Removal of Organic Micropollutants and Microplastics via Ozonation Followed by Granular Activated Carbon Filtration
<p>Scheme of pilot plant steps. A, B, C, D, and E designate the sampling points.</p> "> Figure 2
<p>Decision matrix for the selection of organic micropollutants for regular screening in the pilot plant with ozonation and GAC filtration (short list) based on a broader micropollutant screening and literature data. LOQ: limit of quantification.</p> "> Figure 3
<p>Elimination of organic micropollutants through ozonation depending on the specific ozone dose. An average of four samples was taken for each specific ozone dose with their standard deviation (<span class="html-italic">n</span> = 4 for each specific ozone dose, except for Iopromide, which could not be found in the four samples and had too-small concentrations for calculation of elimination in two samples (0.1: <span class="html-italic">n</span> = 1; 0.2: <span class="html-italic">n</span> = 3; 0.5: <span class="html-italic">n</span> = 2). Averages calculated from the mean eliminations of all OMP and for each substance group (pharmaceuticals and metabolites, corrosion inhibitors, X-ray contrast media). DCBZ= 10,11-Dihydro-10,11-Dihydroxycarbamazepine.</p> "> Figure 4
<p>Breakthrough curves of X-ray contrast media, after ozonation and additional GAC filtration. Various ozone doses (0.1 to 0.5 mg<sub>O3</sub>/mg<sub>DOC</sub>) and different EBCTs (from 27 to 40 min) have been applied.</p> "> Figure 5
<p>Concentrations of all detected polymers within their size fractions in the effluent of secondary clarifiers and GAC filter, cycles 1 and 2 [µg/m<sup>3</sup>].</p> "> Figure 6
<p>Elimination of dissolved organic carbon (DOC) depending on the ozone dose and weather condition. DW = dry weather; RW = rainy weather.</p> "> Figure 7
<p>Breakthrough curve of DOC in the combination ozonation and GAC filtration over time. Results of the pilot plant with varying specific ozone doses (0.1–0.5 mg<sub>O3</sub>/mg<sub>DOC</sub>) and EBCT between 27 and 40 min. Rhombus = 0.5 mg<sub>O3</sub>/mg<sub>DOC</sub>; circle = 0.2 mg<sub>O3</sub>/mg<sub>DOC</sub>; square = 0.1 mg<sub>O3</sub>/mg<sub>DOC</sub>.</p> "> Figure 8
<p>Correlation of arithmetic mean of all measured organic micropollutants (OMPs) and the removal of Spectral Absorption Coefficient at 254 nm (SAC<sub>254</sub>) through ozonation and ozonation and GAC in combination.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.1.1. Pilot Plant Set-Up and Wastewater Effluent
2.1.2. Monitoring and Sampling Strategy
2.2. Analytical Methods and Choice of Analyzed Pollutants
2.2.1. Organic Micropollutants
Substance Group | Substance | Indicator Substance | % >LOQ | Key Parameter in Literature | Elimination by Ozonation | Elimination by Activated Carbon | Concentration > LOQ | Relevant for Receiving Water | |
---|---|---|---|---|---|---|---|---|---|
After O3 | After O3 + GAC | ||||||||
[4,69,80,81] | [31,47,49,58,62,82,83,84,85,86] | [34,40,47,49,57,58,62,82,85,86,87,88,89] | [70,71,74,90,91,92,93,94] | ||||||
Pharmaceuticals and Metabolites | 10,11-Dihydro-10,11-dihydroxy-carbamazepine | x | 100 | n.d | n.d | n.d | n.d | n.d. | |
Azithromycin | 100 | good | good | x | |||||
Bezafibrate | 83 | moderate | good | x | |||||
Candesartan | x | 100 | x | moderate | moderate | x | x | n.d. | |
Carbamazepine | x | 100 | x | good | good | x | x | ||
Ciprofloxacin | 100 | good | good | x | |||||
Clarithromycin | x | 100 | x | good | good | x | x | ||
Dehydrato-Erythromycin A | 17 | n.d | n.d | n.d | n.d | n.d. | |||
Diclofenac | x | 83 | x | good | good | x | x | ||
Erythromycin A | 33 | moderate | moderate | ||||||
Gabapentin | 100 | low | low | x | x | ||||
Guanylurea | 100 | n.d | moderate | n.d | n.d | n.d. | |||
Hydrochlorothiazide | x | 100 | x | moderate | good | x | x | n.d. | |
Ibuprofen | 50 | x | moderate | good | |||||
Irbesartan | 100 | x | moderate | good | x | ||||
Metformin | 100 | low | good | x | x | ||||
Metoprolol | x | 100 | x | moderate | good | x | x | x | |
Sulfamethoxazole | x | 100 | x | good | moderate | x | |||
Estrogen | 17-alpha-Ethinylestradiol | 50 | n.d | good | n.d | n.d | x | ||
17-beta-Estradiol | 100 | n.d | good | n.d | n.d | x | |||
Estrone | 100 | good | good | x | |||||
Flame retardant | TCEP | 33 | n.d | moderate | n.d | n.d | |||
TCPP | 100 | moderate | moderate | x | x | ||||
Complexing agent | DTPA | 100 | n.d | low | n.d | n.d | n.d. | ||
EDTA | 100 | n.d | low | n.d | n.d | ||||
NTA | 0 | n.d | low | n.d | n.d | n.d. | |||
Corrosion inhibitors | 4-Methylbenzotriazole | x | 100 | x | moderate | good | x | ||
5-Methylbenzotriazole | x | 100 | x | moderate | good | x | x | ||
Benzotriazole | x | 100 | x | moderate | good | x | x | ||
Perfluorinated tenside | PFBA | 50 | n.d | moderate | n.d | n.d | n.d. | ||
PFBS | 17 | n.d | low | n.d | n.d | n.d. | |||
PFOS | 50 | n.d | moderate | n.d | n.d | x | |||
PFOA | 33 | n.d | moderate | n.d | n.d | n.d. | |||
Pesticide | Carbendazim | 33 | good | good | |||||
DEET | 33 | moderate | moderate | x | x | x | |||
MCPP (Mecoprop) | 67 | x | moderate | moderate | x | ||||
Terbutryn | 50 | x | moderate | good | x | ||||
Diuron | x | 100 * | good | good | x | n.d. | |||
Glyphosate | 100 * | n.d | n.d | n.d | n.d | n.d. | |||
X-ray contrast media | Diatrizoic acid | x | 100 | x | low | low | x | x | n.d. |
Iohexol | x | 100 | x | moderate | moderate | x | x | ||
Iomeprol | x | 100 | x | moderate | moderate | x | x | ||
Iopamidol | x | 100 | x | moderate | moderate | x | x | ||
Iopromide | x | 17 | x | low | moderate | x | |||
Synthetic fragrance | AHTN | 83 | n.d | good | n.d | n.d | n.d. | ||
HHCB | 100 | n.d | good | n.d | n.d | n.d. | |||
Synthetic sweetener | Acesulfame | 100 | moderate | low | x | x | |||
Cyclamate | 50 | n.d | n.d | n.d | n.d | n.d. | |||
Sucralose | 100 | low | moderate | x | x | ||||
other chemicals | Melamine | 100 | n.d | low | n.d | n.d | n.d. | ||
Additional substances: | |||||||||
Educt NDMA | DMS | ||||||||
Transformation products | 2,6-Dichloroaniline | ||||||||
NDMA | |||||||||
DCPMU | |||||||||
Oxidation by-products | Educt: Bromide | ||||||||
Product: Bromate |
2.2.2. Microplastics
- k: number of detected polymers;
- Cm, total: mean concentration of all detected polymers in sample in [µg/m3];
- Cm,x: mean concentration of polymer x in sample in [µg/m3];
- Cm,x,y: mean concentration of polymer x in size fraction y (µm) in [µg/m3];
- mx,y: mass concentration of MP x in analyzed subsample of size fraction y (µm) in [µg/µg];
- ms,y: total mass of sediments of size fraction y (µm) in [µg];
- Vs: treated WW volume that streamed into SBs during sampling cycle [m3].
2.2.3. C, N, and P Parameters
2.2.4. Removal Calculations for Organic Micropollutants and CNP Parameters
- i: name of the substance measured;
- Ri: removal of the substance in [%];
- Ci,out: concentration of the substance in the outflow of the process step in [µg/L] for organic pollutants, transformation products, and ozonation by-products and in [mg/L] for standard parameters;
- Ci,in: concentration of the substance in the inflow of the process step in [µg/L] for organic pollutants, transformation products, and ozonation by-products and in [mg/L] for standard parameters.
3. Results
3.1. Removal of Organic Micropollutants
3.1.1. Removal Through Ozonation
3.1.2. Removal with the Combination of Ozonation and Granular Activated Carbon
3.1.3. Removal of By-Products Generated from Ozonation: Bromate, Nitrosamine (NDMA), and Transformation Product of Diclofenac
3.2. Removal of Microplastics
3.3. C, N, and P Parameters
4. Discussion
4.1. Selection of Organic Micropollutants
4.2. Removal During Ozonation
4.2.1. Organic Micropollutants
4.2.2. By-Products Generated from Ozonation (Bromate, NDMA) and Transformation Product from Diclofenac
4.2.3. C, N, and P Parameters
4.3. Removal Through the Combination of Ozonation and GAC Filter
4.3.1. Organic Micropollutants
4.3.2. By-Products Generated from Ozonation and Transformation Product from Diclofenac
4.3.3. Microplastics
4.3.4. C, N, and P Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Eggen, R.I.L.; Hollender, J.; Joss, A.; Schärer, M.; Stamm, C. Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environ. Sci. Technol. 2014, 48, 7683–7689. [Google Scholar] [CrossRef] [PubMed]
- Breitbarth, M.; Urban, A.I. Kunststoffe in kommunalen Kläranlagen. Kunststoffe Kommunalen Kläranlagen 2018, 2018, 800–807. [Google Scholar] [CrossRef]
- European Parliament. European Parliament Legislative Resolution of 10 April 2024 on the Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment. (Recast) (COM(2022)0541—C9-0363/2022—2022/0345(COD)). Available online: https://www.europarl.europa.eu/doceo/document/TA-9-2024-0222_EN.html (accessed on 16 September 2024).
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.; Papazissimos, D.; Rogers, D.L. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 2016, 218, 1045–1054. [Google Scholar] [CrossRef]
- Ramirez Arenas, L.; Ramseier Gentile, S.; Zimmermann, S.; Stoll, S. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Sci. Total Environ. 2021, 791, 148175. [Google Scholar] [CrossRef] [PubMed]
- ISO/TR 21960:2020; Plastics—Environmental Aspects—State of Knowledge and Methodologies. Beuth Verlag GmbH: Berlin, Germany, 2020.
- Huo, Y.; Dijkstra, F.A.; Possell, M.; Singh, B. Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: A meta-analysis. Environ. Pollut. 2022, 310, 119892. [Google Scholar] [CrossRef]
- González-Soto, N.; Campos, L.; Navarro, E.; Bilbao, E.; Guilhermino, L.; Cajaraville, M.P. Effects of microplastics alone or with sorbed oil compounds from the water accommodated fraction of a North Sea crude oil on marine mussels (Mytilus galloprovincialis). Sci. Total Environ. 2022, 851, 157999. [Google Scholar] [CrossRef]
- Redondo-Hasselerharm, P.E.; Rico, A.; Koelmans, A.A. Risk assessment of microplastics in freshwater sediments guided by strict quality criteria and data alignment methods. J. Hazard. Mater. 2022, 441, 129814. [Google Scholar] [CrossRef]
- Capolupo, M.; Sørensen, L.; Jayasena, K.D.R.; Booth, A.M.; Fabbri, E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020, 169, 115270. [Google Scholar] [CrossRef]
- Solomando, A.; Cohen-Sánchez, A.; Box, A.; Montero, I.; Pinya, S.; Sureda, A. Microplastic presence in the pelagic fish, Seriola dumerili, from Balearic Islands (Western Mediterranean), and assessment of oxidative stress and detoxification biomarkers in liver. Environ. Res. 2022, 212, 113369. [Google Scholar] [CrossRef] [PubMed]
- Botterell, Z.L.R.; Beaumont, N.; Dorrington, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut. 2019, 245, 98–110. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
- Hazardous Chemicals Associated with Plastics in the Marine Environment, 1st ed.; Takada, H.; Karapanagioti, H.K. (Eds.) Springer International Publishing: Cham, Switzerland, 2019; ISBN 9783319955681. [Google Scholar]
- Miranda, M.N.; Lado Ribeiro, A.R.; Silva, A.M.T.; Pereira, M.F.R. Can aged microplastics be transport vectors for organic micropollutants?—Sorption and phytotoxicity tests. Sci. Total Environ. 2022, 850, 158073. [Google Scholar] [CrossRef]
- VSA-Plattform Verfahrenstechnik Mikroverunreinigungen. Übersicht ARA Ausbau. Available online: https://micropoll.ch/ara-ausbau/ (accessed on 27 September 2024).
- DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. Kläranlagen mit einer 4. Reinigungsstufe zur Gezielten Spurenstoffentfernung in Betrieb. Available online: https://de.dwa.de/de/landkarte-4-stufe.html (accessed on 27 September 2024).
- Kharel, S.; Stapf, M.; Miehe, U.; Ekblad, M.; Cimbritz, M.; Falås, P.; Nilsson, J.; Sehlén, R.; Bester, K. Ozone dose dependent formation and removal of ozonation products of pharmaceuticals in pilot and full-scale municipal wastewater treatment plants. Sci. Total Environ. 2020, 731, 139064. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency. Substance Information—2,6-Dichloroaniline. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.009.237 (accessed on 19 September 2024).
- Schmidt, C.K.; Brauch, H.-J. N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ. Sci. Technol. 2008, 42, 6340–6346. [Google Scholar] [CrossRef]
- Röhl, C.; Batke, M.; Damm, G.; Freyberger, A.; Gebel, T.; Gundert-Remy, U.; Hengstler, J.G.; Mangerich, A.; Matthiessen, A.; Partosch, F.; et al. New aspects in deriving health-based guidance values for bromate in swimming pool water. Arch. Toxicol. 2022, 96, 1623–1659. [Google Scholar] [CrossRef] [PubMed]
- Soltermann, F.; Abegglen, C.; Götz, C.; von Gunten, U. Bromide Sources and Loads in Swiss Surface Waters and Their Relevance for Bromate Formation during Wastewater Ozonation. Environ. Sci. Technol. 2016, 50, 9825–9834. [Google Scholar] [CrossRef]
- Soltermann, F.; Abegglen, C.; Tschui, M.; Stahel, S.; von Gunten, U. Options and limitations for bromate control during ozonation of wastewater. Water Res. 2017, 116, 76–85. [Google Scholar] [CrossRef]
- von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469–1487. [Google Scholar] [CrossRef]
- WHO. Bromate in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality; Fourth edition incorporating the first and second addenda; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4. [Google Scholar]
- Guillossou, R.; Le Roux, J.; Brosillon, S.; Mailler, R.; Vulliet, E.; Morlay, C.; Nauleau, F.; Rocher, V.; Gaspéri, J. Benefits of ozonation before activated carbon adsorption for the removal of organic micropollutants from wastewater effluents. Chemosphere 2020, 245, 125530. [Google Scholar] [CrossRef] [PubMed]
- Zietzschmann, F.; Mitchell, R.-L.; Jekel, M. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption. Water Res. 2015, 84, 153–160. [Google Scholar] [CrossRef]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res. 2018, 129, 486–498. [Google Scholar] [CrossRef]
- Völker, J.; Stapf, M.; Miehe, U.; Wagner, M. Systematic Review of Toxicity Removal by Advanced Wastewater Treatment Technologies via Ozonation and Activated Carbon. Environ. Sci. Technol. 2019, 53, 7215–7233. [Google Scholar] [CrossRef]
- Kharel, S.; Stapf, M.; Miehe, U.; Ekblad, M.; Cimbritz, M.; Falås, P.; Nilsson, J.; Sehlén, R.; Bregendahl, J.; Bester, K. Removal of pharmaceutical metabolites in wastewater ozonation including their fate in different post-treatments. Sci. Total Environ. 2021, 759, 143989. [Google Scholar] [CrossRef]
- DWA Deutsche Vereinigung für Wasserwirtschaft. Spurenstoffentfernung auf Kommunalen Kläranlagen—Teil 2: Einsatz von Aktivkohle—Verfahrensgrundsätze und Bemessung, 1st ed.; DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. Merkblatt DWA-M 285-2: Hennef, Germany, 2021; ISBN 978-3-96862-142-5. [Google Scholar]
- Zhiteneva, V.; Drewes, J.E.; Hübner, U. Removal of Trace Organic Chemicals during Long-Term Biofilter Operation. ACS EST Water 2021, 1, 300–308. [Google Scholar] [CrossRef]
- Kolisch, G.; Pyro, P.; Steinmetz, H.; Béalu, Z.; Walther, J.; Gretzschel, O.; Brull, W.; Steyer, N.; Lehnert, F.; Schütz, S.; et al. Eloise—Innovative Verfahrenskette aus Elektrolyse und Ozonierung zur Spurenstoffelimination auf Kommunalen Kläranlagen. Fördervorhaben des Bundesministerium für Bildung und Forschung, Förderkennzeichen 02WQ1436A, Sachbericht; Germany, 2022. Available online: http://Tinyurl.com/BMBF-eloise (accessed on 5 December 2023).
- Böhler, M.; Hernandez, A.; McArdell, C.S.; Siegrist, H.; Joss, A.; Baggenstos, M. Elimination von Spurenstoffen Durch Granulierte Aktivkohle-Filtration (GAK)—Grosstechnische Untersuchungen auf der ARA Furt, Bülach, Switzerland; Phase 2, Schlussbericht; 2020. Available online: https://micropoll.ch/Mediathek/elimination-von-spurenstoffen-durch-granulierte-aktivkohle-filtration-gak-grosstechnische-untersuchungen-auf-der-ara-furt-buelach/ (accessed on 30 August 2024).
- Benstöm, F.; Nahrstedt, A.; Boehler, M.; Knopp, G.; Montag, D.; Siegrist, H.; Pinnekamp, J. Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies. Chemosphere 2017, 185, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Baresel, C.; Harding, M.; Fång, J. Ultrafiltration/Granulated Active Carbon-Biofilter: Efficient Removal of a Broad Range of Micropollutants. Appl. Sci. 2019, 9, 710. [Google Scholar] [CrossRef]
- Benstöm, F.; Stepkes, H.; Rolfs, T.; Montag, D.; Firk, W. Untersuchung einer Bestehenden Filterstufe mit dem Einsatz von Aktivkohle zur Entfernung Organischer Restverschmutzung auf der Kläranlage Düren-Merken: Abschlussbericht zum Forschungsvorhaben. 2014, Germany. Available online: https://wver.de/veroeffentlichungen/ (accessed on 19 October 2024).
- Chandrakanth, M.S.; Amy, G.L. Effects of Ozone on the Colloidal Stability and Aggregation of Particles Coated with Natural Organic Matter. Environ. Sci. Technol. 1996, 30, 431–443. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Urban, I.; Scheer, H.; Lau, P.; Reinhold, L.; Barjenbruch, M.; Bauerfeld, K.; Meyer, S. Mikroplastik-Emissionen aus Kläranlagen. Mikroplastik-Emiss. Aus Kläranlagen 2021, 2021, 730–741. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Naumov, S.; Mark, G.; Jarocki, A.; von Sonntag, C. The Reactions of Nitrite Ion with Ozone in Aqueous Solution—New Experimental Data and Quantum-Chemical Considerations. Ozone Sci. Eng. 2010, 32, 430–434. [Google Scholar] [CrossRef]
- Lee, Y.; Gerrity, D.; Lee, M.; Bogeat, A.E.; Salhi, E.; Gamage, S.; Trenholm, R.A.; Wert, E.C.; Snyder, S.A.; von Gunten, U. Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: Use of kinetic and water specific information. Environ. Sci. Technol. 2013, 47, 5872–5881. [Google Scholar] [CrossRef]
- Stapf, M.; Schumann, P.; Völker, J.; Miehe, U. Studie über Effekte und Nebeneffekte bei der Behandlung von Kommunalem Abwasser mit Ozon. Germany. 2017. Available online: https://kompetenz-wasser.de/de/forschung/publikationen/998 (accessed on 19 October 2024).
- Abegglen, C.; Siegrist, H. Mikroverunreinigungen aus Kommunalem Abwasser: Verfahren zur Weitergehenden Elimination auf Kläranlagen. 2012. Available online: https://www.bafu.admin.ch/bafu/de/home/themen/wasser/publikationen-studien/publikationen-wasser/mikroverunreinigungen-aus-kommunalem-abwasser.html (accessed on 15 September 2024).
- Austermann-Haun, U.; Alt, K.; Nahrstedt, A.; Kuhlmann, S.; Witte, H.; Dowzanski. Pilotanlage Ozon + BAK (Zweite Laufzeitphase) auf der Kläranlage Detmold: Projektergebnisse im Rahmen des Zuwendungsbescheids O-01/17-Le der Bezirksregierung Detmold, Germany. 2018. Available online: https://www.lanuv.nrw.de/landesamt/forschungsvorhaben/klaeranlage-abwasserbeseitigung?tx_cartproducts_products%5Bproduct%5D=947&cHash=f9c474bf068f63447e218b8f77afbb02 (accessed on 19 October 2024).
- Alt, K.; Kuhlmann, S.; Sikorski, D.; Austermann-Haun, U.; Meier, J.F.; Nahrstedt, A. Spurenstoffelimination auf der Kläranlage Detmold Mittels der Kombination von Ozon mit Nachgeschalteter Aktivkohlefiltration: Projektergebnisse im Rahmen des Zuwendungsbescheids 0-01/12-Dt der Bezirksregierung Detmold, Germany. 2017. Available online: https://www.lanuv.nrw.de/landesamt/forschungsvorhaben/klaeranlage-abwasserbeseitigung?tx_cartproducts_products%5Bproduct%5D=234&cHash=936695d36d6cd1bcdea11288d38d16f6 (accessed on 19 October 2024).
- Phan, L.T.; Schaar, H.; Saracevic, E.; Krampe, J.; Kreuzinger, N. Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent. Sci. Total Environ. 2022, 812, 152466. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, C.; Zhou, Y.; Wang, Y.; He, X. Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent. Chem. Eng. J. 2018, 345, 280–289. [Google Scholar] [CrossRef]
- Bahr, C.; Schumacher, J.; Ernst, M.; Luck, F.; Heinzmann, B.; Jekel, M. SUVA as control parameter for the effective ozonation of organic pollutants in secondary effluent. Water Sci. Technol. 2007, 12, 267–274. [Google Scholar] [CrossRef]
- Gerrity, D.; Gamage, S.; Jones, D.; Korshin, G.V.; Lee, Y.; Pisarenko, A.; Trenholm, R.A.; von Gunten, U.; Wert, E.C.; Snyder, S.A. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Res. 2012, 46, 6257–6272. [Google Scholar] [CrossRef]
- Nanaboina, V.; Korshin, G.V. Evolution of absorbance spectra of ozonated wastewater and its relationship with the degradation of trace-level organic species. Environ. Sci. Technol. 2010, 44, 6130–6137. [Google Scholar] [CrossRef] [PubMed]
- Wittmer, A.; Heisele, A.; McArdell, C.S.; Böhler, M.; Longree, P.; Siegrist, H. Decreased UV absorbance as an indicator of micropollutant removal efficiency in wastewater treated with ozone. Water Sci. Technol. 2015, 71, 980–985. [Google Scholar] [CrossRef]
- Anumol, T.; Sgroi, M.; Park, M.; Roccaro, P.; Snyder, S.A. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates. Water Res. 2015, 76, 76–87. [Google Scholar] [CrossRef]
- Bornemann, C.; Alt, K.; Böhm, F.; Hachenberg, M.; Kolisch, G.; Nahrstedt, A.; Taudien, Y. Technische Erprobung des Aktivkohleeinsatzes zur Elimination von Spurenstoffen in Verbindung mit vorhandenen Filteranlagen (Filter AK+: Abschlussbericht, Germany. 2015. Available online: https://www.lanuv.nrw.de/landesamt/forschungsvorhaben/klaeranlage-abwasserbeseitigung?tx_cartproducts_products%5Bproduct%5D=670&cHash=d9073f42f425e75ee50ff4a8481327db (accessed on 19 October 2024).
- Kreuzinger, N.; Haslinger, J.; Kornfeind, L.; Schaar, H.; Saracevic, E.; Winkelbauer, A.; Hell, F.; Walder, C.; Müller, M.; Wagner, A.; et al. KomOzAk Endbericht—Weitergehende Reinigung Kommunaler Abwässer mit Ozon Sowie Aktivkohle für die Entfernung Organischer Spurenstoffe, Austria. 2015. Available online: https://info.bml.gv.at/service/publikationen/wasser/KomOzAk.html (accessed on 19 October 2024).
- Altmann, J.; Rehfeld, D.; Träder, K.; Sperlich, A.; Jekel, M. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Water Res. 2016, 92, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Acosta, L.; Launay, M.A.; Zettl, U. Untersuchungen zur Kombination von Weitestgehender P-Elimination und Spurenstoffelimination auf Kommunalen Kläranlagen Stufe 1—Abschlussbericht, Germany. 2021. Available online: https://koms-bw.de/publikationen/koms/ (accessed on 19 October 2024).
- Jekel, M.; Altmann, J.; Ruhl, A.S.; Sperlich, A.; Schaller, J.; Gnirß, R.; Miehe, U.; Stapf, M.; Remy, C.; Mutz, D. Integration der Spurenstoffentfernung in Technologieansätze der 4. Reinigungsstufe bei Klärwerken, Berlin Germany. 2016. Available online: https://verlag.tu-berlin.de/produkt/978-3-7983-2806-8/ (accessed on 19 October 2024).
- Bitterwolf, S.; Böhler, M.; Bourgin, M.; Fleiner, J.; McArdell, C.; Joss, A.; Siegrist, H.; Bombardieri, G.; Allemann, M.; Vonderlin, R.; et al. Elimination von Spurenstoffen Durch Granulierte Aktivkohle (GAK) Filtration: Großtechnische Untersuchungen auf der ARA Bülach-Furt: Zwischenbericht. 2017. Available online: https://www.dora.lib4ri.ch/eawag/islandora/object/eawag:17800 (accessed on 19 October 2024).
- Böhler, M.; Blunschi, M.; Czekalski, N.; Fleiner, J.; Kienle, C.; Langer, M.; McArdell, C.S.; Teichler, R.; Siegrist, H. Biologische Nachbehandlung von Kommunalem Abwasser nach Ozonung—ReTREAT, Abschlussbericht für das Bundesamt für Umwelt (Bafu) im Rahmen Eines Projektes der Technologieförderung, Dübendorf, Switzerland. 2017. Available online: https://micropoll.ch/Mediathek/biologische-nachbehandlung-von-kommunalem-abwasser-nach-ozonung-retreat-schlussbericht/ (accessed on 19 October 2024).
- Rödel, S.; Günthert, W.; Rehbein, V.; Steinle, E.; Schatz, R.; Zech, T.; Sengl, M.; Eßlinger, M.; Weiß, K.; Kopf, W.; et al. Elimination von Anthropogenen Spurenstoffen auf Kommunalen Kläranlagen: Abschlussbericht Weißenburg (Pilotprojekt 4. Reinigungsstufe), Germany 2019. Available online: https://athene-forschung.unibw.de/doc/128025/128025.pdf (accessed on 14 May 2024).
- Kohlgrüber, V.; Baur, B.; Hartenberger, M.; Poppe, A.; Bomba, A.; Wintgens, T.; Schölzel, S.; Reiser, B.; Mörden, L.; Rubin, V.; et al. Machbarkeitsstudie RedOxA—Reduzierung des Ozon-Oxidationsauf- Wandes für Spurenstoffe in Kombination mit Aktivkohlefiltration im Klärwerk Köln-Rodenkirchen, Germany. 2022. Available online: https://www.lanuv.nrw.de/landesamt/forschungsvorhaben/machbarkeitsstudien?tx_cartproducts_products%5Bproduct%5D=1357&cHash=c65de5e8e10facaf56c6567ea19f8a67 (accessed on 19 October 2024).
- Kittner, M.; Kerndorff, A.; Ricking, M.; Bednarz, M.; Obermaier, N.; Lukas, M.; Asenova, M.; Bordós, G.; Eisentraut, P.; Hohenblum, P.; et al. Microplastics in the Danube River Basin: A First Comprehensive Screening with a Harmonized Analytical Approach. ACS EST Water 2022, 2, 1174–1181. [Google Scholar] [CrossRef]
- Braun, U.; Abusafia, A.; Altmann, K.; Bannick, C.G.; Crasselt, C.; Dittmar, S.; Gehde, M.; Hagendorf, M.; Herper, D.; Heymann, S.; et al. RUSEKU: Repräsentative Untersuchungsstrategien für ein Integratives Systemverständnis von Spezifischen Einträgen von Kunststoffen in die Umwelt; FKZ: Berlin, Germany, 2022. [Google Scholar]
- Abusafia, A. Developing Monitoring Strategies for Quantifying and Examining the Fate of Microplastic Emissions in Urban Wastewater Drainage Systems. Ph.D. Dissertation, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Rhineland-Palatinate, Germany. Wasser Infrastruktur Ressourcen.
- KomS Baden-Württemberg. Brochure Micropollutants in Wastewater—Action Recommendation for Municipalitites. 2021. Available online: http://koms-bw.de/cms/content/media/Projektbroschuere%20Spurenstoffe%20KomS%20Englisch_Ansicht.pdf (accessed on 19 October 2024).
- LAWA Bund/Länder-Arbeitsgemeinschaft Wasser. Mikroschadstoffe in Gewässern: Beschlossen auf der 151. LAWA-VV am 17./18. März 2016 in Stuttgart, Germany 2016. Available online: https://www.lawa.de/documents/20160126_lawa_bericht_mikroschadstoffe_in-gewaessern_final_1555580704.pdf (accessed on 19 October 2024).
- Sacher, F. Spurenstoffinventar der Fließgewässer in Baden-Württemberg: Ergebnisse der Beprobung von Fließgewässern und Kläranlagen 2012/2013; LUBW: Karlsruhe, Germany, 2014; ISBN 978-3-88251-379-0. [Google Scholar]
- Wicke, D.; Tatis-Muvdi, R.; Rouault, P.; Zerball-van Baar, P.; Dünnbier, U.; Rohr, M.; Burkhardt, M. Emissions from Building Materials—A Threat to the Environment? Water 2022, 14, 303. [Google Scholar] [CrossRef]
- Verordnung über Anwendungsverbote für Pflanzenschutzmittel (Pflanzenschutz-Anwendungsverordnung) Anlage 3 (zu den §§ 3 und 4) Anwendungsbeschränkungen; Zuletzt Geändert Durch Art. 3 V v. 24.6.2024 I Nr. 216, Germany 1992. Available online: https://www.gesetze-im-internet.de/pflschanwv_1992/BJNR118870992.html (accessed on 19 October 2024).
- DIRECTIVE 2013/39/EU; Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. European Parliament and the Council of the European Union Directives: Strasbourg, France, 12 August 2013.
- ISO 21676:2018; Water Quality—Determination of the Dissolved Fraction of Selected Active Pharmaceutical Ingredients, Transformation Products and Other Organic Substances in Water and Treated Waste Water—Method Using High Performance Liquid Chromatography and Mass Spectrometric Detection (HPLC-MS/MS or -HRMS) after Direct Injection. German version EN ISO 21676:2021; DIN-Normenausschuss Wasserwesen (NAW): Berlin, Germany, 2021.
- von Gunten, U.; Salhi, E.; Schmidt, C.K.; Arnold, W.A. Kinetics and mechanisms of N-nitrosodimethylamine formation upon ozonation of N,N-dimethylsulfamide-containing waters: Bromide catalysis. Environ. Sci. Technol. 2010, 44, 5762–5768. [Google Scholar] [CrossRef]
- Matejczyk, M.; Ofman, P.; Dąbrowska, K.; Świsłocka, R.; Lewandowski, W. The study of biological activity of transformation products of diclofenac and its interaction with chlorogenic acid. J. Environ. Sci. 2020, 91, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Wirzberger, V.; Klein, M.; Woermann, M.; Lutze, H.V.; Sures, B.; Schmidt, T.C. Matrix composition during ozonation of N-containing substances may influence the acute toxicity towards Daphnia magna. Sci. Total Environ. 2021, 765, 142727. [Google Scholar] [CrossRef]
- Oturan, N.; Trajkovska, S.; Oturan, M.A.; Couderchet, M.; Aaron, J.-J. Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process “electro-Fenton”. Chemosphere 2008, 73, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- KompetenzzentrumMikroschadstoffe.NRW. Anleitung zur Planung und Dimensionierung von Anlagen zur Mikroschadstoffelimination: 2. Überarbeitete und Erweiterte Auflage. Germany, 2016. Available online: https://www.lanuv.nrw.de/fileadmin/forschung/Mikroschadstoffelimination_Wachtberg.pdf (accessed on 19 October 2024).
- UVEK. Verordnung des UVEK zur Überprüfung des Reinigungseffekts von Maßnahmen zur Elimination von Organischen Spurenstoffen bei Abwasserreinigungsanlagen. Available online: https://www.admin.ch/opc/de/classified-compilation/20160123/index.html (accessed on 19 October 2024).
- Götz, C.; Otto, J.; Singer, H. Überprüfung des Reinigungseffektes: Auswahl geeigneter organischer Spurenstoffe. Aqua Gas 2015, 2, 34–40. [Google Scholar]
- Antoniou, M.G.; Hey, G.; Rodríguez Vega, S.; Spiliotopoulou, A.; Fick, J.; Tysklind, M.; La Cour Jansen, J.; Andersen, H.R. Required ozone doses for removing pharmaceuticals from wastewater effluents. Sci. Total Environ. 2013, 456–457, 42–49. [Google Scholar] [CrossRef]
- Abegglen, C.; Escher, B.; Hollender, J.; Koepke, S.; Ort, C.; Peter, A.; Siegrist, H.; von Gunten, U.; Zimmermann, S.; Koch, M.; et al. Ozonung von Gereinigtem Abwasser—Schlussbericht Pilotversuch Regensdorf. 2009. Available online: https://micropoll.ch/wp-content/uploads/2020/06/2009_EAWAG_SB_Ozonung-von-gereinigtem-Abwass_d.pdf (accessed on 25 September 2024).
- Internationale Kommission zum Schutz des Rheins. Auswertungsbericht Röntgenkontrastmittel. Koblenz, Germany 2010. Available online: https://www.iksr.org/de/ (accessed on 30 August 2024).
- Müller, J.; Knoop, O.; Hübner, U.; Metzger, S.; Keysers, C.; Daub, B.; Zech, T.; Schatz, R.; Müller, E.; Schade, M.; et al. Schlussbericht Pilotprojekt 4. Reinigungsstufe auf der Kläranlage Weißenburg, Erfahrungen im Regelbetrieb; Berichte aus der Siedlungswasserwirtschaft Technische Universität München: München, Germany, 2021. [Google Scholar]
- Bornemann, C.; Hachenberg, M.; Kazner, C.; Herr, J.; Jagemann, P.; Lyko, S.; Benstöm, F.; Montag, D.; Platz, S.; Wett, M.; et al. Abschlussbericht: Ertüchtigung kommunaler Kläranlagen, insbesondere kommunaler Flockungsfiltrationsanlagen Durch den Einsatz von Aktivkohle (MIKROFlock): Elimination von Arzneimitteln und Organischen Spurenstoffen: Entwicklung von Konzeptionen und Innovativen, Kostengünstigen Reinigungsverfahren, Germany 2012. Available online: https://www.lanuv.nrw.de/landesamt/forschungsvorhaben/niederschlag?tx_cartproducts_products%5Bproduct%5D=696&cHash=88ad33d3319ee92df98837059323180a (accessed on 30 August 2024).
- Nahrstedt, A.; Rohn, A.; Alt, K.; Wu, X.; Schlösser, F.; Merten, M.; Müller, M.; Giskow, R.; Sürder, T. Mikroschadstoffelimination Mittels Granulierter Aktivkohle im Ablauf der Kläranlage Gütersloh-Putzhagen: Abschlussbericht—Stadt Gütersloh, Germany. 2016. Available online: https://www.lanuv.nrw.de/landesamt/forschungsvorhaben/machbarkeitsstudien?tx_cartproducts_products%5Bproduct%5D=802&cHash=81488d875b597560b62a9e22c29ec6f9 (accessed on 30 August 2024).
- Böhler, M.; Heisele, A.; Wohlhausser, A.; Salhi, L.; von Gunten, U.; Siegrist, H.; McArdell, C.; Longrée, P.; Beck, B. Ergänzende Untersuchungen zur Elimination von Mikroverunreinigungen auf der Ara Neugut; Eawag (Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz: Dübendorf, Switzerland, 2012. [Google Scholar]
- Oekotoxzentrum. Qualitätskriterienvorschläge Oekotoxzentrum. Available online: https://www.oekotoxzentrum.ch/expertenservice/qualitaetskriterien/qualitaetskriterienvorschlaege-oekotoxzentrum/ (accessed on 30 August 2024).
- Umweltbundesamt. Revision der Umweltqualitätsnormen der Bundes-Oberflächengewässerverordnung nach Ende der Übergangsfrist für Richtlinie 2006/11/EG und Fortschreibung der Europäischen Umweltqualitätsziele für Prioritäre Stoffe. 2015. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_47_2015_revision_der_umweltqualitaetsnormen_der_bundes-oberflaechengewaesserverordnung_2.pdf (accessed on 30 August 2024).
- Umweltbundesamt. Umweltqualitätsnormen (UQN) für Prioritäre Stoffe und Weitere Stoffe des Chemischen Zustands. 2016. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/2875/dokumente/umweltqualitaetsnormen_des_chemischen_zustands_0.pdf (accessed on 30 August 2024).
- Verordnung zum Schutz der Oberflächengewässer: Oberflächengewässerverordnung—OgewV, Germany 2016. Available online: https://www.gesetze-im-internet.de/ogewv_2016/BJNR137310016.html (accessed on 30 August 2024).
- Tousova, Z.; Oswald, P.; Slobodnik, J.; Blaha, L.; Muz, M.; Hu, M.; Brack, W.; Krauss, M.; Di Paolo, C.; Tarcai, Z.; et al. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Sci. Total Environ. 2017, 601–602, 1849–1868. [Google Scholar] [CrossRef]
- Eisentraut, P.; Dümichen, E.; Ruhl, A.S.; Jekel, M.; Albrecht, M.; Gehde, M.; Braun, U. Two Birds with One Stone—Fast and Simultaneous Analysis of Microplastics: Microparticles Derived from Thermoplastics and Tire Wear. Environ. Sci. Technol. Lett. 2018, 5, 608–613. [Google Scholar] [CrossRef]
- Duemichen, E.; Eisentraut, P.; Celina, M.; Braun, U. Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products. J. Chromatogr. A 2019, 1592, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Park, S. Enhancing Microplastics Removal from Wastewater Using Electro-Coagulation and Granule-Activated Carbon with Thermal Regeneration. Processes 2021, 9, 617. [Google Scholar] [CrossRef]
- Sauter, D.; Dąbrowska, A.; Bloch, R.; Stapf, M.; Miehe, U.; Sperlich, A.; Gnirss, R.; Wintgens, T. Deep-bed filters as post-treatment for ozonation in tertiary municipal wastewater treatment: Impact of design and operation on treatment goals. Environ. Sci. Water Res. Technol. 2021, 7, 197–211. [Google Scholar] [CrossRef]
- El-taliawy, H.; Ekblad, M.; Nilsson, F.; Hagman, M.; Paxeus, N.; Jönsson, K.; Cimbritz, M.; La Cour Jansen, J.; Bester, K. Ozonation efficiency in removing organic micro pollutants from wastewater with respect to hydraulic loading rates and different wastewaters. Chem. Eng. J. 2017, 325, 310–321. [Google Scholar] [CrossRef]
- HACH Lange GmbH. Quality Certificate Technical Data for Validation of LCK349 (0.05–1.5 mg/l Ptot, Total Phosphor). Available online: https://de.hach.com/phosphat-ortho-gesamt-kuvetten-test-0-05-1-5-mg-l-po-p-25-bestimmungen/product-downloads?id=26370284700 (accessed on 30 August 2024).
- Chon, K.; Salhi, E.; von Gunten, U. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents. Water Res. 2015, 81, 388–397. [Google Scholar] [CrossRef]
- Schachtler, M. Ozonung ohne Bromatbildung (Ozonation without Bromate formartion, German): Wie Dimensionierung und Betriebsweise eine niedrige Ozonkonetration ermöglichen (How experimental design and operation mode enable low ozone concentration). Aqua Gas 2019, 12, 40–46. [Google Scholar]
- The European Parliament. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast), 2020. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 30 August 2024).
- Merle, T.; Pronk, W.; von Gunten, U. MEMBRO 3 X, a Novel Combination of a Membrane Contactor with Advanced Oxidation (O3/H2O2) for Simultaneous Micropollutant Abatement and Bromate Minimization. Environ. Sci. Technol. Lett. 2017, 4, 180–185. [Google Scholar] [CrossRef]
- WHO. N-Nitrosodimethylamine in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Song, Y.; Feng, S.; Qin, W.; Li, J.; Guan, C.; Zhou, Y.; Gao, Y.; Zhang, Z.; Jiang, J. Formation mechanism and control strategies of N-nitrosodimethylamine (NDMA) formation during ozonation. Sci. Total Environ. 2022, 823, 153679. [Google Scholar] [CrossRef]
- Multhaup, A.; Gritten, F.; Salmerón, I.; Hansen, J.; Knerr, H.; Dittmer, U. Spurenstoffelimination–Phosphorreduktion als Nebeneffekt. wwt Wasserwirtschaft Wassertechnik 2023, 72, 27–32. [Google Scholar] [CrossRef]
- Schoutteten, K.V.K.M.; Hennebel, T.; Dheere, E.; Bertelkamp, C.; de Ridder, D.J.; Maes, S.; Chys, M.; van Hulle, S.W.H.; Vanden Bussche, J.; Vanhaecke, L.; et al. Effect of oxidation and catalytic reduction of trace organic contaminants on their activated carbon adsorption. Chemosphere 2016, 165, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Abusafia, A.; Scheid, C.; Meurer, M.; Altmann, K.; Dittmer, U.; Steinmetz, H. Microplastics Sampling Strategies in Urban Drainage Systems for Quantification of Urban Emissions based on Transport Pathways. Wiley Appl. Res. 2023, 2, e202200056. [Google Scholar] [CrossRef]
- Goli, T.; Ahmadi, K.; Pagilla, K.R.; Marchand, E.A. Dissolved organic nitrogen removal from reclaimed water by enhanced coagulation, ozonation, and biodegradation. J. Water Process Eng. 2023, 55, 104212. [Google Scholar] [CrossRef]
Parameter | Average Concentration ± Standard Deviation | Parameter | Average Concentration ± Standard Deviation |
---|---|---|---|
DOC | 7.50 ± 0.82 mg/L | COD | 20.73 ± 3.63 mg/L |
SAC254 | 13.30 ± 3.22 m−1 | NO3–N | 3.04 ± 1.40 mg/L |
NO2–N | 0.20 ± 0.08 mg/L | NH4–N | 1.38 ± 0.65 mg/L |
Ptot | 0.27 ± 0.07 mg/L | PO4–P | 0.13 ± 0.09 mg/L |
Temperature | 16.5 ± 1.4 °C | pH | 7.49 ± 0.25 |
Water Flow Rate | Ozone Dose | EBCT | Filter Velocity | Number of Samples | |||||
---|---|---|---|---|---|---|---|---|---|
[m3/h] | [mgO3/mgDOC] | [min] | [m/h] | OMP Screening | OMP Short List | TP | OBP | C,N,P | MP |
0.75 | 0.50 | 40 | 4.00 | - | 2 | 1 | 1 | 4 | |
0.75 | 0.20 | 40 | 4.00 | - | 2 | 1 | 1 | 5 | |
0.90 | 0.50 | 33 | 4.80 | - | 2 | 2 | 1 | 2 | |
0.90 | 0.20 | 33 | 4.80 | - | 2 | 1 | 1 | 2 | |
0.90 | 0.10 | 33 | 4.80 | - | 4 * | 1 | 1 | 5 * | |
1.10 | 0.20 | 27 | 5.86 | - | 2 | - | 1 | 2 | |
1.00 | 0.40 | 30 | 5.00 | - | - | - | - | - | 2 |
Sampling points (in accordance with Figure 1) | A | A B C | A B C | A B C | A B C | D E | |||
Sampling process | ----------24 h composite samples---------- | 2 to 3 weeks with sedimentation boxes | |||||||
Period of sampling | March–November 2020 | ---------May–October 2021-------- | April–May 2021 | ||||||
Total number of sampling | 6 | 14 | 6 | 6 | 20 | 2 |
Secondary Clarifiers’ Effluent | Ozonation | GAC | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Specific Ozone Dose | EBCT | Bromide | Bromate | DMS | NDMA | Diclofenac | 2,6-Dichloroaniline | Bromide | Bromate | DMS | NDMA | Diclofenac | 2,6-Dichloroaniline | Bromide | Bromate | DMS | NDMA | Diclofenac | 2,6-Dichloroaniline |
mgO3/mgDOC | min | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L |
0.09 | 33 | n.d. | n.d. | <LOQ | 0.002 | 2.20 | <LOQ | n.d. | n.d. | <LOQ | 0.005 | 0.79 | <LOQ | n.d. | n.d. | <LOQ | 0.003 | <LOQ | <LOQ |
0.13 | 33 | 140 | <LOQ | n.d. | n.d. | n.d. | n.d. | 140 | <LOQ | n.d. | n.d. | N.d. | n.d. | 140 | <LOQ | n.d. | n.d. | n.d. | n.d. |
0.17 | 33 | 140 | <LOQ | <LOQ | <LOQ | 2.10 | <LOQ | 140 | <LOQ | <LOQ | <LOQ | 0.37 | <LOQ | 140 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
0.19 | 27 | 130 | <LOQ | n.d. | n.d. | n.d. | n.d. | 130 | <LOQ | n.d. | n.d. | n.d. | n.d. | 130 | <LOQ | n.d. | n.d. | n.d. | n.d. |
0.23 | 40 | 140 | <LOQ | 0.025 | 0.003 | 1.30 | <LOQ | 140 | <LOQ | 0.025 | 0.005 | 0.23 | <LOQ | 140 | <LOQ | 0.018 | 0.003 | <LOQ | <LOQ |
0.23 | 33 | n.d. | n.d. | <LOQ | 0.002 | 2.00 | <LOQ | n.d. | n.d. | <LOQ | 0.002 | 0.47 | <LOQ | n.d. | n.d. | <LOQ | 0.002 | <LOQ | <LOQ |
0.44 | 33 | n.d. | n.d. | <LOQ | 0.002 | 1.80 | <LOQ | n.d. | n.d. | <LOQ | 0.006 | <LOQ | <LOQ | N.d. | n.d. | <LOQ | 0.009 | <LOQ | <LOQ |
0.45 | 33 | 160 | <LOQ | <LOQ | 0.003 | 1.80 | <LOQ | 150 | 3.3 | <LOQ | 0.019 | <LOQ | 0.068 | 150 | 2.9 | <LOQ | 0.010 | <LOQ | <LOQ |
0.49 | 40 | 160 | <LOQ | <LOQ | <LOQ | 1.70 | <LOQ | 160 | <LOQ | <LOQ | 0.039 | <LOQ | 0.054 | 160 | <LOQ | <LOQ | 0.006 | <LOQ | <LOQ |
Specific Ozone Dose | Weather Conditions | EBCT | Secondary Clarifiers’ Effluent | Removal Through Ozonation [%] | Removal Through Ozonation and GAC Filtration [%] | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DOC | NO2–N | |||||||||||||||||||
mgO3/mgDOC | min | mg/L | mg/L | DOC | SAC254 | COD | Ptot | PO4–P | NO2−-N | NO3−-N | NH4+-N | DOC | SAC254 | COD | Ptot | PO4-P | NO2−-N | NO3−-N | NH4+-N | |
0.09 | DW | 33 | 8.73 | 0.21 | 27 | 13 | 32 | 11 | −35 | 23 | −30 | −13 | 52 | 75 | 59 | 10 | −213 | 96 | −190 | 99 |
0.09 | DW | 33 | 8.44 | 0.21 | 25 | −1 | 0 | −7 | −19 | 15 | −37 | −25 | 51 | 84 | 50 | 12 | −99 | 96 | −180 | 99 |
0.12 | RW | 33 | 7.68 | 0.35 | 22 | 7 | −7 | −15 | −61 | 21 | −17 | 8 | 51 | 74 | 56 | 0 | −392 | 90 | −106 | 99 |
0.13 | RW | 33 | 7.23 | 0.35 | 27 | 10 | 11 | −4 | 0 | 34 | −27 | 15 | 54 | 76 | 68 | 27 | −376 | 95 | −330 | 100 |
0.15 | RW | 40 | 7.52 | 0.20 | 4 | 15 | 4 | 6 | −23 | 66 | −15 | 6 | 62 | 79 | 78 | 25 | −55 | 70 | −90 | 96 |
0.17 | DW | 33 | 9.57 | 0.20 | 30 | 13 | 0 | −10 | −21 | 48 | −14 | −11 | 52 | 77 | 62 | 5 | −29 | 96 | −48 | 97 |
0.18 | RW | 40 | 6.95 | 0.17 | 0 | 19 | 2 | −3 | −42 | 67 | −5 | −32 | 69 | 85 | 75 | −4 | −92 | 96 | −15 | 99 |
0.19 | DW | 40 | 8.36 | 0.28 | 29 | 16 | −6 | −8 | −14 | 46 | −6 | −7 | 56 | 78 | 64 | 20 | −3 | 97 | −39 | 99 |
0.19 | DW | 27 | 7.76 | 0.27 | 30 | 14 | −16 | −1 | −67 | 48 | −10 | −8 | 59 | 76 | 58 | 17 | −75 | 97 | −48 | 100 |
0.20 | DW | 27 | 7.36 | 0.32 | 26 | 15 | 8 | −26 | −37 | 49 | −17 | 0 | 54 | 82 | 69 | 3 | −64 | 98 | −60 | 99 |
0.23 | RW | 40 | 5.81 | 0.10 | −6 | n.d. | 5 | −6 | −60 | 70 | −19 | −19 | 67 | n.d. | 64 | −8 | −402 | 93 | −81 | 99 |
0.23 | DW | 33 | 7.50 | 0.20 | 30 | 12 | 2 | −25 | −29 | 13 | −8 | −44 | 62 | 81 | 66 | 9 | −69 | 9 | −43 | 94 |
0.23 | DW | 40 | 6.67 | 0.24 | 25 | 16 | 10 | −8 | 0 | 48 | −4 | −26 | 67 | 87 | 72 | 10 | −124 | 97 | −54 | 99 |
0.24 | RW | 40 | 6.07 | 0.21 | −4 | 15 | 10 | 16 | −18 | 50 | −18 | 11 | 71 | 87 | 85 | 20 | 3 | 75 | −101 | 98 |
0.44 | DW | 33 | 8.23 | 0.15 | 23 | 38 | 2 | −13 | −29 | 88 | −13 | −17 | 49 | 79 | 52 | 1 | −72 | 95 | −50 | 99 |
0.45 | DW | 33 | 7.63 | 0.20 | 21 | 45 | 7 | −9 | −14 | 96 | −13 | −16 | 56 | 84 | 65 | 3 | −154 | 85 | −35 | 99 |
0.49 | DW | 40 | 7.98 | 0.13 | 1 | n.d. | 12 | −10 | −46 | 94 | −21 | −9 | 71 | n.d. | 71 | 2 | −283 | 94 | −51 | 97 |
0.51 | DW | 40 | 7.64 | 0.08 | 3 | n.d. | 9 | −5 | −9 | 91 | −5 | 8 | 71 | n.d. | 70 | 25 | −17 | 91 | −21 | 99 |
0.52 | RW | 40 | 7.02 | 0.14 | 7 | 41 | 58 | −32 | −45 | 95 | 1 | 7 | 79 | 87 | 92 | 31 | −125 | 95 | −10 | 96 |
0.53 | DW | 40 | 6.67 | 0.09 | −1 | 41 | 4 | −5 | −32 | 92 | −2 | −11 | 71 | 91 | 86 | 21 | 14 | 92 | −15 | 98 |
Experiment | Literature | |||
---|---|---|---|---|
Specific Ozone Dose [mgO3/mgDOC] (Number of Samples) | 0.2 (n = 6) | 0.21 (n = 3) | 0.26 (n = 2) | 0.24 (n = 9) |
Elimination ± Standard Deviation | Full-Scale WWTP Furt-Bülach [62] | Semi-Technical Scale WWTP Detmold [49] | ||
Benzotriazole | 15.4 ± 6.8% | 23% | 24% | 22% |
4-Methylbenzotriazole | 14.6 ± 4.2% | 27% | 26% | n.d. |
5-Methylbenzotriazole | 6.3 ± 41.4% | 27% | 26% | n.d. |
Carbamazepine | 76.3 ± 13.3% | 60% | 67% | 87% |
DCBZ | 16.6 ± 9.5% | n.d. | n.d. | n.d. |
Candesartan | 23.8 ± 6.6% | n.d. | n.d. | n.d. |
Diclofenac | 79.9 ± 2.6% | 67% | 71% | 93% |
Hydrochlorothiazid | 19.2 ± 8.5% | 27% | 32% | n.d. |
Metoprolol | 21.9 ± 4.8% | 25% | 27% | 34% |
Sulfamethoxazole | 36.6 ± 6.1% | n.d. | n.d. | 43% |
Diatrizoic acid | −2.8 ± 10.8% | n.d. | n.d. | −4% |
Iohexol | 13.1 ± 3.3% | n.d. | n.d. | n.d. |
Iomeprol | 9.5 ± 11.8% | n.d. | n.d. | n.d. |
Iopamidol | −0.7 ± 16.8% | n.d. | n.d. | n.d. |
Iopromid | 7.1 ± 18.6% | n.d. | n.d. | n.d. |
Experiment | Literature | |||
---|---|---|---|---|
Ozon Dose [mgO3/mgDOC] (Number of Samples) | 0.5 = 3.75 mgO3/L (n = 4) | 0.6 (n = 17–20) | 0.54 (n = 3) | 3.5–5.4 mgO3/L (n = 3–6) |
Elimination ± Standard Deviation | Full-Scale WWTP Weißenburg [64] | Full-Scale WWTP Neugut [31] | Laboratory Experiment with 5 Swedish WWTP Effluents [83] | |
Benzotriazole | 63.7 ± 8.2% | 37.9 ± 21.6% | 74 ± 3% | n.d. |
4-Methylbenzotriazole | 74.9 ± 10.9% | n.d. | n.d. | n.d. |
5-Methylbenzotriazole | 73.2 ± 9.6% | n.d. | n.d. | n.d. |
Carbamazepine | 98.4 ± 0.5% | 45.1 ± 23.8% | >98 ± 1% | 86 ± 18% |
DCBZ | 57.5 ± 5.0% | n.d. | n.d. | n.d. |
Candesartan | 69.1 ± 11.0% | 89.1 ± 11.1% | 82 ± 3% | n.d. |
Diclofenac | 99.5 ± 0.1% | 87.8 ± 18.0% | 100 ± 1% | 77 ± 22% |
Hydrochlorothiazid | 86.6 ± 11.0% | 58.6 ± 30.6% | >98 ± 2% | n.d. |
Metoprolol | 78.9 ± 11.3% | 48.6 ± 25.6% | 94 ± 3% | 57 ± 24% |
Sulfamethoxazole | 87.2 ± 11.25% | n.d. | >97 ± 1% | 73 ± 17% |
Diatrizoic acid | 14.1 ± 6.3% | n.d. | n.d. | n.d. |
Iohexol | 34.0 ± 9.0% | n.d. | n.d. | n.d. |
Iomeprol | 34.3 ± 4.6% | n.d. | n.d. | n.d. |
Iopamidol | 27.2 ± 11.6% | n.d. | n.d. | n.d. |
Iopromid | 25.9 ± 7.4% | n.d. | 43% | n.d. |
Specific Ozone Dose mgO3/mgDOC (mgO3/L) | NO2–N in Secondary Clarifiers’ Effluent mg/L | Oxidized NO2–N in Ozonation mg/L | Ozone Consumed for Oxidation of Nitrite mgO3/L (%) | Theoretical Ozone Demand for Oxidation of Total NO3–N mgO3/L |
---|---|---|---|---|
0.1 (0.79) | 0.27 | 0.08 | 0.28 (35.2) | 0.91 |
0.2 (1.46) | 0.22 | 0.11 | 0.36 (24.7) | 0.75 |
0.5 (3.75) | 0.133 | 0.126 | 0.43 (11.5) | 0.46 |
Experiment | Literature | |||
---|---|---|---|---|
Specific Ozone Dose [mgO3/mgDOC] (Number of Samples) | 0.1–0.5 (n = 7) | 0.6 (n = 15) | 0.35–0.92 (n = 3) | 0.34 (n = 1) |
Empty Bed Contact Time EBCT [min] | 27–33 | 15–45 | 14.5 ± 3 | 25 |
Elimination ± Standard Deviation | Full-Scale WWTP Weißenburg [64] | Full-Scale WWTP Neugut [63] | Semi-Technical Scale WWTP Detmold [49] | |
Benzotriazole | 99.8 ± 0.05% | 97.8% | 98% | 97% |
4-Methylbenzotriazole | 99.4 ± 0.17% | |||
5-Methylbenzotriazole | 99.3 ± 0.12% | |||
Carbamazepine | 98.6 ± 0.49% | 92.7% | 95% | |
DCBZ | 99.1 ± 0.50% | |||
Candesartan | 99.2 ± 0.56% | 57.3% | 93% | |
Diclofenac | 99.6 ± 0.31% | 95.2% | 91% | 99% |
Hydrochlorothiazid | 99.5 ± 0.24% | 93.9% | 94% | |
Metoprolol | 99.7 ± 0.18% | 94.4% | 94% | 99% |
Sulfamethoxazole | 98.0 ± 0.79% | 90% | ||
Diatrizoic acid | 73.1 ± 7.43% | |||
Iohexol | 97.1 ± 1.04% | |||
Iomeprol | 97.9 ± 0.94% | |||
Iopamidol | 98.1 ± 0.76% | |||
Iopromid | 66.3 ± 42.83% |
Experiment | Literature | ||||
---|---|---|---|---|---|
Specific Ozone Dose [mgO3/mgDOC] (Number of Samples) | 0.1–0.5 (n = 7) | 0 (n = 2) | 0 (n = 3) | 0 (n = 3) | 0 (n = 5) |
Empty Bed Contact Time EBCT [min] | 27–33 | 15 | 14 | 25 | 30 |
Elimination ± Standard Deviation | Pilot-Scale WWTP Köln-Rodenkirchen [65] | Full-Scale WWTP Neugut [63] | Semi-Technical Scale WWTP Detmold [49] | Pilot-Scale WWTP Wien [58] | |
Benzotriazole | 99.8 ± 0.05% | 99% | 99% | ||
4-Methylbenzotriazole | 99.4 ± 0.17% | 82.8% | |||
5-Methylbenzotriazole | 99.3 ± 0.12% | 99% | |||
Carbamazepine | 98.6 ± 0.49% | 99% | 95% | ||
DCBZ | 99.1 ± 0.50% | 95% | 76.6% | ||
Candesartan | 99.2 ± 0.56% | 76% | |||
Diclofenac | 99.6 ± 0.31% | 95% | 94% | ||
Hydrochlorothiazid | 99.5 ± 0.24% | 97% | 57.0% | ||
Metoprolol | 99.7 ± 0.18% | 98% | 99% | ||
Sulfamethoxazole | 98.0 ± 0.79% | 99% | 90% | 76.5% | |
Diatrizoic acid | 73.1 ± 7.43% | 60% | 43.6% | ||
Iohexol | 97.1 ± 1.04% | desorption | |||
Iomeprol | 97.9 ± 0.94% | ||||
Iopamidol | 98.1 ± 0.76% | ||||
Iopromid | 66.3 ± 42.83% |
Experiment | Literature | |||
---|---|---|---|---|
Specific Ozone Dose [mgO3/mgDOC] | 0.1–0.5 | 0.6–0.8 | 0.35–0.92 | 0.34 |
Empty Bed Contact Time EBCT [min] | 27–33 | 15–45 | 14.5 ± 3 | 25 |
Elimination ± Standard Deviation | Full-Scale Weißenburg [86] | Full-Scale Neugut [63] | Semi-Technical Scale WWTP Detmold [49] | |
Benzotriazole | >6000 | >32,000 | 20,000 | 25,000 |
4-Methylbenzotriazole | >6000 | >32,000 | ||
5-Methylbenzotriazole | >6000 | >32,000 | ||
Carbamazepine | >6000 | >32,000 | 34,500 | |
DCBZ | >6000 | |||
Candesartan | >6000 | 10,000 | ||
Diclofenac | >6000 | >32,000 | 20,000 | >40,000 |
Hydrochlorothiazid | >6000 | >32,000 | 16,500 | |
Metoprolol | >6000 | >32,000 | 23,500 | 19,000 |
Sulfamethoxazole | >6000 | >32,000 | 14,000 | |
Diatrizoic acid | 4400 | 4000 | ||
Iohexol | >6000 | |||
Iomeprol | >6000 | |||
Iopamidol | >6000 | |||
Iopromid | >6000 |
Experiment | Literature | ||||
---|---|---|---|---|---|
Specific Ozone Dose [mgO3/mgDOC] | 0.1–0.5 | 0 | 0 | 0 | 0 |
Empty Bed Contact Time EBCT [min] | 27–33 | 14 | 25 | 30 | 14 |
Elimination ± Standard Deviation | Full-Scale WWTP Neugut [63] | Semi-Technical Scale WWTP Detmold [49] | Pilot-Scale WWTP Wien [58] | Pilot-Scale WWTP Berlin [59] | |
Benzotriazole | >6000 | 21,000 | 16,000 | 10,500 | |
4-Methylbenzotriazole | >6000 | 2300 | 13,300 | ||
5-Methylbenzotriazole | >6000 | 13,300 | |||
Carbamazepine | >6000 | 16,000 | 3100 | ||
DCBZ | >6000 | 6900 | |||
Candesartan | >6000 | 5500 | |||
Diclofenac | >6000 | 12,000 | 11,500 | 8100 | |
Hydrochlorothiazid | >6000 | 12,000 | 1900 | ||
Metoprolol | >6000 | 21,000 | 16,000 | 13,300 | |
Sulfamethoxazole | >6000 | 9000 | 2000 | 3400 | |
Diatrizoic acid | 4400 | 5000 | 1400 | 1700 | |
Iohexol | >6000 | 1700 | |||
Iomeprol | >6000 | 3600 | |||
Iopamidol | >6000 | ||||
Iopromid | >6000 | 3600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Béalu, Z.; Walther, J.; Abusafia, A.; Altmann, K.; Meurer, M.; Gretzschel, O.; Schäfer, M.; Steinmetz, H. Removal of Organic Micropollutants and Microplastics via Ozonation Followed by Granular Activated Carbon Filtration. Environments 2024, 11, 241. https://doi.org/10.3390/environments11110241
Béalu Z, Walther J, Abusafia A, Altmann K, Meurer M, Gretzschel O, Schäfer M, Steinmetz H. Removal of Organic Micropollutants and Microplastics via Ozonation Followed by Granular Activated Carbon Filtration. Environments. 2024; 11(11):241. https://doi.org/10.3390/environments11110241
Chicago/Turabian StyleBéalu, Zoé, Johanna Walther, Attaallah Abusafia, Korinna Altmann, Maren Meurer, Oliver Gretzschel, Michael Schäfer, and Heidrun Steinmetz. 2024. "Removal of Organic Micropollutants and Microplastics via Ozonation Followed by Granular Activated Carbon Filtration" Environments 11, no. 11: 241. https://doi.org/10.3390/environments11110241
APA StyleBéalu, Z., Walther, J., Abusafia, A., Altmann, K., Meurer, M., Gretzschel, O., Schäfer, M., & Steinmetz, H. (2024). Removal of Organic Micropollutants and Microplastics via Ozonation Followed by Granular Activated Carbon Filtration. Environments, 11(11), 241. https://doi.org/10.3390/environments11110241