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Abstract: This study addresses the persistent challenge of class imbalance in land use and land cover
(LULC) classification within the Shihmen Reservoir watershed in Taiwan, where LULC is used to
map the Cover Management factor (C-factor). The dominance of forests in the LULC categories leads
to an imbalanced dataset, resulting in poor prediction performance for minority classes when using
machine learning techniques. To overcome this limitation, we applied the Synthetic Minority Over-
sampling Technique (SMOTE) and the 90-model SMOTE-variants package in Python to balance the
dataset. Due to the multi-class nature of the data and memory constraints, 42 models were successfully
used to create a balanced dataset, which was then integrated with a Random Forest algorithm for
C-factor classification. The results show a marked improvement in model accuracy across most
SMOTE variants, with the Selected Synthetic Minority Over-sampling Technique (Selected_SMOTE)
emerging as the best-performing method, achieving an overall accuracy of 0.9524 and a sensitivity of
0.6892. Importantly, the previously observed issue of poor minority class prediction was resolved
using the balanced dataset. This study provides a robust solution to the class imbalance issue in
C-factor classification, demonstrating the effectiveness of SMOTE variants and the Random Forest
algorithm in improving model performance and addressing imbalanced class distributions. The
success of Selected_SMOTE underscores the potential of balanced datasets in enhancing machine
learning outcomes, particularly in datasets dominated by a majority class. Additionally, by addressing
imbalance in LULC classification, this research contributes to Sustainable Development Goal 15,
which focuses on the protection, restoration, and sustainable use of terrestrial ecosystems.

Keywords: SMOTE; soil erosion; cover management factor; Random Forest; imbalanced data

1. Introduction

Soil erosion, the process by which soil is displaced by natural forces, presents a
significant challenge to agricultural productivity [1]. It contributes to land degradation,
diminished soil fertility, and the pollution of air and water, with water erosion of particular
concern [2]. Human activities such as deforestation and inadequate land management
exacerbate this issue, making it an urgent environmental concern. The relationship between
soil erosion and land use and land cover (LULC) is crucial, as changes in land cover—such
as urbanization and agricultural expansion—can accelerate soil erosion. Forests and natural
vegetation serve as protective barriers, stabilizing soil with their root systems, while
alterations to these covers increase the risk of erosion. Understanding this interaction is
essential for designing effective land management strategies that mitigate environmental
degradation and promote sustainable land use practices.

Numerous studies have explored the link between soil erosion and LULC. Liu et al. [3]
demonstrated that the grid cell method was more accurate in predicting soil erosion in
Taiwan’s Shihmen Reservoir watershed, an area subject to high rainfall erosivity. Similarly,
Chen et al. [4] emphasized the role of appropriate land cover in controlling soil erosion,
noting that cropland and grassland resulted in the lowest runoff and soil loss in southern
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China’s red soil hilly regions. Zhang et al. [5] highlighted the impact of LULC changes
on soil erosion in the Jiuyuangou watershed, showing that vegetation restoration helped
reduce erosion until extreme rainfall events became more frequent. Wen and Deng [6]
called for further research into the combined effects of LULC and climate change on soil
erosion, stressing the importance of large-scale soil erosion modeling.

A significant challenge in data analysis, particularly in LULC studies, is the issue of
imbalanced data, where certain classes are underrepresented. This imbalance can lead to
biased classifiers and poor model performance. In LULC analysis, an imbalanced dataset
may result in inaccurate predictions, especially for minority classes. Therefore, addressing
class imbalance is essential for generating reliable insights. Various techniques have been
developed to address this issue, with resampling methods like over-sampling and under-
sampling being commonly used. While under-sampling reduces instances of the majority
class, potentially leading to information loss, over-sampling generates synthetic data to
enhance the minority class representation. This study prefers over-sampling techniques
such as the Synthetic Minority Over-sampling Technique (SMOTE) [7] and its variant,
Adaptive Synthetic Sampling (ADASYN) [8], which improve class balance by creating
synthetic data points.

SMOTE has been widely applied in various fields to address imbalanced datasets,
often improving model performance. For example, SMOTE combined with Random Forest
has been used to manage skewed particle datasets in particle physics, improving the
accuracy of particle state analysis [9]. In hyperspectral imaging, SMOTE has been used to
classify imbalanced hyperspectral data, significantly enhancing accuracy across models
such as Convolutional Neural Networks (CNN) [10]. Similarly, SMOTE-based CNN models
optimized with sparrow search algorithms have improved flight delay classification [11].
In space weather forecasting, a SMOTE-based Super Learner ensemble improved the
classification of ionospheric scintillation events, achieving high accuracy even in adverse
conditions [12]. In healthcare, SMOTE has enhanced the classification of patient safety
event reports by combining neural natural language processing techniques with machine
learning models, significantly improving accuracy [13].

In LULC classification, various SMOTE variants have been implemented to address
imbalanced data. For instance, G_SMOTE [14] has been applied by Douzas et al. [15] and
Ebrahimy et al. [16], while kmeans_SMOTE [17] has been explored by Fonseca et al. [12].
Standard SMOTE and its variant, ADASYN, have also been utilized [18]. However, most
studies limit their scope to one or two oversampling methods. This study seeks to address
this gap by applying a comprehensive range of oversampling techniques to classify the
Cover Management factor (C-factor) in Taiwan’s Shihmen Reservoir watershed.

2. Materials and Methods

In previous work, Tsai et al. [19] applied machine learning to classify the Cover
Management factor (C-factor) for the Shihmen Reservoir watershed in Taiwan. The C-
factor, a crucial component of the Revised Universal Soil Loss Equation (RUSLE) model,
evaluates the impact of land cover and management practices on soil erosion. It measures
how well vegetation and management strategies protect soil from erosion, with changes
in land cover or management affecting the C-factor and influencing erosion susceptibility.
Including the C-factor in soil erosion models is critical for assessing the effectiveness of
land management in mitigating erosion.

One significant challenge in this analysis is the class imbalance in the dataset, where
the majority class (C = 0.01) comprises over 92.5% of the data. This imbalance can skew
model training, leading to the underrepresentation of the minority classes and less accurate
predictions. Addressing this imbalance is essential for producing reliable soil erosion as-
sessments. In the study watershed, the predominance of forest areas results in low C values,
which may bias the model towards underestimating overall C values and, consequently,
soil erosion risk. This bias has practical implications for land management, as it could lead
to the under-prioritization of areas with higher erosion potential, thereby affecting resource
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allocation and conservation efforts. Balancing the dataset allows for a more comprehensive
erosion assessment that better supports informed land management strategies.

This study seeks to classify the C-factor using a Random Forest model, incorporating
various techniques to address data imbalance. Specifically, 42 oversampling methods were
applied to balance the dataset before model training. These methods were designed to
improve the representation of the minority classes, enhancing model performance and
contributing to more accurate soil erosion assessments. This approach holds potential for
improving land management strategies through better erosion risk predictions.

2.1. Data Collection

Machine learning input data is structured into two key components: predictor vari-
ables and the target variable. The target variable, which represents the outcome the
algorithms are designed to predict, is the C-factor in this study. The C-factor was derived
from a look-up table [20,21] and the 2004 LULC map of the Shihmen Reservoir watershed
(Figure 1). As shown in Figure 1, 12 distinct C-value classes were assigned based on
23 LULC types, with forest being the predominant land cover class. This classification
differs from typical LULC problems, as various LULC types can correspond to the same
C-factor class for the purpose of soil erosion calculations.

Figure 1. Map of LULC distribution and corresponding C-factors.

The predictor variables, which are used to forecast the C-factor, include eight key
factors: elevation and slope, derived from a 10 m resolution Digital Elevation Model (DEM),
the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation
Index (SAVI), obtained from SPOT 5 satellite imagery, and distance to road and distance
to river, calculated using ArcGIS’s Near tool, which measures proximity from point data
to the nearest road or river. Additionally, geological and soil data were incorporated into
the analysis.

A significant challenge in this study was the pronounced imbalance in the LULC
classes of the Shihmen Reservoir watershed, with forest (C = 0.01) covering 92.5% of
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the area. This dominance of a single class can cause machine learning models to skew
predictions toward the majority class, reducing the accuracy of predictions for minority
classes. Addressing this imbalance is crucial for reliable classification outcomes.

2.2. Data Preparation and Model Development

To address the issue of class imbalance, a range of oversampling techniques from
the smote-variants package [22] in Python (version 3.10.12, Python Software Foundation,
Wilmington, DE, USA) were utilized to enhance the representation of minority classes.
Initially, the dataset was divided into 70% for training and 30% for testing. The SMOTE
algorithm was applied to the training dataset to balance the class distribution. However,
due to the large size of the resulting dataset, which exceeded the processing capacity of
Python, the training data was downsampled to 4% for subsequent analysis. Finally, the
performance of models trained on the oversampled data was compared with those trained
on the original, imbalanced data.

2.2.1. Data Pre-Processing

The initial phase of this study involved comprehensive data pre-processing to convert
raw raster data into a format compatible with machine learning analysis. This process
required transforming the raster data into point data, which allows for more efficient
application of machine learning algorithms. Once the data was converted, stratified random
sampling was applied to ensure the balanced representation of all C-factor classes within
the dataset. Specifically, the point dataset was divided, with 70% for training and 30% for
testing. This stratified approach ensured that the distribution of C-factor classes in both the
training and testing datasets reflected the overall class distribution, thereby improving the
reliability of subsequent model training and evaluation.

2.2.2. Handling Imbalanced Data

To address the significant class imbalance—where certain land cover categories over-
whelmingly dominate—the smote-variants package [22] was employed. This package
offers a variety of synthetic oversampling techniques specifically designed for imbalanced
datasets. The basic SMOTE method generates synthetic samples by interpolating between
existing minority class data points, thereby enhancing representation without simply dupli-
cating data. However, traditional SMOTE can face limitations when applied to multi-class
datasets, leading to the development of numerous SMOTE variants that address these
specific challenges in different contexts.

The smote-variants package (V 0.7.3) now includes 90 models, 65 of which are suited
for multi-class classification tasks [22,23]. By applying these models, this study conducted
an extensive exploration of synthetic oversampling techniques, aiming to resolve the
complexities associated with imbalanced C-factor classes. This approach not only enriched
the model development process but also provided valuable insights into how different
SMOTE variants interact with the unique characteristics of the land cover data.

In the original dataset, the class with C = 0.01 had more than 7 million points. To
manage this imbalance, a stratified random sampling method was used to divide the data,
with 70% for training and 30% for testing. However, the C = 0.01 class in the training
dataset still contained over 4.9 million points, far exceeding the other classes. To address
this, we applied SMOTE to upsample all other classes to match the size of the second-
largest class, which had 151,879 points. Following this, we downsampled the augmented
training dataset to 4% of its size to enable efficient analysis using Python and to train the
Random Forest model. As a result, the C = 0.01 class contained 196,604 points, while all
other classes had 6075 points each. This approach effectively balanced the dataset while
preserving the original dataset characteristics and optimizing computational resources for
model development (see Table 1).
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Table 1. Dataset sizes used in the analysis to compare various SMOTE variants across different
C-values.

C-Value Original
(100%) 70% Train 30% Test 4% of 70%

Train 4% of 30% Test 70% Train +
SMOTE

70% Train +
SMOTE, 4%

0 216,970 151,879 65,091 6075 2604 151,879 6075
0.005 1110 777 333 31 13 151,879 6075
0.01 7,021,560 4,915,092 2,106,468 196,604 84,259 4,915,092 196,604
0.025 47,629 33,340 14,289 1334 572 151,879 6075
0.03 37,714 26,400 11,314 1056 453 151,879 6075
0.035 4235 2965 1271 119 51 151,879 6075
0.05 46,598 32,619 13,979 1305 559 151,879 6075
0.133 73 51 22 2 1 151,879 6075
0.156 342 239 103 10 4 151,879 6075
0.16 141,672 99,170 42,502 3967 1700 151,879 6075
0.208 60,060 42,042 18,018 1682 721 151,879 6075

1 14,099 9869 4230 395 169 151,879 6075

2.2.3. Random Forest Model

The Random Forest algorithm [24] was selected for C-factor classification in this
study because of its well-established accuracy and flexibility in handling both continuous
and categorical variables. As an ensemble learning method, Random Forest works by
constructing multiple decision trees during training and then aggregating their predictions
to produce a final output. This process increases the model’s robustness and reduces
the risk of overfitting, as the ensemble approach mitigates the errors that may arise from
individual trees. In this study, the model was configured with 1000 decision trees, a number
chosen to ensure stability in the results and enhance predictive performance.

One of the key strengths of the Random Forest algorithm is its capacity to process
diverse data types, making it particularly well-suited for complex datasets like the one
used in this analysis. By accommodating both numeric and categorical input variables,
the algorithm can efficiently handle the varied nature of the predictor variables, such as
elevation, slope, vegetation indices, and distance measures. This versatility, combined with
its high predictive accuracy and ability to manage large datasets, made Random Forest an
ideal choice for classifying the C-factor in the Shihmen Reservoir watershed.

2.3. Accuracy Indices

This study used a comprehensive set of evaluation metrics to assess the performance
of the classification model, focusing on different dimensions of accuracy. The evaluation
indices included Precision, Sensitivity, Specificity, G-mean, F1-Score, Overall Accuracy,
and the Kappa coefficient. These metrics are commonly calculated from the confusion
matrix, which provides a detailed summary of a model’s classification performance. As
noted by [25], the formulas for these accuracy metrics can differ depending on whether
the classification task is binary or multi-class, underscoring the importance of selecting the
appropriate calculation method for each context.

In binary classification, the confusion matrix consists of four key components: True
Positives (TP), which represent instances where the model correctly predicts the positive
class; False Positives (FP), where the model incorrectly predicts the positive class when it is
actually negative; True Negatives (TN), which occur when the model correctly predicts the
negative class; and False Negatives (FN), which arise when the model incorrectly predicts
the negative class when it is actually positive.

For multi-class classification, the confusion matrix extends to a square matrix of
dimensions k × k, where k denotes the number of classes. Each element in the matrix
at position (i, j) corresponds to the number of instances of class i that were predicted as
class j. The diagonal elements represent correctly classified instances for each class, while
off-diagonal elements reflect misclassified instances.

Precision, also referred to as User’s Accuracy, measures the ratio of correctly predicted
positive instances to the total predicted positives [26]. In essence, it evaluates the model’s
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ability to accurately identify positive cases from the pool of predicted positives. A higher
Precision value indicates a lower false positive rate, signifying the model’s ability to
minimize the misclassification of negative instances as positive. Precision for each class was
computed using Equation (1), while the mean Precision across all classes in the multi-class
setting was calculated using Equation (2).

Precisioni =
TPi

TPi + FPi
(1)

Precision =
1
k

k

∑
i=1

Precisioni (2)

where

k = number of classes in the confusion matrix

i = a specific class index (1, 2, . . . , k)

Sensitivity (Recall), also known as Producer’s accuracy, measures the model’s ability
to correctly identify relevant instances within the dataset [26]. It is calculated as the
ratio of correctly predicted positives to the total actual positives, offering insight into the
model’s effectiveness in detecting true positives. A higher recall indicates fewer false
negatives, reflecting better detection accuracy. Sensitivity for each class was computed
using Equation (3), while the mean Sensitivity across all classes was calculated using
Equation (4), ensuring a balanced evaluation across the multi-class setting.

Sensitivityi =
TPi

TPi + FNi
(3)

Sensitivity =
1
k

k

∑
i=1

Sensitivityi (4)

The F1-Score (Equation (5)), which is the harmonic mean of Precision and Recall,
provides a comprehensive assessment of a model’s performance, particularly in scenarios
where class imbalance is prevalent.

F1-Scorei = 2 × Precisioni × Recalli
Precisioni + Recalli

(5)

The Kappa Coefficient (Equation (6)) [27], or Cohen’s Kappa, quantifies the agreement
between predicted and actual classes while accounting for the agreement that might occur
by chance.

κ =
N ∑k

i=1 nii − ∑k
i=1(ni+ × n+i)

N2 − ∑k
i=1(ni+ × n+i)

(6)

where

ni+ = total number of times class i was predicted

n+i = total number of times class i is the true label

nii = number of samples correctly classified for class i

N = total number of samples

Overall accuracy (Equation (7)) calculates the proportion of correctly classified in-
stances (nii) among the total number of samples (N), providing a comprehensive assessment
of the model’s correctness. As a fundamental evaluation measure, overall accuracy serves
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as a useful benchmark for comparing the performance of different models and assessing
their effectiveness in real-world applications.

Overall Accuracy =
1
N

k

∑
i=1

nii (7)

Specificity (Equation (8)), also known as the True Negative Rate, is the ratio of true
negatives to the sum of true negatives and false positives. It measures the ability of the
model to identify negative instances.

Specificityi =
TNi

TNi + FPi
(8)

G-mean (Equation (9)) is a metric that balances both sensitivity and specificity, pro-
viding a single value that reflects the geometric mean of the true positive rate and true
negative rate. It is particularly useful for imbalanced datasets.

G-meani =
√

Sensitivityi × Specificityi (9)

3. Results and Discussion

In this section, we present the results of our analysis evaluating the effectiveness
of various imbalanced data handling methods when applied in combination with the
Random Forest model. The performance of these methods was systematically compared to
determine the most effective approach. Afterward, the best-performing SMOTE method
was compared to the baseline model, which used 4% of the total data points from each
C-factor class of the Shihmen Reservoir watershed to split the training and test datasets.
This baseline model, referred to as the baseline reduced dataset model (imbalanced dataset),
was created using stratified random sampling without any oversampling.

This comparison highlights the improvements achieved through the application of
oversampling techniques. It is important to note that in this study both the baseline
reduced dataset model and the models augmented by SMOTE were tested against the
full, unreduced test dataset (i.e., not reduced to 4%). Consequently, the accuracy indices
reported here differ slightly from those presented in a previous study [19].

3.1. Performance of Different Imbalanced Data Methods

Table 2 summarizes the accuracy of various SMOTE variants used to predict the C-
values within the study area using machine learning techniques. Due to the large dataset
size and the computational demands of certain SMOTE techniques, memory limitations
arose during analysis, and only 42 out of the 65 models could be retained for this study.
Although steps were taken to reduce the dataset size, as detailed in Section 2.2.2, some
SMOTE variants remained computationally infeasible, even after these reductions. This
highlights the practical challenges associated with the dataset’s size, imbalanced class
distribution, and the high resource requirements of certain SMOTE methods.

The ranking column was created based on sensitivity, which measures the proportion
of actual positives correctly identified. The Selected Synthetic Minority Over-sampling
Technique (Selected_SMOTE) model [28] achieved the highest sensitivity at 0.6892. Al-
though its overall accuracy ranked third at 0.9524, behind the Random Walk Over-Sampling
(RWO_sampling) (0.9533) [29] and Combined Cleaning and Resampling (CCR) (0.9529) [30]
models, Selected_SMOTE excelled in both sensitivity and the Kappa coefficient (0.6395),
which is why it was ranked first.

In contrast, the lowest-ranked model was the Polynomial Curved-Bus Topology (poly-
nom_fit_SMOTE_poly) [23], with an overall accuracy of 0.9513 and a sensitivity of 0.3377,
reflecting its relatively poor performance. Similarly, the Denoising Autoencoder-based
Generative Oversampling (DEAGO) model [31] had an accuracy of 0.9518 and a sensitiv-
ity of 0.3378, also struggling with the dataset’s imbalance. Both models exhibited lower
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sensitivity than the original baseline model, indicating their difficulty in correctly identify-
ing minority class instances, which ultimately affected their ranking, despite reasonable
overall accuracy.

Table 2. Performance of different imbalanced data methods in classifying the C-factor.

No. Model Overall Accuracy Kappa Sensitivity Rank

1 ADASYN 0.9478 0.5942 0.6028 23
2 AND_SMOTE 0.9517 0.6295 0.6228 19
3 ASMOBD 0.9487 0.6117 0.6521 10
4 Borderline_SMOTE1 0.9484 0.5941 0.5447 29
5 Borderline_SMOTE2 0.9481 0.5881 0.5260 30
6 CCR 0.9529 0.5973 0.5041 31
7 CE_SMOTE 0.9509 0.6242 0.6331 16
8 cluster_SMOTE 0.9516 0.6264 0.6465 12
9 DEAGO 0.9518 0.5734 0.3378 41
10 distance_SMOTE 0.9517 0.6248 0.6276 18
11 Edge_Det_SMOTE 0.9511 0.6252 0.6492 11
12 G_SMOTE 0.9511 0.6267 0.6637 5
13 Gaussian_SMOTE 0.9521 0.5799 0.3503 39
14 kmeans_SMOTE 0.9524 0.5984 0.3611 38
15 Lee 0.9517 0.6301 0.6186 21
16 LN_SMOTE 0.9517 0.6286 0.6187 20
17 LVQ_SMOTE 0.9521 0.5797 0.4258 34
18 MCT 0.9510 0.6281 0.6577 8
19 MSMOTE 0.9515 0.6272 0.6278 17
20 NDO_sampling 0.9510 0.6281 0.6779 3
21 NRAS 0.9520 0.6311 0.5510 28
22 NT_SMOTE 0.9514 0.6266 0.6539 9
23 PDFOS 0.9520 0.5827 0.3804 36
24 polynom_fit_SMOTE_bus 0.9491 0.5869 0.5571 26
25 polynom_fit_SMOTE_mesh 0.9486 0.5821 0.5542 27
26 polynom_fit_SMOTE_poly 0.9513 0.5712 0.3377 42
27 polynom_fit_SMOTE_star 0.9518 0.5773 0.3668 37
28 Random_SMOTE 0.9512 0.6252 0.6686 4
29 ROSE 0.9522 0.5893 0.4351 33
30 RWO_sampling 0.9533 0.6042 0.4911 32
31 Safe_Level_SMOTE 0.9508 0.6234 0.6433 14
32 Selected_SMOTE 0.9524 0.6395 0.6892 1
33 SL_graph_SMOTE 0.9508 0.6233 0.6032 22
34 SMMO 0.9499 0.5992 0.5614 25
35 SMOBD 0.9520 0.5809 0.3485 40
36 SMOTE 0.9510 0.6268 0.6809 2
37 SMOTE_D 0.9507 0.6254 0.6599 7
38 SMOTE_OUT 0.9518 0.6151 0.6351 15
39 SMOTEWB 0.9511 0.6262 0.6439 13
40 SN_SMOTE 0.9510 0.6254 0.6615 6
41 SSO 0.9524 0.5851 0.4114 35
42 TRIM_SMOTE 0.9514 0.6172 0.5904 24

The results highlight the variability in performance across different oversampling
techniques. The Selected_SMOTE model demonstrated strong capabilities in improving
classification accuracy, particularly under conditions of significant data imbalance. This
finding provides a preliminary basis for informing the selection of imbalance-handling
methods in machine learning applications, with the understanding that dataset characteris-
tics play a substantial role in determining the best approach. Unlike traditional SMOTE,
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which treats all features equally during synthetic data generation, Selected_SMOTE focuses
on synthesizing specific features based on feature selection. This approach assigns more
weight to important attributes that contribute more to classification decisions, creating
synthetic samples that are both meaningful and relevant.

Figure 2 presents a scatter plot comparing the Kappa Coefficient (y-axis) and Sensitivity
(x-axis) for both the SMOTE variants and the baseline reduced dataset model. The baseline
model, which uses 4% of the total data points in each C-factor class of the Shihmen Reservoir
watershed without SMOTE, is represented by a single red cross. This model exhibits a
relatively low Overall Accuracy of approximately 0.9521 and a Kappa Coefficient of around
0.5805. The majority of the points, shown in blue, represent the 42 SMOTE variants.
Notably, most of these variants achieve higher Sensitivity values than the baseline model,
with the exception of the polynom_fit_SMOTE_poly and DEAGO models. Additionally,
most SMOTE variants also surpass the baseline model in terms of the Kappa Coefficient,
further underscoring the benefits of these techniques.

Figure 2. Comparison of sensitivity and Kappa Coefficient between SMOTE variants (blue crosses)
and the baseline reduced dataset model (red cross) using a scatter plot.

The SMOTE variants have proven highly effective in enhancing accuracy compared to
models trained on imbalanced datasets. In cases where one class significantly outweighs
others, traditional machine learning algorithms often favor the majority class, resulting
in poor classification of the minority classes. SMOTE variants address this challenge
by generating synthetic samples for the minority classes, effectively balancing the class
distribution. By creating synthetic instances that closely mirror the characteristics of the
minority classes, these techniques provide the algorithm with more representative data,
allowing it to learn the underlying patterns more accurately.

This balanced approach leads to improved generalization and performance, enabling
the algorithm to make more accurate predictions for both majority and minority classes.
Moreover, by diversifying the dataset, models using SMOTE variants mitigate the risk of
overfitting, further enhancing accuracy and robustness. The enhanced performance, as
illustrated in the scatter plot, highlights the importance of employing SMOTE variants to
effectively resolve class imbalance issues in machine learning.
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3.2. Comparison of Minority Class Predictions

Table 3 presents performance metrics for each class, comparing models trained on the
baseline reduced dataset model (imbalanced dataset) and the balanced dataset generated
using the Selected_SMOTE method.

The model trained on the imbalanced dataset struggled to correctly identify minority
classes, specifically for C = 0.133 and C = 0.156. For these classes, metrics such as precision,
sensitivity, F1-score, and G-mean were either zero or undefined, indicating severe issues
due to class imbalance.

In contrast, the Selected_SMOTE model, trained on the balanced dataset, showed
substantial improvement, particularly for the minority classes. Metrics such as precision,
sensitivity, and F1-score for C = 0.133 and C = 0.156 improved significantly, demonstrating
the model’s ability to better identify and classify instances of these minority classes.

This comparison highlights the critical importance of addressing class imbalance
before training machine learning models. It underscores the necessity of implementing
effective data preprocessing techniques, such as oversampling methods like SMOTE, to
mitigate the effects of imbalance and to enhance overall model performance and reliability.

Furthermore, Figure 3 compares the sensitivity of the two models across each class,
showing that the sensitivity of nearly all classes improved with the application of the
Selected_SMOTE variant. This underscores the importance of mitigating dataset imbalance
to achieve robust machine learning outcomes. The results emphasize the effectiveness of
oversampling techniques, particularly the Selected_SMOTE approach, in addressing class
imbalance for C-factors and improving the overall performance of machine learning models.

Table 3. Performance metrics for each class for the Selected_SMOTE and baseline reduced dataset
(imbalanced dataset).

Model Class Precision Sensitivity F1-Score Specificity G-Mean

Se
le

ct
ed

_S
M

O
TE

Ba
la

nc
ed

da
ta

se
t

0 0.8855 0.6927 0.7774 0.9974 0.8312
0.005 0.3067 0.9099 0.4587 0.9997 0.9537
0.01 0.9714 0.9845 0.9779 0.6432 0.7958
0.025 0.6688 0.8413 0.7452 0.9974 0.9160
0.03 0.5954 0.9438 0.7302 0.9968 0.9699
0.035 0.1792 0.7677 0.2905 0.9980 0.8753
0.05 0.6143 0.4507 0.5199 0.9983 0.6707
0.133 0.0133 0.4545 0.0258 0.9997 0.6741
0.156 0.2192 0.9320 0.3549 0.9998 0.9653
0.16 0.5887 0.2333 0.3342 0.9969 0.4823
0.208 0.4600 0.3936 0.4242 0.9963 0.6262
1 0.4866 0.6660 0.5623 0.9987 0.8155
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-
Im
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da
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0 0.8345 0.6962 0.7591 0.9959 0.8327
0.005 0.7677 0.2282 0.3519 1.0000 0.4777
0.01 0.9604 0.9936 0.9767 0.4956 0.7017
0.025 0.8061 0.6462 0.7174 0.9990 0.8035
0.03 0.6710 0.7789 0.7209 0.9981 0.8817
0.035 0.8290 0.2520 0.3865 1.0000 0.5020
0.05 0.8126 0.1604 0.2679 0.9998 0.4004
0.133 - 0.0000 - 1.0000 0.0000
0.156 - 0.0000 - 1.0000 0.0000
0.16 0.5794 0.1623 0.2535 0.9978 0.4024
0.208 0.5794 0.1185 0.1967 0.9993 0.3441
1 0.8820 0.1043 0.1865 1.0000 0.3229

Note: (-) undefined value.
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Figure 3. Producer’s accuracy (sensitivity) between the baseline reduced dataset model (imbalanced
dataset) and Selected_SMOTE model.

3.3. Improving Minority Class Performance Through SMOTE Variants

Models trained on imbalanced datasets typically show reduced accuracy for minority
classes due to two main factors. First, the limited representation of the minority classes
in such datasets restricts the model’s exposure to these instances, making it difficult to
learn and distinguish the unique features of minority class samples. This lack of sufficient
training data results in poor classification performance for the minority classes.

Second, traditional machine learning algorithms tend to focus on optimizing overall
performance metrics, like overall accuracy, which often leads to bias toward the majority
class. This bias results in the model prioritizing the correct classification of majority class
instances at the expense of the minority classes, causing lower recall and F1-score for the
underrepresented class.

SMOTE variants address these challenges by enhancing overall accuracy while specifi-
cally improving the classification of minority classes. Imbalanced datasets pose significant
hurdles for traditional models, as they favor the majority class, leading to misclassifica-
tion or omission of critical minority class instances. SMOTE variants mitigate this issue
by oversampling the minority classes, ensuring that the model encounters enough mi-
nority instances during training. This exposure allows the model to better capture the
nuances of the minority classes, leading to significant improvements in F1-score, recall, and
overall performance.

By prioritizing the correct identification of minority instances, SMOTE variants not
only improve model performance but also provide more reliable and actionable insights,
particularly in scenarios where minority classes represent critical outcomes. The results
of this study highlight that addressing dataset imbalance is crucial for achieving more
accurate and reasonable performance across all classes, underscoring the importance of
careful data balancing prior to model training.

3.4. Limitations of the Study

While this study demonstrates the effectiveness of SMOTE variants in enhancing
classification accuracy for cover management factor estimation, several limitations should
be acknowledged. First, our findings and conclusions may not be directly applicable to
other application scenarios or datasets. The smote-variants package, which originally im-
plemented 85 SMOTE techniques, provides a comprehensive comparison of these methods
across 104 imbalanced datasets, with rankings based on classification accuracy and other
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performance metrics [32,33]. This comparison includes a “Ranking” section listing the top
10 SMOTE variants, yet only G_SMOTE from this top 10 aligns with our top 5 methods,
while others from the smote-variants rankings fall between 21 and 42 in our study or do not
appear in our results. This discrepancy suggests that the optimal choice of SMOTE variant
is closely tied to dataset-specific characteristics, an insight that limits the generalizability of
any single SMOTE variant’s performance.

Second, our findings, together with prior studies, suggest that the effectiveness of
SMOTE techniques is highly dependent on the unique characteristics of each dataset. While
this study is the first to apply these SMOTE variants specifically for balancing data in
cover management factor estimation, we found no established framework to categorize
or universally recommend SMOTE techniques for similar applications. The variability in
performance observed across datasets indicates that selecting an optimal SMOTE variant
based solely on problem type or application field is impractical without considering the
specific data characteristics involved.

Given these insights, it is premature to conclude that any particular application con-
text alone can reliably guide the selection of a specific SMOTE variant to ensure optimal
performance across diverse contexts. Instead, our findings emphasize the need for fur-
ther research to systematically investigate the interaction between dataset properties and
SMOTE performance. Such research could ultimately provide a clearer framework for
selecting the most suitable SMOTE techniques across various applications, aided by em-
pirical results from both our study and the comprehensive comparisons offered by the
smote-variants package.

4. Conclusions

This study addresses the challenge of class imbalance in LULC classification, a key
issue in accurately mapping the cover management factor within datasets dominated by
majority classes. In the study area, the predominance of forested areas results in a heavily
imbalanced dataset, which hinders machine learning models from effectively classifying
minority classes within the C-factor. While previous models achieved reasonable overall
accuracy, they struggled with identifying these minority classes accurately. To address this
issue, our study aimed to balance the dataset prior to model training, thereby enhancing
classification accuracy across all classes.

To address the class imbalance, the smote-variants package was used, applying various
SMOTE techniques to create a more balanced dataset for C-factor classification. The results
indicate substantial improvements in model performance across nearly all SMOTE variants.
Selected_SMOTE excelled in both sensitivity (0.6892) and the kappa coefficient (0.6395),
which contributed to its ranking as the top method overall, despite its overall accuracy
ranking third at 0.9524. These results underscore the effectiveness of SMOTE variants in
enhancing model performance on imbalanced datasets.

SMOTE techniques improve model performance by generating synthetic samples
for minority classes, allowing the model to learn more effectively from the full range
of class distributions. By addressing the imbalance, SMOTE variants provide a more
comprehensive training set that captures the complexities of both majority and minority
classes, resulting in improved classification accuracy across the board.

In summary, this study demonstrates that addressing class imbalance through SMOTE
variants significantly enhances classification performance in C-factor modeling. The success
of the Selected_SMOTE method illustrates the potential of balanced datasets in improving
machine learning outcomes for imbalanced data, providing a valuable approach for future
applications in LULC classification and other fields facing similar challenges.
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30. Koziarski, M.; Woźniak, M. CCR: A combined cleaning and resampling algorithm for imbalanced data classification. Int. J. Appl.
Math. Comput. Sci. 2017, 27, 635–645. [CrossRef]

31. Bellinger, C.; Japkowicz, N.; Drummond, C. Synthetic oversampling for advanced radioactive threat detection. In Proceedings of
the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December
2015; pp. 948–953.

32. SMOTE-Variants Documentation. Ranking. Available online: https://smote-variants.readthedocs.io/en/latest/ranking.html
(accessed on 5 November 2024).

33. Kovács, G. An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced
datasets. Appl. Soft Comput. 2019, 83, 105662. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/ijgi10010019
http://dx.doi.org/10.1016/j.neucom.2019.06.100
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s11042-024-20325-5
http://dx.doi.org/10.1016/j.inffus.2013.12.003
http://dx.doi.org/10.1515/amcs-2017-0050
https://smote-variants.readthedocs.io/en/latest/ranking.html
http://dx.doi.org/10.1016/j.asoc.2019.105662

	Introduction
	Materials and Methods
	Data Collection
	Data Preparation and Model Development
	Data Pre-Processing
	Handling Imbalanced Data
	Random Forest Model

	Accuracy Indices

	Results and Discussion
	Performance of Different Imbalanced Data Methods
	Comparison of Minority Class Predictions
	Improving Minority Class Performance Through SMOTE Variants
	Limitations of the Study

	Conclusions
	References

