K.; Somasundaram, J.; Rao, A.S. Nanoporous zeolites in farming: Current status and issues ahead. Curr. Sci. 2010, 99, 760–765. [Google Scholar]
- Stylianou, M.A.; Inglezakis, V.J.; Loizidou, M.D. Effects of Zeolite Addition on Soil Chemistry-Open Field Experiments. In Proceedings of the Protection and Restoration of The Environment VII, Mykonos, Greece, 28 June–1 July 2004; pp. 1–7. [Google Scholar]
- Hazrati, S.; Tahmasebi-Sarvestani, Z.; Modarres-sanavy, S.A.M.; Mokhtassi-Bidgoli, A.; Mohammadi, H.; Nicola, S. Effects of zeolite water stress on growth: Yield chemical compositions of Aloe vera, L. Agric. Water Manag. 2017, 181, 66–72. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Tarkalson, D.D.; Lehrsch, G.A. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth. Soil Sci. 2011, 176, 136–142. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of zeolites for sustainable agriculture: A review on water and nutrient retention. Water Air Soil Pollut. 2017, 228, 464. [Google Scholar] [CrossRef]
- Six, J.; Feller, C.; Denef, K.; Ogle, S.M.; de Morales, J.C.; Albrecht, A. Soil organic matter, biota and aggregation in temperate and tropical soils: Effects of no-tillage. Agronomie 2002, 22, 755–775. [Google Scholar] [CrossRef]
- Gil-Sotres, F.; Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 2005, 37, 877–887. [Google Scholar] [CrossRef]
- Wittmann, C.; Kähkönen, M.A.; Ilvesniemi, H.; Kurola, J.; Salkinoja-Salonen, M.S. Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils. Soil Boil. Biochem. 2004, 36, 425–433. [Google Scholar] [CrossRef]
- Yousefi, R.; Amooei, A.A.; Amel Sakhi, M.; Karimi, A. Experimental study on influence of using urease enzyme on stabilized sandy soil’s engineering property by zeolite and sawdust. Int. J. Marit. Technol. 2021, 15, 17–27. [Google Scholar]
- Peng, X.Q.; Wang, W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biol. Biochem. 2016, 98, 74–84. [Google Scholar] [CrossRef]
- Liu, E.; Zhou, J.; Yang, X.; Jin, T.; Zhao, B.; Li, L.; Wen, Y.; Soldatova, E.; Zamanian, K.; Gopalakrishnan, S.; et al. Long-term organic fertilizer-induced carbonate neoformation increases carbon sequestration in soil. Environ. Chem. Lett. 2023, 21, 663–671. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, Y.; Shi, L.; Marshall, M.R.; Kuzyakov, Y.; Blagodatskaya, E.; Zang, H. Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biol. Biochem. 2021, 152, 108069. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M. Factors affecting glucosidase and galactosidase in soils. Soil Biol. Biochem. 1990, 22, 891–897. [Google Scholar] [CrossRef]
- Condron, L.M.; Turner, B.L.; Cade-Menun, B.J.; Sims, J.; Sharpley, A. Chemistry and dynamics of soil organic phosphorus. In Phosphorus: Agriculture and the Environment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 87–121. [Google Scholar]
- Peng, Y.P.; He, W.X.; Wang, Z.Q.; Zhang, J.; Yan, H.R.; Gao, Y.J.; Cao, W.D. Soil chemical properties and enzyme activities in long-term green manure plot in Loess Plateau. J. Northwest AF Univ. (Nat. Sci. Ed.) 2015, 43, 131–138. (In Chinese) [Google Scholar]
- Delgado, M.; Rodríguez, C.; Martín, J.V.; Miralles de Imperial, R.; Alonso, F. Environmental assay on the effect of poultry manure application on soil organisms in agroecosystem. Sci. Total Environ. 2012, 416, 532–535. [Google Scholar] [CrossRef]
- Chen, H.; Luo, P.; Wen, L.; Yang, L.Q.; Wang, K.L.; Li, D.J. Determinants of soil extracellular enzyme activity in a karst region southwest China. Eur. J. Soil Biol. 2017, 80, 69–76. [Google Scholar] [CrossRef]
Zeolite-Clinoptilolite (Z) | |
---|---|
SiO2 % | 68.3 ± 4.2 |
K2 O % | 2.8 ± 0.31 |
Na2 O % | 0.75 ± 0.07 |
Al2 O3 % | 12.3 ± 1.03 |
Fe2 O3 % | 1.3 ± 0.14 |
TiO2 % | 0.15 ± 0.03 |
CaO % | 3.9 ± 0.25 |
MgO % | 0.9 ± 0.05 |
Loss on ignition % | 12.5 ± 0.95 |
Ration Si/Al % | 5.1 ± 0.42 |
CEC cmolc kg−1 | 130 ± 21 |
COM | 10 ZEO | 30 ZEO | Italian Legislation 75/2010 | EU Legislation 1009/2019 | ||
---|---|---|---|---|---|---|
pH | 8.6 ± 0.05 | 8 ± 0.19 | 8.3 ± 0.16 | 6–8.8 | ||
EC | dS m−1 | 1.8 ± 0.01 | 0.4 ± 0.01 | 0.2 ± 0.02 | ||
CEC | cmolc kg−1 | 41 ± 2.1 | 44 ± 1.5 | 46 ± 1.5 | ||
TOC | C % | 33 ± 1.4 | 29 ± 0.6 | 26 ± 0.5 | ≥20 | |
TN | TN% | 3.5 ± 0.06 | 1.55 ± 0.13 | 1.5 ± 0.08 | ||
C/N | 9.4 | 18.7 | 17.3 | ≤50 | ||
HC | C% | 6.1 ± 0.05 | 10.4 ± 0.07 | 11.8 ± 0.08 | ≥2.5 | |
TK | % | 0.75 ± 0.005 | 0.8 ± 0.012 | 1.19 ± 0.019 | ||
TP | % | 0.13 ± 0.003 | 0.17 ± 0.004 | 0.14 ± 0.004 | ||
Cu | mgCu kg−1 | 49 ± 4 | 57 ± 6 | 44 ± 3 | <230 | <300 |
Salmonella | MPN/25 g | Absent | Absent | Absent | Absent | Absent |
E. coli | CFU/g | <1000 | <1000 | <1000 | <1000 | <1000 |
GI | % | 115 ± 1.5 | 126 ± 8.1 | 142 ± 6.1 | >60% |
pH | CEC cmolc kg−1 | |||||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | |
C | 7.57 ± 0.37 aB | 7.65 ± 0.18 aB | 7.62 ± 0.02 aB | 7.86 ± 0.46 aA | 12.9 ± 0.97 cA | 12.3 ± 0.91 bA | 12.3 ± 0.92 cA | 13.4 ± 0.43 cA |
Z | 7.70 ± 0.22 aAB | 7.60 ± 0.37 aB | 7.66 ± 0.25 aB | 7.82 ± 0.27 aA | 14.5 ± 0.70 bA | 15.2 ± 0.82 aA | 15.1 ± 1.13 bA | 15.0 ± 1.10 bA |
10 ZEO | 7.57 ± 0.48 aB | 7.51 ± 0.48 aB | 7.68 ± 0.46 aAB | 7.89 ± 0.25 aA | 16.6 ± 0.72 aA | 16.6 ± 0.98 aA | 17.0 ± 1.27 aA | 18.0 ± 0.40 aA |
30 ZEO | 7.66 ± 0.20 aA | 7.75 ± 0.48 aA | 7.77 ± 0.45 aA | 7.79 ± 0.26 aA | 15.0 ± 0.24 bA | 15.6 ± 1.13 aA | 15.7 ± 1.18 bA | 16.1 ± 1.30 abA |
COM | 7.55 ± 0.20 aB | 7.71 ± 0.26 aAB | 7.66 ± 0.38 aB | 7.89 ± 0.34 aA | 17.0 ± 0.82 aA | 16.7 ± 1.27 aA | 16.1 ± 1.50 aA | 16.7 ± 1.40 aA |
TP mgP kg−1 | TK mgk kg−1 | |||||||
T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | |
C | 550 ± 27.5 bA | 485 ± 69.3 cA | 540 ± 25.6 bA | 540 ± 24.6 Ac | 5345 ± 45.4 bA | 5333 ± 244 cdA | 4152 ± 146 dB | 4307 ± 159 bB |
Z | 532 ± 53.2 bAB | 502 ± 41.8 Bc | 522 ± 26.1 bB | 582 ± 29.1 bA | 5315 ± 243 bcB | 5940 ± 48.6 bA | 5339 ± 245 bB | 5343 ± 245 aB |
10 ZEO | 626 ± 32.8 aB | 714 ± 44.6 aA | 653 ± 46.3 aAB | 628 ± 49.7 abAB | 6210 ± 318 aA | 6242 ± 153 aA | 6046 ± 91.3 aA | 5418 ± 226 aB |
30 ZEO | 656 ± 29.9 aAB | 619 ± 30.9 bB | 597 ± 43.6 abB | 697 ± 31.3 aA | 5059 ± 221 cB | 5553 ± 77.6 cA | 5827 ± 285 abA | 5553 ± 221 aA |
COM | 651 ± 32.5 aA | 539 ± 27.0 cB | 566 ± 28.3 bB | 565 ± 28.2 bcB | 5582 ± 265 bA | 5158 ± 169 dAB | 4934 ± 211 bcBC | 4573 ± 181 bC |
AP mgP kg−1 | AK mgP kg−1 | |||||||
T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | |
C | 3.28 ± 0.15 dA | 3.45 ± 0.14 cA | 3.64 ± 0.18 dA | 3.70 ± 0.19 bA | 242 ± 11.1 bcB | 291 ± 10.5 bA | 225 ± 11.3 bBC | 198 ± 9.9 abC |
Z | 3.79 ± 0.16 cB | 4.02 ± 0.17 bAB | 4.30 ± 0.10 cA | 3.39 ± 0.19 bB | 220 ± 12.0 cB | 248 ± 8.4 cA | 196 ± 9.8 cBC | 178 ± 12.9 bC |
10 ZEO | 5.52 ± 0.24 bA | 3.56 ± 0.20 cB | 3.63 ± 0.2 dB | 3.64 ± 0.18 bB | 249 ± 10.5 bB | 284 ± 8.2 bA | 256 ± 12.8 aB | 178 ± 8.9 bC |
30 ZEO | 5.00 ± 0.21 bA | 4.83 ± 0.15 aA | 4.75 ± 0.15 bA | 4.28 ± 0.16 aB | 259 ± 12.0 bA | 282 ± 14.1 bA | 254 ± 12.7 aA | 184 ± 9.2 bB |
COM | 6.84 ± 0.09 aA | 5.00 ± 0.11 aB | 5.24 ± 0.20 aB | 3.76 ± 0.16 bC | 324 ± 8.2 aA | 346 ± 12.3 aA | 274 ± 13.7 aB | 204 ± 7.7 aC |
WAS % | AW % | |||||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | |
C | 17.1 ± 0.86 aA | 16.37 ± 0.82 aA | 14.2 ± 1.43 aA | 15.1 ± 0.75 aA | 13.5 ± 0.58 aA | 13.7 ± 0.69 aA | 13.55 ± 0.48 aA | 13.3 ± 0.66 aA |
Z | 30.7 ± 1.92 aB | 29.0 ± 1.45 aC | 27.8 ± 1.35 aB | 28.1 ± 1.40 aC | 14.2 ± 0.61 aAB | 13.9 ± 0.70 aA | 14.2 ± 1.42 aAB | 14.6 ± 0.73 aAB |
10 ZEO | 27.4 ± 1.83 aAB | 24.1 ± 1.18 aB | 22.8 ± 1.14 AB | 23.2 ± 1.15 aB | 14.9 ± 0.74 aB | 14.8 ± 1.24 aA | 15.1 ± 1.06 aB | 14.8 ± 0.54 aB |
30 ZEO | 23.8 ± 2.65 aB | 23.5 ± 1.18 aB | 24.3 ± 1.22 aAB | 25.5 ± 1.27 aB | 14.9 ± 0.74 aB | 14.7 ± 1.47 aA | 15.0 ± 0.75 aB | 15.1 ± 0.65 aB |
COM | 21.6 ± 1.08 aA | 22.7 ± 1.14 aB | 19.4 ± 0.97 aAB | 18.8 ± 0.94 aA | 14.1 ± 0.70 aAB | 14.6 ± 0.58 aA | 14.8 ± 0.74 aAB | 14.4 ± 0.66 aAB |
PC 1 | PC 2 | |
---|---|---|
CEC | 0.778 * | −0.067 |
EC | −0.051 | 0.679 * |
pH | −0.030 | −0.676 * |
TOC | 0.918 * | −0.091 |
TN | 0.614 * | 0.167 |
TP | 0.753 * | 0.086 |
AP | 0.389 | 0.639 * |
TK | 0.709 * | 0.236 |
AK | 0.013 | 0.865 * |
TH | 0.845 * | 0.153 |
FA | −0.238 | 0.868 * |
HA | 0.861 * | −0.317 |
Glu | 0.789 * | −0.120 |
Pho | 0.581 | 0.574 |
BE | 0.418 | −0.716 * |
AS | 0.497 | 0.803 * |
WAS | 0.748 * | 0.059 |
AW | 0.863 * | −0.094 |
Explained variance (%) | 40.58 | 25.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doni, S.; Masciandaro, G.; Macci, C.; Manzi, D.; Mattii, G.B.; Cataldo, E.; Gispert, M.; Vannucchi, F.; Peruzzi, E. Zeolite and Winery Waste as Innovative By-Product for Vineyard Soil Management. Environments 2024, 11, 29. https://doi.org/10.3390/environments11020029
Doni S, Masciandaro G, Macci C, Manzi D, Mattii GB, Cataldo E, Gispert M, Vannucchi F, Peruzzi E. Zeolite and Winery Waste as Innovative By-Product for Vineyard Soil Management. Environments. 2024; 11(2):29. https://doi.org/10.3390/environments11020029
Chicago/Turabian StyleDoni, Serena, Grazia Masciandaro, Cristina Macci, Davide Manzi, Giovan Battista Mattii, Eleonora Cataldo, Maria Gispert, Francesca Vannucchi, and Eleonora Peruzzi. 2024. "Zeolite and Winery Waste as Innovative By-Product for Vineyard Soil Management" Environments 11, no. 2: 29. https://doi.org/10.3390/environments11020029
APA StyleDoni, S., Masciandaro, G., Macci, C., Manzi, D., Mattii, G. B., Cataldo, E., Gispert, M., Vannucchi, F., & Peruzzi, E. (2024). Zeolite and Winery Waste as Innovative By-Product for Vineyard Soil Management. Environments, 11(2), 29. https://doi.org/10.3390/environments11020029