Numerical Evaluation of Natural Periods and Mode Shapes of Earth Dams for Probabilistic Seismic Hazard Analysis Applications
<p>Location of the Farneto del Principe dam (Southern Italy), shallow crustal seismogenic faults, and Calabrian Arc subduction zone.</p> "> Figure 2
<p>Representative cross-section and location of the monitoring instrumentation of the Farneto del Principe dam (adapted from [<a href="#B2-geosciences-10-00499" class="html-bibr">2</a>]).</p> "> Figure 3
<p>Shear wave velocity profile scheme.</p> "> Figure 4
<p>Finite element method (FEM) Model 1: (<b>a</b>) undeformed mesh, (<b>b</b>) first mode shape, and (<b>c</b>) second mode shape.</p> "> Figure 5
<p>FEM Model 2: (<b>a</b>) undeformed mesh, (<b>b</b>) first mode shape, and (<b>c</b>) second mode shape.</p> "> Figure 6
<p>FEM Model 3: (<b>a</b>) undeformed mesh, (<b>b</b>) first mode shape, and (<b>c</b>) second mode shape.</p> "> Figure 7
<p>FEM Model 4: (<b>a</b>) undeformed mesh, (<b>b</b>) first mode shape, and (<b>c</b>) second mode shape.</p> "> Figure 8
<p>FEM Model 5: (<b>a</b>) undeformed mesh, (<b>b</b>) first mode shape, and (<b>c</b>) second mode shape.</p> ">
Abstract
:1. Introduction
2. Methodology and Data
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Penman, A.D.M. On the embankment dam. Geotechnique 1986, 36, 301–348. [Google Scholar] [CrossRef] [Green Version]
- Zimmaro, P. Seismic Response of the Farneto del Principe Dam in Italy Using Hazard-consistent and Site-specific Ground Motions. Ph.D. Thesis, University Mediterranea, Reggio Calabria, Italy, March 2015. [Google Scholar]
- Norme Tecniche per la Progettazione e la Costruzione Degli Sbarramenti di Ritenuta (Dighe e Traverse); Ministry of Infrastructures and Transport of Italy: Rome, Italy, 14 June 2014. (In Italian)
- Aggiornamento delle Norme Tecniche per le Costruzioni; Ministry of Infrastructures and Transport of Italy: Rome, Italy, 17 January 2018. (In Italian)
- Verifiche Sismiche delle Grandi dighe, degli Scarichi e delle opere Complementari e Accessorie; Ministry of Infrastructures and Transport of Italy: Rome, Italy, 3 July 2019. (In Italian)
- Baker, J.W. Conditional Mean Spectrum: Tool for ground motion selection. J. Struct. Eng. 2011, 137, 322–331. [Google Scholar] [CrossRef]
- Baker, J.W.; Cornell, C.A. Spectral shape, epsilon and record selection. Earthq. Eng. Struct. Dyn. 2006, 35, 1077–1095. [Google Scholar] [CrossRef]
- Dakoulas, P.; Gazetas, G. A class of inhomogeneous shear models for seismic response of dams and embankments. Soil Dyn. Earthq. Eng. 1985, 4, 166–182. [Google Scholar] [CrossRef]
- Watanabe, H.; Kikuchi, K.; Cao, Z. Vibration Modes of Rockfill Dam Based on the Observations of Microtremors and an Earthquake; Research report; Thammasat Univ. Rangsit Campus: Pathum Thani, Thailand, 1995. [Google Scholar]
- Castro, R.R.; Mucciarelli, M.; Pacor, F.; Federici, P.; Zaninetti, A. Determination of the characteristic frequency of two dams located in the region of Calabria. Bull. Seismol. Soc. Am. 1998, 88, 503–511. [Google Scholar]
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis of Civil Engineering Structures; Springer: New York, NY, USA, 2014. [Google Scholar]
- Aloisio, A.; Di Pasquale, A.; Alaggio, R.; Fragiacomo, M. Assessment of seismic retrofitting interventions of a masonry palace using operational modal analysis. Int. J. Archit. Herit. 2020, 1–13. [Google Scholar] [CrossRef]
- Chugh, A.K. Natural vibration characteristics of gravity structures. Int. J. Numer. Anal. Methods Geomech. 2007, 31, 607–648. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, J.T.; Puppala, A.J.; Banerjee, A. Natural frequency of earthen dams at different induced strain levels. Eng. Geol. 2019, 248, 330–345. [Google Scholar] [CrossRef]
- Yaseri, A.; Konrad, J.M. Estimation of natural periods of earth dam-flexible canyon systems with 3D coupled FEM-SBFEM. Comput. Geotech. 2020, 123, 103546. [Google Scholar] [CrossRef]
- Zimmaro, P.; Stewart, J.P. Site-specific seismic hazard analysis for Calabrian dam site using regionally customized seismic source and ground motion models. Soil Dyn. Earthq. Eng. 2017, 94, 179–192. [Google Scholar] [CrossRef]
- CSI Analysis Reference Manual for SAP2000, ETABS and SAFE; Computers and Structures, Inc.: Berkeley, CA, USA, 2013.
- Ambraseys, N.N. A note on the response of an elastic overburden of varying rigidity to an arbitrary ground motion. Bull. Seismol. Soc. Am. 1959, 49, 211–220. [Google Scholar]
- Seed, H.B.; Idriss, I.M. The influence of ground conditions on ground motions during earthquakes. J. Soil Mech. Found. Div. 1969, 94, 93–137. [Google Scholar]
- Dobry, R.; Whitman, R.; Roesset, J.M. Soil Properties and the One-dimensional Theory of Earthquake Amplification; Research Report R71-18; M.I.T.: Cambridge, MA, USA, May 1971. [Google Scholar]
- Schreyer, H. One-dimensional elastic waves in inhomogeneous media. J. Eng. Mech. Div. 1977, 103, 979–990. [Google Scholar]
- Gazetas, G. Vibrational characteristics of soil deposits with variable wave velocity. Int. J. Numer. Anal. Methods Geomech. 1982, 6, 1–20. [Google Scholar] [CrossRef]
- Towhata, I. Seismic wave propagation in elastic soil with continuous variation of shear modulus in the vertical direction. Soil. Found. 1996, 36, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Rovithis, E.; Parashakis, C.; Mylonakis, G. 1D harmonic response of layered inhomogeneous soil: Analytical investigation. Soil Dyn. Earthq. Eng. 2011, 31, 879–890. [Google Scholar] [CrossRef]
- Durante, M.G.; Karamitros, D.; Di Sarno, L.; Sica, S.; Taylor, C.A. Characterisation of shear wave velocity profiles of non-uniform bi-layer soil deposits: Analytical evaluation and experimental validation. Soil Dyn. Earthq. Eng. 2015, 75, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Bishop, A.W.; Height, D.W. The value of Poisson’s ratio in saturated soils and rocks stressed under undrained conditions. Geotechnique 1977, 27, 369–384. [Google Scholar] [CrossRef]
- Ausilio, E.; Dente, G.; Zimmaro, P. Geotechnical Investigation and Field Performance of a Zoned Earth Dam in Italy. In Proceedings of the 1st IMEKO TC4 International Workshop on Metrology for Geotechnics, Benevento, Italy, 16–18 March 2016. [Google Scholar]
- Richart, F.E.; Hall, J.R.; Woods, R.D. Vibrations of Soils and Foundations; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1970. [Google Scholar]
- Hardin, B.O.; Drnevich, V.P. Shear modulus and damping in soils: Measurement and parameter effects, Terzaghi Lecture. J. Soil Mech. Found. Div. 1972, 98, 603–624. [Google Scholar]
- Mancuso, C. Aspetti Metodologici ed Applicazione della Tecnica Sperimentale SASW. Riv. Ital. Geotec. 1995, 4, 271–288. [Google Scholar]
- Pagano, L.; Mancuso, C.; Sica, S. Prove in sito sulla diga del Camastra: Tecniche sperimentali e risultati. Riv. Ital. Geotec. 2008, 3, 11–28. [Google Scholar]
- Jacobsen, L.S. Motion of a soil subjected to a simple harmonic ground vibration. Bull. Seismol. Soc. Am. 1930, 20, 160–195. [Google Scholar]
- Idriss, I.M.; Mathr, J.M.; Seed, H.B. Earth Dam-foundation interaction during earthquakes. Earthq. Eng. Struct. Dyn. 1973, 2, 313–323. [Google Scholar] [CrossRef]
- Carlton, B.; Abrahamson, N. Issues and approaches for implementing conditional mean spectra in practice. Bull. Seismol. Soc. Am. 2014, 104, 503–512. [Google Scholar] [CrossRef]
Model # | Rigid Base | Flexible Base | Presence of Water | VS Variable with Depth |
---|---|---|---|---|
1 | ✓ | ✗ | ✗ | ✗ |
2 | ✓ | ✗ | ✓ | ✗ |
3 | ✓ | ✗ | ✗ | ✓ |
4 | ✓ | ✗ | ✓ | ✓ |
5 | ✗ | ✓ | ✓ | ✓ |
Parameter | Above the Phreatic Surface | Below the Phreatic Surface | Foundation | ||
---|---|---|---|---|---|
Core | Shells | Core | Shells | ||
γ (kN/m3) | 18 | 24 | 21.3 | 25.1 | 24.1 |
Poisson’s ratio | 0.35 | 0.33 | 0.49 | 0.49 | 0.33 |
VS (m/s) | 250 | Variable with depth (models 4 and 5) | 250 | Variable with depth models 4 and 5) | 650 |
Mode | Model 1 | Model 2 | Model 3 | Model 4 | ||||
---|---|---|---|---|---|---|---|---|
Period (s) | MPMR (%) | Period (s) | MPMR (%) | Period (s) | MPMR (%) | Period (s) | MPMR (%) | |
1 | 0.213 | 63 | 0.205 | 65 | 0.205 | 60 | 0.197 | 62 |
2 | 0.102 | 14 | 0.099 | 10 | 0.099 | 16 | 0.097 | 12 |
3 | 0.059 | 2 | 0.055 | 2 | 0.062 | 2 | 0.063 | 2 |
4 | 0.045 | 1 | 0.040 | 2 | 0.004 | 1 | 0.038 | 2 |
Model | Period (s) | Period Elongation (%) | ||
---|---|---|---|---|
T1 | T2 | ΔT1 | ΔT2 | |
4 (fixed base) | 0.197 | 0.097 | - | - |
5 (flexible base) | 0.240 | 0.126 | 22 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmaro, P.; Ausilio, E. Numerical Evaluation of Natural Periods and Mode Shapes of Earth Dams for Probabilistic Seismic Hazard Analysis Applications. Geosciences 2020, 10, 499. https://doi.org/10.3390/geosciences10120499
Zimmaro P, Ausilio E. Numerical Evaluation of Natural Periods and Mode Shapes of Earth Dams for Probabilistic Seismic Hazard Analysis Applications. Geosciences. 2020; 10(12):499. https://doi.org/10.3390/geosciences10120499
Chicago/Turabian StyleZimmaro, Paolo, and Ernesto Ausilio. 2020. "Numerical Evaluation of Natural Periods and Mode Shapes of Earth Dams for Probabilistic Seismic Hazard Analysis Applications" Geosciences 10, no. 12: 499. https://doi.org/10.3390/geosciences10120499
APA StyleZimmaro, P., & Ausilio, E. (2020). Numerical Evaluation of Natural Periods and Mode Shapes of Earth Dams for Probabilistic Seismic Hazard Analysis Applications. Geosciences, 10(12), 499. https://doi.org/10.3390/geosciences10120499