Chemical Characteristics of Zirconium Chloride and Zirconium Oxide Nanoparticles Driving Toxicity on Lemna minor
<p>Scanning electron microscopy (SEM) images of <span class="html-italic">Lemna minor</span>, including the frond and root structures, under different conditions: (<b>A</b>–<b>C</b>), Control; (<b>D</b>–<b>G</b>), 7-day exposure to NPs-ZrO<sub>2</sub> under effective concentration for growth (100 mg/L). The images show the change in the plant frond and root structures under treatment with NPs-ZrO<sub>2</sub> when compared to the control: Image (<b>A</b>) shows a healthy frond with a smooth surface and no visible damage; Image (<b>B</b>) provides a closer view of the frond edge, which appears intact; In image (<b>C</b>), the root structure looks normal with fine root hairs extending from the main root; Image (<b>D</b>) depicts a frond with visible surface damage and abnormalities compared to the control, and the frond edges appear crumpled and irregular; A magnified view of the damaged frond edge is seen in image (<b>E</b>), showing a rough, uneven surface likely due to the effect of NPs-ZrO<sub>2</sub>; In images (<b>F</b>,<b>G</b>), the root structures after NPs-ZrO<sub>2</sub> appear thicker and shorter with fewer fine root hairs compared to the control condition, suggesting that NPs-ZrO<sub>2</sub> negatively impact root growth and development. Frames (<b>E′</b>,<b>G′</b>) provide detailed views at a higher resolution of specific areas highlighted in images (<b>E′</b>,<b>G′</b>), respectively. These magnified sections indicate that NPs-ZrO<sub>2</sub> have deposited on the surface.</p> "> Figure 2
<p>Energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) images of <span class="html-italic">Lemna minor</span> plants: (<b>A</b>), control fronds; (<b>B</b>), 7-day exposed fronds to 100 mg/L of NPs-ZrO<sub>2</sub>; (<b>C</b>), 7-day exposed roots. The images (<b>A″</b>,<b>B′</b>,<b>C′</b>) show the elemental analysis of the plant tissues. In images (<b>A</b>,<b>A′</b>), the EDS spectrum of the control frond likely displays peaks for elements typically found in plant tissues, such as carbon, oxygen, and trace minerals (no Zr peak is expected in the control spectrum, since the plant was not exposed to NPs-ZrO<sub>2</sub>); In image (<b>B</b>), when compared to the control, the EDS spectrum of the exposed frond shows an additional peak for Zr, indicating the uptake and accumulation of NPs-ZrO<sub>2</sub> in the frond tissues during the exposure period; In image (<b>C</b>), the EDS spectrum of the exposed root displays a Zr peak, confirming the presence of NPs-ZrO<sub>2</sub> in the root tissues. The intensity of the Zr peak in the root may differ from that in the frond, suggesting differential accumulation of NPs-ZrO<sub>2</sub> in various plant parts.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Characterizations of Zirconium Oxide Nanoparticles
2.2. Preparation of ZrCl4 and Stock Solutions of NPs-ZrO2
2.3. Hydrodynamic Diameter and Zeta Potential Analysis of Nanoparticle Suspensions
2.4. Lemna Minor Plant Growth Conditions
2.5. Bioassay Toxicity Testing of ZrCl4 and Concentrations of NPs-ZrO2
2.6. Speciation Analysis
2.7. Assessment of Lemna Minor Growth
2.8. Zirconium Content in Plant Biomass
2.9. Quantifying Glutathione Levels in Plant
2.10. Evaluating Reactive Oxygen Species Levels
2.11. Microscopic Analysis of Incorporation of Nanoparticles
2.12. Statistical Analysis
3. Results and Discussion
3.1. Properties of Zr-Compounds: Zr Speciation, Bioavailability, Agglomeration, Reactivity, and Stability
3.2. Toxicity of Zirconium Accumulation in Lemna Minor: Insights from Exposure Studies with ZrCl4 and NPs-ZrO2
3.3. Impact of NPs-ZrO2 on Plant Fronds and Roots
3.4. Ecological Implications of Zirconium Contamination in Aquatic Ecosystems
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Geological Survey. Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, VA, USA, 2023; 210p.
- Zhu, X.; Geng, Y.; Gao, Z.; Houssini, K. Investigating zirconium flows and stocks in China: A dynamic material flow analysis. Resour. Policy 2023, 80, 103139. [Google Scholar] [CrossRef]
- Kalavathi, V.; Bhuyan, R.K. A detailed study on zirconium and its applications in manufacturing processes with combinations of other metals, oxides, and alloys—A review. Mater. Today Proc. 2019, 19, 781–786. [Google Scholar] [CrossRef]
- Sutherlin, R.C. Development of Zirconium for Use in the Chemical Processing Industry. In Zirconium in the Nuclear Industry: 20th International Symposium; Yagnik, S.K., Preuss, M., Eds.; ASTM International: West Conshohocken, PA, USA, 2023; 22p. [Google Scholar]
- Chitoria, A.K.; Mir, A.; Shah, M.A. A review of ZrO2 nanoparticles applications and recent advancements. Ceram. Int. 2023, 49, 32343–32358. [Google Scholar] [CrossRef]
- Kroll, W. La production industrielle du titane et du zirconium malléables. Rev. Métallurgie 1950, 47, 1–18. [Google Scholar] [CrossRef]
- Bora, U. Zirconium tetrachloride. Synlett 2003, 2003, 1073–1074. [Google Scholar] [CrossRef]
- Nikoofar, K.; Khademi, Z. A review on green Lewis acids: Zirconium (IV) oxydichloride octahydrate (ZrOCl2·8H2O) and zirconium (IV) tetrachloride (ZrCl4) in organic chemistry. Res. Chem. Intermed. 2016, 42, 3929–3977. [Google Scholar] [CrossRef]
- Delongeas, J.; Burnel, D.; Netter, P.; Grignon, M.; Mur, J.; Royer, R.; Grignon, G. Toxicity and pharmacokinetics of zirconium oxychloride in mice and rats. J. Pharmacol. 1983, 14, 437–447. [Google Scholar]
- Shahid, M.; Ferrand, E.; Schreck, E.; Dumat, C. Behavior and impact of zirconium in the soil-plant system: Plant uptake and phytotoxicity. Rev. Environ. Contam. Toxicol. 2013, 221, 107–127. [Google Scholar]
- Madany, M.M.Y.; AbdElgawad, H.; Galilah, D.A.; Khalil, A.M.A.; Saleh, A.M. Elevated CO2 can improve the tolerance of Avena sativa to cope with zirconium pollution by enhancing ROS homeostasis. Plants 2023, 12, 3792. [Google Scholar] [CrossRef]
- Smotraiev, R.; Nehrii, A.; Koltsova, E.; Anohina, A.; Sorochkina, K.; Ratnaweera, H. Comparison of wastewater coagulation efficiency of pre-polymerised zirconium and traditional aluminium coagulants. J. Water Process Eng. 2022, 47, 102827. [Google Scholar] [CrossRef]
- Caroline, D.; Soizic, M.; Jacky, V.; Claude, F. Impact of zirconium on freshwater periphytic microorganisms. Environments 2019, 6, 111. [Google Scholar] [CrossRef]
- Bellon, K.; Chaumont, D.; Stuerga, D. Flash synthesis of zirconia nanoparticles by microwave forced hydrolysis. J. Mater. Res. 2001, 16, 2619–2622. [Google Scholar] [CrossRef]
- Soni, D.; Singh, J.; Kaurav, N.; Tripathi, J.; Sharma, A. Synthesis and characterization of zirconia nanocrystalline powder by thermal treatment method. Mater. Today Proc. 2022, 54, 908–911. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Vijver, M.G.; Peijnenburg, W.J. Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere 2021, 276, 130015. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, G.; Mévrel, R. Zirconia coatings realized by microwave plasma-enhanced chemical vapor deposition. Thin Solid Film. 1997, 292, 241–246. [Google Scholar] [CrossRef]
- Nishizawa, K.; Miki, T.; Watanabe, E.; Taoda, H. Surface roughness control of zirconia films using a novel photoresponsive precursor molecule for improving its photocatalytic activity. Mater. Sci. Forum 2008, 569, 13–16. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, K.; Cao, H.; Zhang, X. L-Lysine-assisted synthesis of ZrO2 nanocrystals and their application in photocatalysis. J. Phys. Chem. C 2009, 113, 18259–18263. [Google Scholar] [CrossRef]
- Gremillard, L. Biocéramiques: Des Monolithes aux Composites; INSA de Lyon; Université Claude Bernard-Lyon I: Villeurbanne, France, 2009; 140p. [Google Scholar]
- Hochella, M.F., Jr.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef]
- Glauser, S.; Astasov-Frauenhoffer, M.; Müller, J.A.; Fischer, J.; Waltimo, T.; Rohr, N. Bacterial colonization of resin composite cements: Influence of material composition and surface roughness. Eur. J. Oral Sci. 2017, 125, 294–302. [Google Scholar] [CrossRef]
- Tabassum, N.; Kumar, D.; Verma, D.; Bohara, R.A.; Singh, M. Zirconium oxide (ZrO2) nanoparticles from antibacterial activity to cytotoxicity: A next generation of multifunctional nanoparticles. Mater. Today Commun. 2021, 26, 102156. [Google Scholar] [CrossRef]
- Sun, T.; Liu, X.; Zhan, X.; Ou, L.; Lai, R. Hepatic distribution and toxicity of zirconia nanoparticles in vivo and in vitro. Process Saf. Environ. Prot. 2021, 147, 134–145. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Wang, Z.; Ye, N.; Fang, H.; Wang, D. TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials 2018, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Załęska-Radziwiłł, M.; Doskocz, N. Ecotoxicity of zirconium oxide nanoparticles in relation to aquatic invertebrates. Desalination Water Treat. 2015, 57, 1443–1450. [Google Scholar] [CrossRef]
- Martinez, S.; Sáenz, M.; Alberdi, J.; di Marzio, W. Comparative ecotoxicity of single and binary mixtures exposures of cadmium and zinc on growth and biomarkers of Lemna gibba. Ecotoxicology 2020, 29, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Jmii, S.; Dewez, D. Toxic responses of palladium accumulation in duckweed (Lemna minor): Determination of biomarkers. Environ. Toxicol. Chem. 2021, 40, 1630–1638. [Google Scholar] [CrossRef]
- Benghaffour, A.; Azzouz, A.; Dewez, D. Ecotoxicity of diazinon and atrazine mixtures after ozonation catalyzed by Na+ and Fe2+ exchanged montmorillonites on Lemna minor. Molecules 2023, 28, 6108. [Google Scholar] [CrossRef]
- Al-Nabhan, E. Removal efficiency, accumulation and biochemical response of Lemna minor L. exposed to some heavy metals. IOP Conf. Ser. Earth Environ. Sci. 2022, 1060, 012037. [Google Scholar] [CrossRef]
- Aslanzadeh, M.; Saboora, A.; Moradlou, O. Phytoremediation potential of duckweed (Lemna minor L.) for hexavalent chromium removal in synthetic wastewater: Unveiling physiological response and defense mechanisms against excessive heavy metal uptake. Int. J. Environ. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Sompura, Y.; Bhardwaj, S.; Selwal, G.; Soni, V.; Ashokkumar, K. Unrevealing the potential of aquatic macrophytes for phytoremediation in heavy metal-polluted wastewater. J. Curr. Opin. Crop Sci. 2024, 5, 48–61. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development. Lemna OECD Guidelines for the Testing of Chemicals. Test No. 221: Sp. Growth Inhibition Test; OECD: Paris, France, 2006. [Google Scholar]
- Mandavilli, B.S.; Janes, M.S. Detection of intracellular glutathione using ThiolTracker violet stain and fluorescence microscopy. Curr. Protoc. Cytom. 2010, 53, 9.35.1–9.35.8. [Google Scholar] [CrossRef]
- Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E. Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small 2012, 8, 3326–3337. [Google Scholar] [CrossRef] [PubMed]
- Canuel, E.; Vaz, C.; Matias, W.G.; Dewez, D. Interaction effect of EDTA, salinity, and oxide nanoparticles on alga Chlamydomonas reinhardtii and Chlamydomonas euryale. Plants 2021, 10, 2118. [Google Scholar] [CrossRef] [PubMed]
- Sharan, A.; Nara, S. Phytotoxic properties of zinc and cobalt oxide nanoparticles in algae. In Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies: Volume 2; Academic Press: Amsterdam, The Netherlands, 2018; pp. 1–22. [Google Scholar]
- Gambardella, C.; Gallus, L.; Gatti, A.M.; Faimali, M.; Carbone, S.; Antisari, L.V.; Falugi, C.; Ferrando, S. Toxicity and transfer of metal oxide nanoparticles from microalgae to sea urchin larvae. Chem. Ecol. 2014, 30, 308–316. [Google Scholar] [CrossRef]
- Bielmyer-Fraser, G.K.; Jarvis, T.A.; Lenihan, H.S.; Miller, R.J. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton. Environ. Sci. Technol. 2014, 48, 13443–13450. [Google Scholar] [CrossRef]
- Cuypers, A.; Hendrix, S.; Amaral dos Reis, R.; De Smet, S.; Deckers, J.; Gielen, H.; Jozefczak, M.; Loix, C.; Vercampt, H.; Vangronsveld, J. Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front. Plant Sci. 2016, 7, 470. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Koh, Y.S.; Wong, S.K.; Ismail, N.H.; Zengin, G.; Duangjai, A.; Saokaew, S.; Phisalprapa, P.; Tan, K.W.; Goh, B.H.; Tang, S.Y. Mitigation of environmental stress-impacts in plants: Role of sole and combinatory exogenous application of glutathione. Front. Plant Sci. 2021, 12, 791205. [Google Scholar] [CrossRef]
- Fu, M.; Liang, J.; Wang, S.; Geng, C.; Zhang, W.; Wu, T. The response of microalgae Chlorella sp. to free and immobilized ZrO2 and Mg(OH)2 nanoparticles: Perspective from the growth characteristics. Environ. Eng. Sci. 2020, 37, 429–438. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Ma, Y.; Dai, W.; Song, Z.; Wang, Y.; Shen, J.; He, X.; Yang, F.; Zhang, Z. Interaction of cerium oxide nanoparticles and ionic cerium with duckweed (Lemna minor L.): Uptake, distribution, and phytotoxicity. Nanomaterials 2023, 13, 2523. [Google Scholar] [CrossRef]
[ZrCl4] mg/L | 1 | 50 | 100 | 150 | 200 |
---|---|---|---|---|---|
[Sol. Zr] mg/L | 0.41 ± 0.00 | 19.60 ± 0.02 | 39.82 ± 0.34 | 58.69 ± 0.12 | 76.52 ± 0.28 |
Zr4+ % | 0 | 0 | 0 | 0 | 0 |
Zr(OH)5− % | 0 | 0.1 | 0.1 | 0.09 | 0.08 |
Zr(OH)4 (aq) % | 97.6 | 99.5 | 99.6 | 99.7 | 99.78 |
ZrEDTA (aq) % | 2.4 | 0.4 | 0.3 | 0.21 | 0.14 |
[NPs-ZrO2] mg/L | D0 | D7 | ||
---|---|---|---|---|
HD (nm) | ZP (mV) | HD (nm) | ZP (mV) | |
1 | 115 ± 22 | −32.52 ± 1.00 | 168 ± 39 | −36.39 ± 1.31 |
50 | 255 ± 177 | −27.17 ± 0.63 | 144 ± 68 | −34.24 ± 1.74 |
100 | 421 ± 358 | −26.39 ± 0.91 | 188 ± 97 | −36.29 ± 0.86 |
150 | 339 ± 323 | −26.93 ± 0.70 | 151 ± 35 | −35.98 ± 2.71 |
200 | 785 ± 372 | −26.92 ± 0.78 | 148 ± 59 | −35.38 ± 1.75 |
[NPs-ZrO2] mg/L | [sol. Zr] mg/L | |
---|---|---|
D0 | D7 | |
1 | 0.05 ± 0.00 | 0.02 ± 0.00 |
50 | 1.38 ± 0.06 | 0.25 ± 0.01 |
100 | 2.75 ± 0.07 | 0.22 ± 0.01 |
150 | 0.91 ± 0.01 | 0.49 ± 0.01 |
200 | 1.05 ± 0.01 | 0.06 ± 0.01 |
Concentration mg/L | ZrCl4 | Control | 1 | 50 | 100 | 150 | 200 |
---|---|---|---|---|---|---|---|
NPs-ZrO2 | |||||||
Bioaccumulation µg Zr/mg DW | ZrCl4 | 0.00 ± 0.00 a | 0.11 ± 0.05 a | 2.86 ± 0.68 a | 6.50 ± 0.77 b | 13.63 ± 1.79 c | 14.89 ± 0.40 d |
NPs-ZrO2 | 0.00 ± 0.00 a | 0.01 ± 10−4 a | 0.03 ± 10−3 a | 0.01 ± 10−4 a | 0.02 ± 10−4 a | 0.04 ± 10−4 a | |
Biomass mg DW | ZrCl4 | 11.07 ± 0.03 a | 10.99 ± 0.09 a | 10.54 ± 0.09 a | 6.15 ± 0.40 b | 4.10 ± 0.10 c | 3.41 ± 0.11 d |
NPs-ZrO2 | 11.07 ± 0.03 a | 10.85 ± 0.03 a | 10.67 ± 0.11 a | 9.79 ± 0.20 a | 8.33 ± 0.16 b | 6.79 ± 0.09 c | |
Specific growth rate d−1 | ZrCl4 | 0.28 ± 10−4 a | 0.28 ± 10−3 a | 0.28 ± 10−3 a | 0.20 ± 10−3 b | 0.14 ± 10−3 c | 0.11 ± 10−3 d |
NPs-ZrO2 | 0.28 ± 10−4 a | 0.28 ± 10−4 a | 0.28 ± 10−3 a | 0.27 ± 10−3 a | 0.25 ± 10−3 b | 0.21 ± 10−3 c | |
Growth inhibition % | ZrCl4 | 0 ± 0 a | 0.4 ± 0.2 a | 2.4 ± 1.5 b | 29.8 ± 2.6 c | 50.1 ± 1.6 d | 59 ± 3.3 d |
NPs-ZrO2 | 0 ± 0 a | 0.9 ± 1 a | 1.7 ± 1.6 a | 6.1 ± 2.1 b | 10.8 ± 1.1 c | 24.7 ± 1.8 d | |
Cyt-ROS level % of control | ZrCl4 | 100 ± 0 a | 104 ± 1 b | 106 ± 4 b | 139 ± 4 c | 126 ± 3 d | 136 ± 6 c |
NPs-ZrO2 | 100 ± 0 a | 104 ± 3 a | 105 ± 5 a | 115 ± 6 b | 115 ± 8 b | 125 ± 15 c | |
Org-ROS level % of control | ZrCl4 | 100 ± 0 a | 108 ± 1 b | 142 ± 1 c | 157 ± 3 d | 163 ± 1 e | 171 ± 3 f |
NPs-ZrO2 | 100 ± 0 a | 105 ± 2 b | 107 ± 4 b | 114 ± 7 b | 122 ± 14 c | 128 ± 20 c | |
Total thiols μmol/g DW | ZrCl4 | 12.65 ± 0.99 a | 13.51 ± 0.45 a | 16.75 ± 2.45 b | 18.34 ± 1.66 b | 19.47 ± 2.02 c | 19.17 ± 1.50 c |
NPs-ZrO2 | 12.39 ± 1.30 a | 17.20 ± 1.71 b | 23.89 ± 1.72 c | 29.83 ± 3.53 d | 31.92 ± 1.49 d | 31.85 ± 2.68 d |
Biological Parameter | [ZrCl4] mg/L | ZrCl4 LOED μg Zr/mg DW | [NPs-ZrO2] mg/L | NPs-ZrO2 LOED μg Zr/mg DW |
---|---|---|---|---|
Growth Inhibition | 50 | 2.86 | 100 | 0.01 |
Cyt-ROS | 1 | 0.11 | 100 | 0.01 |
Org-ROS | 1 | 0.11 | 1 | 0.01 |
Total Thiols | 50 | 2.86 | 1 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diallo, M.; Dewez, D. Chemical Characteristics of Zirconium Chloride and Zirconium Oxide Nanoparticles Driving Toxicity on Lemna minor. Environments 2024, 11, 222. https://doi.org/10.3390/environments11100222
Diallo M, Dewez D. Chemical Characteristics of Zirconium Chloride and Zirconium Oxide Nanoparticles Driving Toxicity on Lemna minor. Environments. 2024; 11(10):222. https://doi.org/10.3390/environments11100222
Chicago/Turabian StyleDiallo, Mohamadou, and David Dewez. 2024. "Chemical Characteristics of Zirconium Chloride and Zirconium Oxide Nanoparticles Driving Toxicity on Lemna minor" Environments 11, no. 10: 222. https://doi.org/10.3390/environments11100222
APA StyleDiallo, M., & Dewez, D. (2024). Chemical Characteristics of Zirconium Chloride and Zirconium Oxide Nanoparticles Driving Toxicity on Lemna minor. Environments, 11(10), 222. https://doi.org/10.3390/environments11100222