Towards Closing the Polar Gap: New Marine Heat Flow Observations in Antarctica and the Arctic Ocean
<p>(<b>a</b>) Overview map of Antarctica, Antarctic Circle, and the working area marked with a red box. <span class="html-italic">Polarstern</span> Expedition PS118 targeted the western Weddell Sea, which is bound by the Antarctic Peninsula to the west. (<b>b</b>) Close up of the working area and the ships track highlighted in yellow. Elevation is from BedMachine Antarctica [<a href="#B6-geosciences-11-00011" class="html-bibr">6</a>]. (<b>c</b>) Overview map of the Arctic Ocean, location of the Gakkel Ridge, and the working area bound by a red box. (<b>d</b>) Close up of the working area in the Western Volcanic Zone of the Gakkel Ridge and locations of identified vent fields [<a href="#B7-geosciences-11-00011" class="html-bibr">7</a>] marked by yellow triangles. The Aurora Vent Field is located in the western part of the volcanic zone towards Lena trough. Low-resolution bathymetry is the International Bathymetric Chart of the Arctic Ocean (IBCAO) [<a href="#B8-geosciences-11-00011" class="html-bibr">8</a>] and high-resolution bathymetry from [<a href="#B7-geosciences-11-00011" class="html-bibr">7</a>].</p> "> Figure 2
<p>(<b>a</b>) The different deployment stages are highlighted for a data example. The probe is lowered through the water column; frictional heat is created when the instrument enters the sediment. The steady-time allows for frictional heat decay. During the stabilization phase, temperature signal variations become relatively small and only occur near the sensor resolution range (±0.001 K). (<b>b</b>) Schematic drawing of the probe and sensor geometry. The sediment sensors are equidistantly mounted along the metal rod. The weight at the upper end enforces sediment penetration. A water sensor is fixed above the weight. Please note for simplification of this figure, they appear to be in line, whereas they were distributed around the rod to minimize the disturbance of the sediment. Measurements were conducted at 17 sites at the western Antarctic Peninsula Shelf, the South Orkney Shelf, and in the Powell Basin.</p> "> Figure 3
<p>Temperature measurements and thermal conductivity estimate with a violin-bow heat flow probe. (<b>a</b>) Probe is lowered through the water column and (<b>b</b>) penetrates into the seabed, where frictional heat is generated. During the steady-time (<b>c</b>), the frictional heat dissipates, sediment temperatures equilibrate, and geothermal gradients are inferred from the sensor readings and the probe geometry. (<b>d</b>) A heat pulse rises sediment temperatures and from the recording of the thermal decay curve (<b>e</b>,<b>f</b>) thermal conductivities and diffusivities can be estimated. (<b>g</b>) Probe is pulled out of the sediment and retrieved back on board. The lower panel shows a typical temperature recording of six sensors exemplarily. Please note that the violin-bow configuration typically consists of a string with 21 sensors, but the lower graph shows only six sensor data curves. Sketch adapted and modified after [<a href="#B26-geosciences-11-00011" class="html-bibr">26</a>].</p> "> Figure 4
<p>In situ temperature readings of the individual sensors with depth in the sediment for two example stations after the frictional heat decay. The temperature gradient is obtained from a linear transgression through the data points. Triangles mark sensor readings used for thermal gradient calculations and circles mark omitted sensors.</p> "> Figure 5
<p>(<b>a</b>) Simplified sketch of the identification of the slopes of the intermediate and long wavelength magnetic anomalies from the power spectrum of magnetic anomalies within a single magnetic window (<b>b</b>). For illustration, small circular anomalies in the magnetic window (<b>b</b>) would correspond to shallow sources in the power spectrum, whilst larger anomalies would correspond to intermediate and deep sources.</p> "> Figure 6
<p>Temperature-depth profiles from five in situ measurements across the western Weddell Sea Shelf. Note the scale bar indicating a range of 1 °C.</p> "> Figure 7
<p>(<b>a</b>) Northern temperature-depth Profile 1 across the Powell Basin. (<b>b</b>) Location of the sea floor with reference to sea level and stations of the individual in situ temperature measurements indicated by colored circles. Crustal segments after [<a href="#B37-geosciences-11-00011" class="html-bibr">37</a>].</p> "> Figure 8
<p>Relative temperature-depth profiles of the thermal investigations during RV <span class="html-italic">Polarstern</span> expedition PS86. Colored triangles indicate sensors that have entered the sediment. Black circles mark sensor readings in the water column above the inferred seafloor location (0 m). All profiles are shown in one figure for inter-comparability. Please note the scale of 1 °C.</p> "> Figure 9
<p>(<b>a</b>) GHF model derived from heterogeneous crustal heat production [<a href="#B39-geosciences-11-00011" class="html-bibr">39</a>]. (<b>b</b>) Magnetically-derived GHF model [<a href="#B12-geosciences-11-00011" class="html-bibr">12</a>]. (<b>c</b>,<b>d</b>) Seismically-derived GHF models [<a href="#B11-geosciences-11-00011" class="html-bibr">11</a>,<a href="#B13-geosciences-11-00011" class="html-bibr">13</a>]. In situ data from the Antarctic Geothermal Heat Flow database [<a href="#B42-geosciences-11-00011" class="html-bibr">42</a>] marked with color-coded circles. In situ measurements from this study marked with color-coded hexagons. Bathymetric map from shows bed elevation from BedMachine Antarctica [<a href="#B6-geosciences-11-00011" class="html-bibr">6</a>].</p> "> Figure 10
<p>Major tectonic features and geothermal heat flow estimates of the Powell Basin region. HF19xx Profiles 1 and 2 indicated in magenta. Contour lines extracted from bed elevation of BedMachine Antarctica [<a href="#B6-geosciences-11-00011" class="html-bibr">6</a>] at a 1000 m interval. Tectonic map adapted from [<a href="#B37-geosciences-11-00011" class="html-bibr">37</a>].</p> "> Figure 11
<p>(<b>a</b>) Seafloor age versus seafloor heat flow from several models presented in [<a href="#B55-geosciences-11-00011" class="html-bibr">55</a>] are shaded in grey. Black stripe-filled box marks where HF1910 and HF1912 approximately fall into range. Blue circles mark a selection of geothermal heat flow estimates obtain at the Aurora Vent Field. (<b>b</b>) Seafloor depth versus seafloor age from [<a href="#B55-geosciences-11-00011" class="html-bibr">55</a>]. After reduction of the sedimentary cover (1500–2300 m) approximated ages and depths at station HF1910 (~2900 mbsl) and HF1912 (2780 mbsl) show a normal distribution. The Aurora Vent Field along the ultra-slow spreading Gakkel Ridge is located below predicted water depths for models of seafloor age versus depth.</p> "> Figure 12
<p>(<b>a</b>) Bathymetric map of the Western Volcanic Zone (WVZ) of the Gakkel Ridge. Aurora Volcanic Vent Field [<a href="#B21-geosciences-11-00011" class="html-bibr">21</a>] located in the ridge center towards Lena Trough. Oceanic crustal ages from [<a href="#B60-geosciences-11-00011" class="html-bibr">60</a>], water column plume signatures from [<a href="#B21-geosciences-11-00011" class="html-bibr">21</a>] and vent fields from [<a href="#B61-geosciences-11-00011" class="html-bibr">61</a>]. Dashed white lines indicate assumed locations of detachment faults. (<b>b</b>) Larger overview of the Gakkel Ridge and the Western Volcanic Zone (WVZ), Sparsely Magmatic Zone (SMZ), and Eastern Volcanic Zone (EVZ) after [<a href="#B7-geosciences-11-00011" class="html-bibr">7</a>]. The depth-to-the-bottom of the magnetic source (DBMS) is based on EMAG2 [<a href="#B35-geosciences-11-00011" class="html-bibr">35</a>]. Color-coded circles mark geothermal heat flow (GHF) sites from [<a href="#B62-geosciences-11-00011" class="html-bibr">62</a>] and this study (PS86). Small inlet map shows extents of panel (<b>a</b>).</p> "> Figure 13
<p>Close up of the Aurora Vent Field region shown in <a href="#geosciences-11-00011-f012" class="html-fig">Figure 12</a>. Geothermal heat flow sites (<a href="#geosciences-11-00011-t001" class="html-table">Table 1</a>) are strongly heterogeneous over a small area, which is characteristic for hydrothermal ventilation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Measurements
2.2. Depth-to-Bottom of the Magnetic Source (DBMS) in the Arctic Ocean
3. Results
3.1. Heat Flow across the Western Weddell Sea Shelf
3.2. Heat Flow across the Powell Basin
3.3. Heat Flow Along the Gakkel Ridge
4. Discussion
4.1. Weddell Sea and Antarctic Peninsula
4.2. Powell Basin
4.3. Aurora Vent Field and Western Gakkel Ridge
5. Conclusions
- Geothermal heat flow models of and around the Antarctic Peninsula show high discrepancies. Our observations across the western Weddell Sea shelf, particularly around James Ross Island indicate elevated geothermal gradients. The estimated heat flow ranges from 75 ± 5 mW m−2 to 139 ± 26 mW m−2. We therefore suggest to consider these values for future heat flow models, analyses of ice sheet dynamics, and studies of the visco-elasticity in the region.
- The northern part of the Powell Basin around the bathymetric high yields heat flow values within the expected range of oceanic crust with ages between 32 to 18 Ma (Figure 11). Maximum GHF values might reach up to 92 mW m−2, after considerations of a thermal blanketing effect induced by high sedimentation rates.
- In situ thermal observations from the Western Volcanic Zone of the Gakkel Ridge, in particular around the Aurora Vent Field, reveal a complex distribution of GHF patterns, which are likely correlated to the hydrothermal activity. The distribution suggests varying heat sources and that the largest heat source might not be located directly beneath the volcanic mount, but towards the ridge center. The anomalous behavior of ultra-slow spreading ridges is not well represented in model predictions of seafloor age, depth, and heat flow (Figure 11). Ultra-slow spreading ridges might contribute stronger to global heat loss, than previously thought.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montési, L.G.J.; Behn, M.D. Mantle flow and melting underneath oblique and ultraslow mid-ocean ridges. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Standish, J.J.; Dick, H.J.B.; Michael, P.J.; Melson, W.G.; O’Hearn, T. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9-25° E): Major element chemistry and the importance of process versus source. Geochemistry, Geophys. Geosystems 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Schlindwein, V.; Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 2016, 535, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Bown, J.W.; White, R.S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 1994, 121, 435–449. [Google Scholar] [CrossRef]
- German, C.R.; Baker, E.T.; Mevel, C.; Tamaki, K. the FUJI Science Team Hydrothermal activity along the southwest Indian ridge. Nature 1998, 395, 490–493. [Google Scholar] [CrossRef]
- Boetius, A. The Expedition PS86 of the Research Vessel POLARSTERN to the Arctic Ocean in 2014; Alfred Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 2015. [Google Scholar]
- Edmonds, H.N.; Michael, P.J.; Baker, E.T.; Connelly, D.P.; Snow, J.E.; Langmuir, C.H.; Dick, H.J.B.; Mühe, R.; German, C.R.; Graham, D.W. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature 2003, 421, 252–256. [Google Scholar] [CrossRef]
- Chown, S.L.; Lee, J.E.; Hughes, K.A.; Barnes, J.; Barrett, P.J.; Bergstrom, D.M.; Convey, P.; Cowan, D.A.; Crosbie, K.; Dyer, G.; et al. Challenges to the future conservation of the Antarctic. Science 2012, 337, 158–159. [Google Scholar] [CrossRef]
- Burton-Johnson, A.; Dziadek, R.; Martin, C.; Halpin, J.; Whitehouse, P.L.; Ebbing, J.; Martos, Y.M.; Martin, A.; Schroeder, D.; Shen, W.; et al. Antarctic Geothermal Heat Flow: Future Research Directions. Available online: file:///C:/Users/MDPI/AppData/Local/Temp/SCAR-SERCEGeothermalHeatFlowWhitePaper-1.pdf (accessed on 14 December 2020).
- Dorschel, B. The Expedition PS118 of the Research Vessel POLARSTERN to the Weddell Sea in 2019; Alfred Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 2019; 149p. [Google Scholar]
- Rignot, E.; Mouginot, J.; Scheuchel, B. Ice Flow of the Antarctic Ice Sheet. Sciences 2011, 333, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Scheuchl, B.; Mouginot, J.; Rignot, E.-J.; Small, D.; Khazendar, A.; Seroussi, H.-L.; Kellndorfer, J.-M. Ice velocity and SAR backscatter record for the Antarctic Peninsula. AGU Fall Meet. Abstr. 2017. [Google Scholar]
- Mulvaney, R.; Abram, N.J.; Hindmarsh, R.C.A.; Arrowsmith, C.; Fleet, L.; Triest, J.; Sime, L.C.; Alemany, O.; Foord, S. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 2012, 489, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Zagorodnov, V.; Nagornov, O.; Scambos, T.A.; Muto, A.; Mosley-Thompson, E.; Pettit, E.C.; Tyuflin, S. Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula. Cryosphere 2012, 6, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Wiens, D.A.; Lloyd, A.J.; Nyblade, A.A. A Geothermal Heat Flux Map of Antarctica Empirically Constrained by Seismic Structure. Geophys. Res. Lett. 2020, 47, 1–8. [Google Scholar] [CrossRef]
- Martos, Y.M.; Catalan, M.; Jordan, T.A.; Golynsky, A.; Golynsky, D.; Eagles, G.; Vaughan, D.G. Heat flux distribution of Antarctica unveiled. Geophys. Res. Lett. 2017. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, N.; Ritzwoller, M.H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett. 2004, 223, 213–224. [Google Scholar] [CrossRef] [Green Version]
- An, M.; Wiens, D.A.; Zhao, Y.; Feng, M.; Nyblade, A.; Kanao, M.; Li, Y.; Maggi, A.; Lévêque, J. Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities. J. Geophys. Res. Solid Earth 2015, 120, 8720–8742. [Google Scholar] [CrossRef]
- Morlighem, M.; Rignot, E.; Binder, T.; Blankenship, D.; Drews, R.; Eagles, G.; Eisen, O.; Ferraccioli, F.; Forsberg, R.; Fretwell, P.; et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 2019. [Google Scholar] [CrossRef]
- Michael, P.J.; Langmuir, C.H.; Dick, H.J.B.; Snow, J.E.; Goldstein, S.L.; Graham, D.W.; Lehnert, K.; Kurras, G.; Jokat, W.; Mühe, R.; et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 2003, 423, 956–961. [Google Scholar] [CrossRef]
- Jakobsson, M.; Mayer, L.; Coakley, B.; Dowdeswell, J.A.; Forbes, S.; Fridman, B.; Hodnesdal, H.; Noormets, R.; Pedersen, R.; Rebesco, M.; et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pfender, M.; Villinger, H. Miniaturized data loggers for deep sea sediment temperature gradient measurements. Mar. Geol. 2002, 186, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Decagon Devices Inc. KD2 Pro Thermal Properties Analyzer, Operator’s Manual 2012; Decagon Devices Inc.: Washington, DC, USA, 2012; p. 68. [Google Scholar]
- Hartmann, A.; Villinger, H. Inversion of marine heat flow measurements by expansion of the temperature decay function. Geophys. J. Int. 2002, 148, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Villinger, H.; Davis, E.E. A new reduction algorithm for marine heat flow measurements. J. Geophys. Res. 1987, 92, 12846. [Google Scholar] [CrossRef]
- Fourier, J.B.J. Théorie analytique de la chaleur; Chez Firmin Didot, père et Fils: Paris, France, 1822; ISBN 9780511693205. [Google Scholar]
- Müller, C.; Usbeck, R.; Miesner, F. Temperatures in shallow marine sediments: Influence of thermal properties, seasonal forcing, and man-made heat sources. Appl. Therm. Eng. 2016, 108, 20–29. [Google Scholar] [CrossRef]
- Haggerry, S.E. Mineralogical constraints on curie isotherms in deep crustal magnetic anomalies. Geophys. Res. Lett. 1978, 5, 105–108. [Google Scholar] [CrossRef]
- Okubo, Y.; Graf, R.J.; Hansen, R.O.; Ogawa, K.; Tsu, H. Curie point depths of the Island of Kyushu and surrounding areas, Japan. GEOPHYSICS 1985, 50, 481–494. [Google Scholar] [CrossRef]
- Fox Maule, C.; Purucker, M.E.; Olsen, N.; Mosegaard, K. Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data. Sciences 2005, 309, 464–467. [Google Scholar] [CrossRef]
- Bansal, A.R.; Anand, S.P.; Rajaram, M.; Rao, V.K.; Dimri, V.P. Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources. Tectonophysics 2013, 603, 155–161. [Google Scholar] [CrossRef]
- Li, C.F.; Lu, Y.; Wang, J. A global reference model of Curie-point depths based on EMAG2. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Spector, A.; Grant, F.S. Statistical Models for Interpreting Aeromagnetic Data. Geophysics 1970, 35, 293–302. [Google Scholar] [CrossRef]
- Tanaka, A.; Okubo, Y.; Matsubayashi, O. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 1999, 306, 461–470. [Google Scholar] [CrossRef]
- Maus, S.; Barckhausen, U.; Berkenbosch, H.; Bournas, N.; Brozena, J.; Childers, V.; Dostaler, F.; Fairhead, J.D.; Finn, C.; Von Frese, R.R.B.; et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef]
- Dziadek, R.; Gohl, K.; Kaul, N. Elevated geothermal surface heat flow in the Amundsen Sea Embayment, West Antarctica. Earth Planet. Sci. Lett. 2019, 506, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Civile, D.; Lodolo, E.; Vuan, a.; Loreto, M.F. Tectonics of the Scotia–Antarctica plate boundary constrained from seismic and seismological data. Tectonophysics 2012, 550–553, 17–34. [Google Scholar] [CrossRef]
- Jaupart, C.; Mareschal, J.-C. Heat Flow and Thermal Structure of the Lithosphere. In Treatise on Geophysics; Schubert, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 217–252. ISBN 978-0-444-52748-6. [Google Scholar]
- Burton-Johnson, A.; Halpin, J.A.; Whittaker, J.M.; Graham, F.S.; Watson, S.J. A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production. Geophys. Res. Lett. 2017, 44, 5436–5446. [Google Scholar] [CrossRef]
- Nagao, T.; Saki, T.; Joshima, M. Heat flow measurements around the Antarctica Contribution of R/V Hakurei. Proc. japan Acad. 2002, 78, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Lawver, L.A.; Keller, R.A.; Fisk, M.R.; Strelin, J.A. Bransfield Strait, Antarctic Peninsula Active Extension behind a Dead Arc. In Backarc Basins: Tectonics and Magmatism; Taylor, B., Ed.; Plenum Press: New York, NY, USA, 1995; pp. 315–342. [Google Scholar]
- Currie, C.A.; Hyndman, R.D. The thermal structure of subduction zone back arcs. J. Geophys. Res. Solid Earth 2006, 111, 1–22. [Google Scholar] [CrossRef]
- Elliot, D.H. Tectonic setting and evolution of the James Ross Basin, northern Antarctic Peninsula. Geol. Soc. Am. Mem. 1988, 169, 541–555. [Google Scholar]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; Van den Broeke, M.; Van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Rott, H.; Skvarca, P.; Nagler, T. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Sciences 1996, 271, 788–792. [Google Scholar] [CrossRef]
- Rack, W.; Rott, H. Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula. Ann. Glaciol. 2004, 39, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Nield, G.A.; Barletta, V.R.; Bordoni, A.; King, M.A.; Whitehouse, P.L.; Clarke, P.J.; Domack, E.; Scambos, T.A.; Berthier, E. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth Planet. Sci. Lett. 2014, 397, 32–41. [Google Scholar] [CrossRef]
- Burton-Johnson, A.; Dziadek, R.; Martin, C. Geothermal heat flow in Antarctica: current and future directions. Cryosph. Discuss. 2020, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Fernandez, J.; Balanya, J.C.; Galindo-Zaldivar, J.; Maldonado, A. Tectonic evolution of a restricted ocean basin: The powell basin (northeastern antarctic peninsula). Geodin. Acta 1997, 10, 159–174. [Google Scholar] [CrossRef]
- Viseras, C.; Maldonado, A. Facies architecture, seismic stratigraphy and development of a high-latitude basin: The Powell Basin (Antarctica). Mar. Geol. 1999, 157, 69–87. [Google Scholar] [CrossRef]
- Lawver, L.A.; Williams, T.; Sloan, B. Seismic stratigraphy and heat flow of Powell Basin. Terra Antarct. 1994, 1, 309–310. [Google Scholar]
- Hasterok, D.; Chapman, D.S.; Davis, E.E. Oceanic heat flow: Implications for global heat loss. Earth Planet. Sci. Lett. 2011, 311, 386–395. [Google Scholar] [CrossRef]
- Lindeque, A.; Martos Martin, Y.M.; Gohl, K.; Maldonado, A. Deep-sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect. Mar. Geol. 2013, 336, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Catalán, M.; Martos, Y.M.; Perez, L.F.; Bohoyo, F. Unveiling Powell Basin’s Tectonic Domains and Understanding Its Abnormal Magnetic Anomaly Signature. Is Heat the Key? Front. Earth Sci. 2020, 8, 1–15. [Google Scholar] [CrossRef]
- Grose, C.J.; Afonso, J.C. Comprehensive plate models for the thermal evolution of oceanic lithosphere. Geochem. Geophys. Geosystems 2013, 14, 3751–3778. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 2014, 41, 1576–1584. [Google Scholar] [CrossRef] [Green Version]
- Dick, H.J.B.; Lin, J.; Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef]
- DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 1994, 21, 2191–2194. [Google Scholar] [CrossRef]
- Snow, J.E.; Edmonds, H.N. Ultraslow-Spreading Ridges Rapid Paradigm Changes. Oceanography 2007, 20, 90–101. [Google Scholar] [CrossRef]
- Müller, R.D.; Seton, M.; Zahirovic, S.; Williams, S.E.; Matthews, K.J.; Wright, N.M.; Shephard, G.E.; Maloney, K.T.; Barnett-Moore, N.; Hosseinpour, M.; et al. Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annu. Rev. Earth Planet. Sci. 2016, 44, 107–138. [Google Scholar] [CrossRef]
- Beaulieu, S.E.; Szafranski, K. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields, Version 3.4. Available online: http://vents-data.interridge.org (accessed on 20 October 2020).
- Lucazeau, F. Analysis and mapping of an updated terrestrial heat flow dataset. Geochem. Geophys. Geosyst. 2019, 20, 4001–4024. [Google Scholar] [CrossRef] [Green Version]
- Jokat, W.; Schmidt-Aursch, M.C. Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean. Geophys. J. Int. 2007, 168, 983–998. [Google Scholar] [CrossRef] [Green Version]
- Martos, Y.M.; Jordan, T.A.; Catalan, M.; Jordan, T.M.; Bamber, J.L.; Vaughan, D.G. Geothermal heat flux reveals the Iceland hotspot track underneath Greenland. Geophys. Res. Lett. 2018. [Google Scholar] [CrossRef] [Green Version]
- Andrés, J.; Marzán, I.; Ayarza, P.; Martí, D.; Palomeras, I.; Torné, M.; Campbell, S.; Carbonell, R. Curie Point Depth of the Iberian Peninsula and Surrounding Margins. A Thermal and Tectonic Perspective of its Evolution. J. Geophys. Res. Solid Earth 2018, 123, 2049–2068. [Google Scholar] [CrossRef]
- Sauter, D.; Carton, H.; Mendel, V.; Munschy, M.; Rommevaux-Jestin, C.; Schott, J.J.; Whitechurch, H. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50°30′ E, 55°30′ E and 66°20′ E): Implications for magmatic processes at ultraslow-spreading centers. Geochem. Geophys. Geosyst. 2004, 5. [Google Scholar] [CrossRef]
- Urlaub, M.; Schmidt-Aursch, M.C.; Jokat, W.; Kaul, N. Gravity crustal models and heat flow measurements for the Eurasia Basin, Arctic Ocean. Mar. Geophys. Res. 2009, 30, 277–292. [Google Scholar] [CrossRef]
- Tao, C.; Seyfried, W.E.; Lowell, R.P.; Liu, Y.; Liang, J.; Guo, Z.; Ding, K.; Zhang, H.; Liu, J.; Qiu, L.; et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasenclever, J.; Theissen-Krah, S.; Rüpke, L.H.; Morgan, J.P.; Iyer, K.; Petersen, S.; Devey, C.W. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges. Nature 2014, 508, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.A.; Stein, S. Constraints on Hydrothermal Heat-Flux Through the Oceanic Lithosphere From Global Heat-Flow. J. Geophys. Res. 1994, 99, 3081–3095. [Google Scholar] [CrossRef] [Green Version]
Region | Station | Latitude (Decimal Degree) | Longitude (Decimal Degree) | k (W/mK) | GHF (mW/m²) | Error (mW/m²) |
---|---|---|---|---|---|---|
Antarctica | ||||||
Weddell Sea Shelf 1 | HF1901 | −64.9855 | −57.7694 | 1.33 | 139 | 26 |
Weddell Sea Shelf 1 | HF1902 | −64.0627 | −56.1563 | 1.33 | 125 | 5 |
Weddell Sea Shelf 1 | HF1903 | −64.0497 | −56.1361 | 1.33 | 126 | 3 |
Powell Basin 1 | HF1904 | −62.3226 | −51.6758 | 1.05 | 86 | 0 |
Weddell Sea Shelf 1 | HF1905 | −63.0627 | −54.3495 | 0.86 | 75 | 5 |
Weddell Sea Shelf 1 | HF1906 | −63.0812 | −54.3276 | 0.86 | 78 | 10 |
South Orkney Shelf 1 | HF1908 | −60.9289 | −46.5618 | 0.66 | 41 | 1 |
Powell Basin1 | HF1909 | −61.1236 | −47.7338 | 0.95 | 69 | 6 |
Powell Basin1 | HF1910 | −61.1239 | −48.2835 | 0.86 | 74 | 8 |
Powell Basin1 | HF1911 | −61.1224 | −48.9201 | 1.05 | 16 | 4 |
Powell Basin1 | HF1912 | −61.1683 | −49.7056 | 0.96 | 71 | 6 |
Powell Basin 1 | HF1914 | −60.8382 | −49.8366 | 0.96 | 55 | 0 |
Powell Basin 1 | HF1915 | −60.8523 | −49.6517 | 0.96 | 56 | 0 |
Powell Basin 1 | HF1916 | −60.8477 | −49.3972 | 1.43 | 34 | 6 |
Powell Basin 1 | HF1917 | −60.8476 | −48.5034 | 1.33 | 47 | 20 |
Powell Basin 1 | HF1918 | −60.8350 | −48.2141 | 0.95 | 55 | 6 |
Powell Basin 1 | HF1919 | −60.8467 | −47.6762 | 1.20 | 65 | 3.6 |
Arctic Ocean | ||||||
Aurora Vent Field 2,3 | H1401P01 | 82.9227 | −6.2049 | 1.32 | 1825 | 259 |
Aurora Vent Field 2 | H1401P02 | 82.9219 | −6.1959 | 1 | 743 | 103 |
Aurora Vent Field 2 | H1401P03 | 82.9194 | −6.1667 | 1 | 39 | 5 |
Aurora Vent Field 2,3 | H1401P04 | 82.9184 | −6.1510 | 1.14 | 749 | 108 |
Aurora Vent Field 2,3 | H1402P01 | 82.9083 | −6.2292 | 1.06 | 199 | 0.4 |
Aurora Vent Field 2 | H1402P02 | 82.9072 | −6.2389 | 1 | 177 | 0 |
Aurora Vent Field 2 | H1402P03 | 82.9059 | −6.2362 | 1 | 144 | 4 |
Aurora Vent Field 2,3 | H1403P01 | 82.8894 | −6.2218 | 1.04 | 14 | 6 |
Aurora Vent Field 2 | H1403P02 | 82.8881 | −6.2240 | 1 | 70 | 4 |
Aurora Vent Field 2 | H1403P03 | 82.8889 | −6.2139 | 1 | 11 | 1 |
Aurora Vent Field 2 | H1403P04 | 82.8886 | −6.2022 | 1 | 8 | 0 |
Aurora Vent Field 2,3 | H1403P05 | 82.8875 | −6.1878 | 1.09 | 19 | 3 |
Aurora Vent Field 2,3 | H1404P01 | 82.9060 | −6.2675 | 1.06 | 133 | 5 |
Aurora Vent Field 2,3 | H1404P02 | 82.9013 | −6.2317 | 1.09 | 136 | 5 |
Aurora Vent Field 2 | H1404P03 | 82.9013 | −6.2085 | 1 | 47 | 2 |
Aurora Vent Field 2 | H1404P04 | 82.9021 | −6.1929 | 1 | 18 | 2 |
Aurora Vent Field 2,3 | H1405P01 | 83.1094 | −5.7635 | 1.16 | 224 | 10 |
Aurora Vent Field 2 | H1405P02 | 83.1050 | −5.7698 | 1.16 | 10 | 2 |
Aurora Vent Field 2,3 | H1406P01 | 82.9036 | −6.5432 | 1.12 | 371 | 5 |
Aurora Vent Field 2,3 | H1406P02 | 82.9013 | −6.5428 | 1.16 | 545 | 8 |
Aurora Vent Field 2,3 | H1406P03 | 82.8986 | −6.5391 | 1.05 | 395 | 0.5 |
Aurora Vent Field 2,3 | H1407P01 | 82.9275 | −6.3564 | 1.18 | 131 | 2 |
Aurora Vent Field 2 | H1407P02 | 82.9238 | −6.3975 | 1.16 | 230 | 7 |
Aurora Vent Field 2 | H1407P03 | 82.9226 | −6.4255 | 1.16 | 301 | 5 |
Aurora Vent Field 2 | H1407P04 | 82.9209 | −6.4711 | 1.16 | 455 | 0 |
Aurora Vent Field 2,3 | H1408P01 | 83.1114 | −2.4656 | 1.30 | 32 | 0 |
Aurora Vent Field 2,3 | H1408P02 | 83.1099 | −2.4490 | 1.33 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziadek, R.; Doll, M.; Warnke, F.; Schlindwein, V. Towards Closing the Polar Gap: New Marine Heat Flow Observations in Antarctica and the Arctic Ocean. Geosciences 2021, 11, 11. https://doi.org/10.3390/geosciences11010011
Dziadek R, Doll M, Warnke F, Schlindwein V. Towards Closing the Polar Gap: New Marine Heat Flow Observations in Antarctica and the Arctic Ocean. Geosciences. 2021; 11(1):11. https://doi.org/10.3390/geosciences11010011
Chicago/Turabian StyleDziadek, Ricarda, Mechthild Doll, Fynn Warnke, and Vera Schlindwein. 2021. "Towards Closing the Polar Gap: New Marine Heat Flow Observations in Antarctica and the Arctic Ocean" Geosciences 11, no. 1: 11. https://doi.org/10.3390/geosciences11010011
APA StyleDziadek, R., Doll, M., Warnke, F., & Schlindwein, V. (2021). Towards Closing the Polar Gap: New Marine Heat Flow Observations in Antarctica and the Arctic Ocean. Geosciences, 11(1), 11. https://doi.org/10.3390/geosciences11010011