The Impact of Virtual Streamer Anthropomorphism on Consumer Purchase Intention: Cognitive Trust as a Mediator
Abstract
:1. Introduction
2. Theoretical Background and Research Hypotheses
2.1. Avatar Theory and Virtual Streamers’ Anthropomorphism
2.2. Virtual Streamers’ Anthropomorphism and Cognitive Trust
2.3. Virtual Streamers’ Anthropomorphism and Purchase Intention
2.4. Cognitive Trust and Purchase Intention
2.5. Mediating Role of Cognitive Trust
2.6. Research Model
3. Research Methodology
3.1. Research Design
3.2. Variable Measurement
3.3. Data Collection Process
4. Data Analysis and Results
4.1. Reliability and Validity Analysis
4.2. Common Method Bias Test and Multicollinearity Analysis
4.3. Path Analysis and Hypothesis Testing
4.4. Mediation Effect Test
5. Discussion and Conclusions
5.1. Limitations and Future Research Directions
5.2. Discussion on Results
5.3. Theoretical Implications
5.4. Practical Implications
5.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Appel, G.; Grewal, L.; Hadi, R.; Stephen, A.T. The Future of Social Media in Marketing. J. Acad. Mark. Sci. 2020, 48, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Huaman-Ramirez, R.; Lunardo, R.; Vasquez-Parraga, A. How Brand Self-Disclosure Helps Brands Create Intimacy with Customers: The Role of Information Valence and Anthropomorphism. Psychol. Market. 2022, 39, 460–477. [Google Scholar] [CrossRef]
- China Internet Network Information Center (2024). The 54th statistical report on China’s Internet development. China Internet Network Information Center. Available online: https://www.cnnic.net.cn/n4/2024/0829/c88-11065.html (accessed on 10 December 2024).
- Vadhri, S. Digital Twins and Virtual Worlds: Influencing Technology’s Future. Available online: https://www.forbes.com/councils/forbesbusinessdevelopmentcouncil/2024/11/27/digital-twins-and-virtual-worlds-influencing-technologys-future/ (accessed on 2 December 2024).
- Kim, D.Y.; Lee, H.K.; Chung, K. Avatar-Mediated Experience in the Metaverse: The Impact of Avatar Realism on User-Avatar Relationship. J. Retail. Consum. Serv. 2023, 73, 103382. [Google Scholar] [CrossRef]
- Dabiran, E.; Farivar, S.; Wang, F.; Grant, G. Virtually Human: Anthropomorphism in Virtual Influencer Marketing. J. Retail. Consum. Serv. 2024, 79, 103797. [Google Scholar] [CrossRef]
- Chen, H.; Shao, B.; Yang, X.; Kang, W.; Fan, W. Avatars in Live Streaming Commerce: The Influence of Anthropomorphism on Consumers’ Willingness to Accept Virtual Live Streamers. Comput. Hum. Behav. 2024, 156, 108216. [Google Scholar] [CrossRef]
- Qiu, L.; Benbasat, I. Evaluating Anthropomorphic Product Recommendation Agents: A Social Relationship Perspective to Designing Information Systems. J. Manag. Inform. Syst. 2009, 25, 145–182. [Google Scholar] [CrossRef]
- Schouten, A.P.; Janssen, L.; Verspaget, M. Celebrity vs. Influencer Endorsements in Advertising: The Role of Identification, Credibility, and Product-Endorser Fit. In Leveraged Marketing Communications; Routledge: London, UK, 2021; pp. 208–231. ISBN 978-1-003-15524-9. [Google Scholar]
- Sokolova, K.; Kefi, H. Instagram and YouTube Bloggers Promote It, Why Should I Buy? How Credibility and Parasocial Interaction Influence Purchase Intentions. J. Retail. Consum. Serv. 2020, 53, 101742. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, N.; Guo, Q. How do Virtual Streamers Affect Purchase Intention in the Live Streaming Context? A Presence Perspective. J. Retail. Consum. Serv. 2023, 73, 103356. [Google Scholar] [CrossRef]
- Low, G.S.; Mohr, J.J. Advertising vs Sales Promotion: A Brand Management Perspective. J. Prod. Brand Manag. 2000, 9, 389–414. [Google Scholar] [CrossRef]
- Jin, S.-A.A.; Sung, Y. The Roles of Spokes-Avatars’ Personalities in Brand Communication in 3D Virtual Environments. J. Brand Manag. 2010, 17, 317–327. [Google Scholar] [CrossRef]
- Jin, S.-A.A. The Virtual Malleable Self and the Virtual Identity Discrepancy Model: Investigative Frameworks for Virtual Possible Selves and Others in Avatar-Based Identity Construction and Social Interaction. Comput. Hum. Behav. 2012, 28, 2160–2168. [Google Scholar] [CrossRef]
- Wang, X.; Butt, A.H.; Zhang, Q.; Shafique, M.N.; Ahmad, H.; Nawaz, Z. Gaming Avatar Can Influence Sustainable Healthy Lifestyle: Be Like an Avatar. Sustainability 2020, 12, 1998. [Google Scholar] [CrossRef]
- Pimentel, D.; Kalyanaraman, S. Customizing Your Demons: Anxiety Reduction via Anthropomorphizing and Destroying an “Anxiety Avatar”. Front. Psychol. 2020, 11, 566682. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Kozlenkova, I.V.; Wang, H.; Xie, T.; Palmatier, R.W. An Emerging Theory of Avatar Marketing. J. Mark. 2022, 86, 67–90. [Google Scholar] [CrossRef]
- Golossenko, A.; Pillai, K.G.; Aroean, L. Seeing Brands as Humans: Development and Validation of a Brand Anthropomorphism Scale. Int. J. Res. Mark. 2020, 37, 737–755. [Google Scholar] [CrossRef]
- Li, X.; Sung, Y. Anthropomorphism Brings Us Closer: The Mediating Role of Psychological Distance in User–AI Assistant Interactions. Comput. Hum. Behav. 2021, 118, 106680. [Google Scholar] [CrossRef]
- Li, S.; Chen, J. Virtual Human on Social Media: Text Mining and Sentiment Analysis. Technol. Soc. 2024, 78, 102666. [Google Scholar] [CrossRef]
- McAllister, D.J. Affect- and Cognition-Based Trust as Foundations for Interpersonal Cooperation in Organizations. Acad. Manag. J. 1995, 38, 24–59. [Google Scholar] [CrossRef]
- McKnight, D.H.; Choudhury, V.; Kacmar, C. Developing and Validating Trust Measures for E-Commerce: An Integrative Typology. Inform. Syst. Res. 2002, 13, 334–359. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in Online Shopping: An Integrated Model. Mis Quart. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Johnson, D.; Grayson, K. Cognitive and Affective Trust in Service Relationships. J. Bus. Res. 2005, 58, 500–507. [Google Scholar] [CrossRef]
- Chen, J.; Gong, X.; Ren, R. Active or Avoidance Coping? Influencing Mechanisms of Streamers’ Coping Strategies on Viewers’ Word of Mouth after Livestreaming e-Commerce Failures. J. Retail. Consum. Serv. 2023, 72, 103278. [Google Scholar] [CrossRef]
- Legood, A.; van der Werff, L.; Lee, A.; den Hartog, D.; van Knippenberg, D. A Critical Review of the Conceptualization, Operationalization, and Empirical Literature on Cognition-Based and Affect-Based Trust. J. Manag. Stud. 2023, 60, 495–537. [Google Scholar] [CrossRef]
- Wei, K.; Xi, W. CEO vs. Celebrity: The Effect of Streamer Types on Consumer Engagement in Brands’ Self-Built Live-Streaming. J. Res. Interact. Mark. 2024, 18, 631–647. [Google Scholar] [CrossRef]
- Pelau, C.; Dabija, D.-C.; Ene, I. What Makes an AI Device Human-like? The Role of Interaction Quality, Empathy and Perceived Psychological Anthropomorphic Characteristics in the Acceptance of Artificial Intelligence in the Service Industry. Comput. Hum. Behav. 2021, 122, 106855. [Google Scholar] [CrossRef]
- Fakhimi, A.; Garry, T.; Biggemann, S. The Effects of Anthropomorphised Virtual Conversational Assistants on Consumer Engagement and Trust during Service Encounters. Australas. Mark. J. 2023, 31, 314–324. [Google Scholar] [CrossRef]
- Wan, C.; Lee, D.; Ng, P. The Role of Anthropomorphism and Racial Homophily of Virtual Influencers in Encouraging Low- versus High-cost Pro-environmental Behaviors. Psychol. Mark. 2024, 41, 1833–1853. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chih, W.-H.; Liou, D.-K.; Yang, Y.-T. The Mediation of Cognitive Attitude for Online Shopping. Inform. Technol. Peopl. 2016, 29, 618–646. [Google Scholar] [CrossRef]
- Zhang, L.; Anjum, M.A.; Wang, Y. The Impact of Trust-Building Mechanisms on Purchase Intention towards Metaverse Shopping: The Moderating Role of Age. Int. J. Hum.–Comput. Interact. 2024, 40, 3185–3203. [Google Scholar] [CrossRef]
- Li, X.; Huang, D.; Dong, G.; Wang, B. Why Consumers Have Impulsive Purchase Behavior in Live Streaming: The Role of the Streamer. BMC Psychol. 2024, 12, 129. [Google Scholar] [CrossRef]
- Wang, K.; Wu, J.; Sun, Y.; Chen, J.; Pu, Y.; Qi, Y. Trust in Human and Virtual Live Streamers: The Role of Integrity and Social Presence. Int. J. Hum.–Comput. Interact. 2023, 40, 8274–8294. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, K.; Wang, C. Way to Success: Understanding Top Streamer’s Popularity and Influence from the Perspective of Source Characteristics. J. Retail. Consum. Serv. 2022, 64, 102786. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Cai, J. How Attachment Affects User Stickiness on Live Streaming Platforms: A Socio-Technical Approach Perspective. J. Retail. Consum. Serv. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Lu, B.; Chen, Z. Live Streaming Commerce and Consumers’ Purchase Intention: An Uncertainty Reduction Perspective. Inf. Manag. 2021, 58, 103509. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Y.; Li, T.; Guan, Y.; Cui, X. How Do Virtual AI Streamers Influence Viewers’ Livestream Shopping Behavior? The Effects of Persuasive Factors and the Mediating Role of Arousal. Inf. Syst. Front. 2023, 26, 1803–1834. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient Alpha and the Internal Structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory—25 Years Ago and Now. Educ. Res. 1975, 4, 7–21. [Google Scholar] [CrossRef]
- Hair, J.F. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 978-0-13-813263-7. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Katrutsa, A.; Strijov, V. Comprehensive Study of Feature Selection Methods to Solve Multicollinearity Problem According to Evaluation Criteria. Expert Syst. Appl. 2017, 76, 1–11. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 3rd ed.; Multivariate Applications Series; Routledge: New York, NY, USA, 2016; Volume 396, ISBN 978-1-315-75742-1. [Google Scholar]
- Preacher, K.J.; Hayes, A.F. Asymptotic and Resampling Strategies for Assessing and Comparing Indirect Effects in Multiple Mediator Models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.M.; Kenny, D.A. The Moderator–Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef] [PubMed]
- Peña, J.; Yoo, S.-C. Under Pressure: Avatar Appearance and Cognitive Load Effects on Attitudes, Trustworthiness, Bidding, and Interpersonal Distance in a Virtual Store. Presence-Teleop. Virt. 2014, 23, 18–32. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, N. Unravelling the Impact of Chatbot Anthropomorphism on Purchase Behavior: A Perspective of Halo Effect and Task-Technology Fit. In Proceedings of the PACIS 2023 Proceedings, Nanchang, China, 9–12 July 2023. [Google Scholar]
- Glikson, E.; Woolley, A.W. Human Trust in Artificial Intelligence: Review of Empirical Research. Acad. Manag. Ann. 2020, 14, 627–660. [Google Scholar] [CrossRef]
- Cohen, M.C.; Peel, M.A.; Scalia, M.J.; Willett, M.M.; Chiou, E.K.; Gorman, J.C.; Cooke, N.J. Anthropomorphism Moderates the Relationships of Dispositional, Perceptual, and Behavioral Trust in a Robot Teammate. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2023, 67, 529–536. [Google Scholar] [CrossRef]
- Malhotra, G.; Ramalingam, M. Perceived Anthropomorphism and Purchase Intention Using Artificial Intelligence Technology: Examining the Moderated Effect of Trust. J. Enterp. Inf. Manag. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- De Visser, E.J.; Monfort, S.S.; McKendrick, R.; Smith, M.A.; McKnight, P.E.; Krueger, F.; Parasuraman, R. Almost Human: Anthropomorphism Increases Trust Resilience in Cognitive Agents. J. Exp. Psychol. Appl. 2016, 22, 331. [Google Scholar] [CrossRef]
- Cheng, P.; Meng, F.; Yao, J.; Wang, Y. Driving with Agents: Investigating the Influences of Anthropomorphism Level and Physicality of Agents on Drivers’ Perceived Control, Trust, and Driving Performance. Front. Psychol. 2022, 13, 883417. [Google Scholar] [CrossRef]
- Chung, S.I.; Han, K.-H. Consumer Perception of Chatbots and Purchase Intentions: Anthropomorphism and Conversational Relevance. Int. J. Adv. Cult. Technol. 2022, 10, 211–229. [Google Scholar] [CrossRef]
- Seymour, W.; Van Kleek, M. Exploring Interactions between Trust, Anthropomorphism, and Relationship Development in Voice Assistants. Proc. ACM Hum.-Comput. Interact. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Yu, T.; Teoh, A.P.; Bian, Q.; Liao, J.; Wang, C. Can Virtual Influencers Affect purchase Intentions in Tourism and Hospitality E-Commerce Live Streaming? An Empirical Study in China. Int. J. Contemp. Hosp. M. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Alfina, I.; Ero, J.; Hidayanto, A.N.; Shihab, M.R. The Impact of Cognitive Trust and E-Wom on Purchase Intention in C2c E-Commerce Site. J. Comput. Sci. 2014, 10, 2518–2524. [Google Scholar] [CrossRef]
- Hanaysha, J.R. Impact of Social Media Marketing Features on Consumer’s Purchase Decision in the Fast-Food Industry: Brand Trust as a Mediator. Int. J. Inf. Manag. Data Insights 2022, 2, 100102. [Google Scholar] [CrossRef]
Variables | Items | Reference |
---|---|---|
Appearance Anthropomorphism | A1 The virtual streamer looks human-like. | [7,18] |
A2 The virtual streamer resembles a real human. | ||
A3 The virtual streamer has a human-like appearance. | ||
Behavioral Anthropomorphism | B1 The virtual streamer’s movements appear natural. | [7,28] |
B2 The virtual streamer’s voice sounds natural. | ||
B3 The virtual streamer has freedom of action. | ||
B4 The virtual streamer has decision-making ability. | ||
Cognitive Anthropomorphism | C1 The virtual streamer has consciousness. | [19,28] |
C2 The virtual streamer has a mind of its own. | ||
C3 The virtual streamer is creative and has imagination. | ||
C4 The virtual streamer is capable of reasoning. | ||
Emotional Anthropomorphism | E1 The virtual streamer has its own emotions. | [7,18] |
E2 The virtual streamer feels remorse for actions it deems shameful. | ||
E3 The virtual streamer can empathize with people who feel down. | ||
E4 The virtual streamer feels guilt when it hurts someone. | ||
E5 The virtual streamer feels shame when people have negative views and judgments about it. | ||
Cognitive Trust | CT1 The virtual streamer is trustworthy. | [33,34] |
CT2 I believe what the virtual streamer says. | ||
CT3 The virtual streamer is reliable. | ||
CT4 There is no need to worry at all when dealing with the virtual streamer. | ||
CT5 I believe in the expertise and capabilities of the virtual streamer. | ||
Purchase Intention | PIN1 I would purchase the products promoted by the virtual streamer during the live streaming. | [34,35] |
PIN2 I intend to purchase the products promoted by the virtual streamer during the live streaming. | ||
PIN3 I would make the virtual streamer’s live streaming my preferred shopping channel. | ||
PIN4 I am willing to recommend the products promoted by the virtual streamer to my friends and family. | ||
PIN5 I plan to frequently use the virtual streamer’s live streaming for shopping in the future. |
Characteristic | Category | Frequency | Percentage (%) |
---|---|---|---|
Gender | Male | 234 | 46.5 |
Female | 269 | 53.5 | |
Age (years) | 18–25 | 136 | 27 |
26–35 | 210 | 41.7 | |
36–45 | 128 | 25.4 | |
45 or above | 29 | 5.8 | |
Education level | High school or below | 57 | 11.3 |
Associate degree | 150 | 29.8 | |
Bachelor’s degree | 224 | 44.5 | |
Master’s degree or above | 72 | 14.3 | |
Average monthly income | RMB 3000 or below | 39 | 7.8 |
RMB 3001–5000 | 112 | 22.3 | |
RMB 5001–10,000 | 236 | 46.9 | |
Above RMB 10,000 | 116 | 23.1 |
Construct | Items | Factor Loading | Cronbach’s Alpha |
---|---|---|---|
Appearance Anthropomorphism | A1 | 0.755 | 0.825 |
A2 | 0.698 | ||
A3 | 0.788 | ||
Behavioral Anthropomorphism | B1 | 0.708 | 0.870 |
B2 | 0.752 | ||
B3 | 0.677 | ||
B4 | 0.654 | ||
Cognitive Anthropomorphism | C1 | 0.755 | 0.866 |
C2 | 0.74 | ||
C3 | 0.675 | ||
C4 | 0.743 | ||
Emotional Anthropomorphism | E1 | 0.761 | 0.894 |
E2 | 0.748 | ||
E3 | 0.702 | ||
E4 | 0.703 | ||
E5 | 0.709 | ||
Cognitive Trust | CT1 | 0.759 | 0.892 |
CT2 | 0.681 | ||
CT3 | 0.702 | ||
CT4 | 0.733 | ||
CT5 | 0.752 | ||
Purchase Intention | PIN1 | 0.786 | 0.871 |
PIN2 | 0.707 | ||
PIN3 | 0.713 | ||
PIN4 | 0.669 | ||
PIN5 | 0.719 | ||
KMO | 0.953 | ||
Bartlett’s Test | Approx.χ2 | 8520.214 | |
df | 325 | ||
Sig. | 0.000 |
Fitting Index | CMIN/DF | RMR | RMSEA | GFI | AGFI | NFI | RFI | IFI | TLI | CFI |
---|---|---|---|---|---|---|---|---|---|---|
Criterion | <3 | <0.05 | <0.08 | >0.9 | >0.9 | >0.9 | >0.9 | >0.9 | >0.9 | >0.9 |
Actual value | 1.372 | 0.032 | 0.027 | 0.943 | 0.930 | 0.955 | 0.949 | 0.987 | 0.986 | 0.987 |
Path | Estimate | S.E. | C.R. | p | Std. Estimate | CR | AVE | ||
---|---|---|---|---|---|---|---|---|---|
A3 | ← | AA | 1 | 0.745 | 0.839 | 0.639 | |||
A2 | ← | 0.899 | 0.059 | 15.327 | *** | 0.685 | |||
A1 | ← | 1.268 | 0.064 | 19.730 | *** | 0.945 | |||
B4 | ← | BA | 1 | 0.752 | 0.874 | 0.637 | |||
B3 | ← | 1.054 | 0.060 | 17.577 | *** | 0.770 | |||
B2 | ← | 0.963 | 0.058 | 16.688 | *** | 0.735 | |||
B1 | ← | 1.225 | 0.058 | 21.138 | *** | 0.921 | |||
C4 | ← | CA | 1 | 0.724 | 0.869 | 0.626 | |||
C3 | ← | 1.120 | 0.069 | 16.331 | *** | 0.756 | |||
C2 | ← | 1.099 | 0.066 | 16.601 | *** | 0.768 | |||
C1 | ← | 1.306 | 0.068 | 19.207 | *** | 0.904 | |||
E5 | ← | EA | 1 | 0.779 | 0.896 | 0.635 | |||
E4 | ← | 0.933 | 0.054 | 17.277 | *** | 0.728 | |||
E3 | ← | 1.035 | 0.054 | 19.128 | *** | 0.791 | |||
E2 | ← | 0.955 | 0.054 | 17.778 | *** | 0.745 | |||
E1 | ← | 1.209 | 0.052 | 23.114 | *** | 0.926 | |||
CT1 | ← | CT | 1 | 0.922 | 0.894 | 0.629 | |||
CT2 | ← | 0.798 | 0.040 | 20.035 | *** | 0.721 | |||
CT3 | ← | 0.863 | 0.039 | 22.252 | *** | 0.767 | |||
CT4 | ← | 0.855 | 0.038 | 22.416 | *** | 0.770 | |||
CT5 | ← | 0.832 | 0.037 | 22.417 | *** | 0.770 | |||
PIN5 | ← | PIN | 1 | 0.721 | 0.875 | 0.585 | |||
PIN4 | ← | 1.041 | 0.064 | 16.155 | *** | 0.749 | |||
PIN3 | ← | 1.004 | 0.064 | 15.739 | *** | 0.730 | |||
PIN2 | ← | 0.920 | 0.061 | 15.098 | *** | 0.701 | |||
PIN1 | ← | 1.218 | 0.063 | 19.252 | *** | 0.905 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1. Emotional Anthropomorphism | 0.797 | |||||
2. Cognitive Anthropomorphism | 0.687 | 0.791 | ||||
3. Behavioral Anthropomorphism | 0.687 | 0.693 | 0.798 | |||
4. Appearance Anthropomorphism | 0.593 | 0.616 | 0.714 | 0.799 | ||
5. Cognitive Trust | 0.683 | 0.648 | 0.694 | 0.580 | 0.793 | |
6. Purchase Intention | 0.656 | 0.605 | 0.632 | 0.625 | 0.650 | 0.765 |
Hypothesis | Estimate | S.E. | C.R. | p | β | Result |
---|---|---|---|---|---|---|
AA → CT | 0.075 | 0.067 | 1.131 | 0.258 | 0.062 | H1a: Not supported |
BA → CT | 0.366 | 0.077 | 4.749 | *** | 0.314 | H1b: Supported |
CA → CT | 0.234 | 0.076 | 3.086 | 0.002 ** | 0.181 | H1c: Supported |
EA → CT | 0.346 | 0.064 | 5.387 | *** | 0.306 | H1d: Supported |
AA → PIN | 0.232 | 0.056 | 4.132 | *** | 0.241 | H2a: Supported |
BA → PIN | 0.057 | 0.065 | 0.886 | 0.375 | 0.062 | H2b: Not supported |
CA → PIN | 0.091 | 0.063 | 1.457 | 0.145 | 0.089 | H2c: Not supported |
EA → PIN | 0.217 | 0.055 | 3.922 | *** | 0.243 | H2d: Supported |
CT → PIN | 0.193 | 0.047 | 4.075 | *** | 0.243 | H3: Supported |
Bootstrapping | BC 95% CI | |||||
---|---|---|---|---|---|---|
Est. | Std. Error | Lower Bound | Upper Bound | p-Value | ||
Indirect effect | AA | 0.015 | 0.016 | −0.013 | 0.054 | 0.264 |
BA | 0.076 | 0.028 | 0.031 | 0.149 | 0.000 | |
CA | 0.044 | 0.020 | 0.014 | 0.094 | 0.004 | |
EA | 0.074 | 0.024 | 0.032 | 0.132 | 0.001 | |
Direct effect | AA | 0.241 | 0.062 | 0.117 | 0.360 | 0.001 |
BA | 0.062 | 0.079 | −0.088 | 0.219 | 0.416 | |
CA | 0.089 | 0.070 | −0.049 | 0.226 | 0.191 | |
EA | 0.243 | 0.067 | 0.097 | 0.363 | 0.002 | |
Total effect | AA | 0.256 | 0.064 | 0.128 | 0.384 | 0.001 |
BA | 0.139 | 0.078 | −0.017 | 0.292 | 0.073 | |
CA | 0.133 | 0.069 | −0.004 | 0.266 | 0.056 | |
EA | 0.317 | 0.066 | 0.176 | 0.435 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Huang, F. The Impact of Virtual Streamer Anthropomorphism on Consumer Purchase Intention: Cognitive Trust as a Mediator. Behav. Sci. 2024, 14, 1228. https://doi.org/10.3390/bs14121228
Li C, Huang F. The Impact of Virtual Streamer Anthropomorphism on Consumer Purchase Intention: Cognitive Trust as a Mediator. Behavioral Sciences. 2024; 14(12):1228. https://doi.org/10.3390/bs14121228
Chicago/Turabian StyleLi, Chunyu, and Fei Huang. 2024. "The Impact of Virtual Streamer Anthropomorphism on Consumer Purchase Intention: Cognitive Trust as a Mediator" Behavioral Sciences 14, no. 12: 1228. https://doi.org/10.3390/bs14121228
APA StyleLi, C., & Huang, F. (2024). The Impact of Virtual Streamer Anthropomorphism on Consumer Purchase Intention: Cognitive Trust as a Mediator. Behavioral Sciences, 14(12), 1228. https://doi.org/10.3390/bs14121228