Persisting Rock-Buffered Conditions in the Upper Triassic and Lower Jurassic Dolomites of the Central Apennines (Italy) During Diagenesis, Burial, and Thrusting
<p>(<b>a</b>) Schematic map of Italy indicating the Central Apennines with blue rectangle. (<b>b</b>) Simplified map illustrating the major structures (extensional faults in black and thrust faults in red) and lithostratigraphic domains of the Central Apennines; blue rectangle corresponds to the area shown in <a href="#geosciences-15-00035-f002" class="html-fig">Figure 2</a>. (<b>c</b>) Geologic cross-section AB from the inner thrust and fold belt in the SW to the outer foredeep in the NE of the Central Apennines; the solid black line on the right of the section at the bottom of the sedimentary cover represents the top basement of Adria. (<b>d</b>) Paleogeography of the Mediterranean area at the Triassic–Jurassic boundary highlighting the regions composing the epicontinental platform of Adria (written in red) red lines represent plate margins explained in the inset in the lower left corner; ocean basins are written in blue and emerged massifs are shown by hatched areas. (<b>e</b>) Detail of (<b>d</b>) over Adria in the Late Jurassic (modified after [<a href="#B48-geosciences-15-00035" class="html-bibr">48</a>]).</p> "> Figure 2
<p>(<b>a</b>) Google Earth image and (<b>b</b>) simplified geologic map of the study area from Vado di Corno pass in the W to Mt. Camicia in the E (simplified from [<a href="#B50-geosciences-15-00035" class="html-bibr">50</a>]). Stratigraphy, structure, and samples are explained in the legend on the top right of the figure. (<b>c</b>–<b>d</b>) Geologic cross-sections illustrating the thrust-bounded tectonic slices. (<b>e</b>) Simplified logs of the Corno Grande, Mt. Prena, and Mt. Camicia. Synthesis of the stratigraphic and facies analyses from [<a href="#B51-geosciences-15-00035" class="html-bibr">51</a>,<a href="#B52-geosciences-15-00035" class="html-bibr">52</a>,<a href="#B53-geosciences-15-00035" class="html-bibr">53</a>]. (<b>f</b>) Panoramic view and linedrawing of the study area roughly parallel to the section shown in (<b>d</b>).</p> "> Figure 3
<p>(<b>a</b>) Field image of thin-bedded mudstones of the dolomitized Corniola Fm. (<b>b</b>) Detail of low-porosity oncoidal grainstone/packstone showing interparticle dolomite cement; finger for scale. (<b>c</b>) Relatively undeformed wackestones and thin-bedded packstones of Dolomia Principale Fm. (<b>d</b>) Field image of finely laminated, organic matter-rich Dolomie Bituminose Fm. (<b>e</b>) Outcrop picture of bedding-parallel dolomite veins and crackle breccia pockets in well-laminated organic-rich Dolomie Bituminose Fm. (<b>f</b>) Detail of bedding-parallel dolomite vein cluster overprinted by stylolites in the Dolomia Principale Fm. (<b>g</b>) Field photographs of thrust fault in the Calcare Massiccio Fm. and (<b>h</b>) related dolomite veins and crackle to mosaic breccias adjacent to the thrust fault in the Corniola Fm; dotted red lines represent fault surfaces and the red arrows indicate kinematics.</p> "> Figure 4
<p>Microphotographs in transmitted light of the analyzed samples showing selected microfacies and microfossils. (<b>a</b>) Organic matter-rich, finely laminated dolomite mudstone in DB Fm.; SMF3. (<b>b</b>) Sedimentary breccia with finely laminated dolomicritic lithoclasts in DB Fm.; SMF4. (<b>c</b>) Finely laminated peloidal and cherty wackestone with organic material-rich wavy lamina in DB Fm.; SMF2. (<b>d</b>) Fabric-destructive planar-s dolomite with preserved habit of dasyclads in DP Fm.; SMF11. (<b>e</b>) Coated grains in packstone/wackestone in DP Fm.; SMF8. (<b>f</b>) Foraminiferal packstone/grainstone replaced by planar-s dolomites including abundant foraminifera in DP Fm.; SMF18. (<b>g</b>) Micritized oncoid in wackestone in CM Fm.; SMF8. (<b>h</b>) Fenestral packstone with clotted peloidal fabric in CM Fm; SMF21. (<b>i</b>) Lithoclastic fenestral packstone lamina including textularidae, dasycladads, oxidized clasts, and other foraminifera in CM Fm.; SMF24. (<b>j</b>) Wackestone with sponge spicules in Co Fm.; SMF1. (<b>k</b>) Peloidal bioclastic wackestone with fragments of crinoids in Co Fm.; SMF1. (<b>l</b>) Preserved echinoderm fragment in planar-s fabric-destructive dolomite in Co Fm.; SMF2.</p> "> Figure 5
<p>Selected microphotographs in PPL and CL. CL images are shown with over-exposed luminescence to highlight the paragenetic phases. (<b>a</b>,<b>b</b>) Bedding-parallel dolomite veins in Bituminous Dolostones Fm. showing fine planar-e replacive dolomites (R) in the host rock and a cement composed of coarse dolomite crystals (Z), locally saddle. Both are non-luminescent in CL. (<b>c</b>,<b>d</b>) Bedding-parallel dolomite veins in the Dolomia Principale Fm. showing optical continuity of coarse dolomite cement crystals (Z) with replacive, planar-s, fine to medium dolomite (R) of the host rock. Both are non-luminescent. Outer growth, fluid inclusion-rich zones are dull purple luminescent in CL (F). (<b>e</b>,<b>f</b>) Dolomite vein in the Calcare Massiccio Fm. The host rock shows a fine replacive dolomicrite (R). The dolomite vein cement has a fine crystal size and is solid inclusion-rich at the vein margin and becomes progressively solid inclusion-poor and characterized by larger crystal size (Z), both are dull to non-luminescent. The outer growth zones are saddle-shaped and red luminescent in CL (F). (<b>g</b>,<b>h</b>) Thrust-related vein in the Calcare Massiccio Fm. Replacive dolomites are dolomicrites and planar-s, fine-grained, dolomite crystals (R) and are non-luminescent in CL. The vein is cemented by saddle-shaped dolomite crystals with red and thin green-to-yellow growth zone luminescence (F), which is followed by iron sulphides/oxides and late non-luminescent calcite cement (cc). (<b>i</b>,<b>j</b>) Thrust-related vein in the Corniola Fm. The host rock is characterized by fabric-destructive dolomites with slight green to yellow luminescence in CL (R). The vein cement is composed of dolomite crystals with red luminescence in CL and outer greenish growth zones (F), followed by late non-luminescent calcite cement (cc).</p> "> Figure 6
<p>(<b>a</b>) Transmitted light (TL) microphotograph showing stylolite in Dolomia Principale Fm. crosscutting fine replacive dolomites, whereas stylolite is overprinted by coarse dolomite crystals. (<b>b</b>) Thin section scan of fenestral-laminated lithoclastic peloidal wackestone with fenestrae cemented by dolomite with increasing crystal size towards the top of the section. (<b>c</b>) Stylolite-crosscutting, replacive dolomicrosparites in the Calcare Massiccio Fm. (<b>d</b>) Stylolite associated with and parallel to bedding-parallel veins in the Corniola Fm.</p> "> Figure 7
<p>Paragenetic sequences showing the dolomite textures and CL patterns in the studied Upper Triassic and Early Jurassic carbonates. The drawing in the centre of the image shows the simplified dolomitization sequence including replacive (R), bedding-parallel veins (Z), and fault-related (F) dolomites.</p> "> Figure 8
<p>XRD analyses results; plots of calcium excess vs. cation ordering. Samples are plotted according to different hosting Formation and dolomite types, as indicated in the legend. Dolomites are clustered in two groups.</p> "> Figure 9
<p>Major and trace element analyses results. Plots of (<b>a</b>) magnesium vs. strontium concentration. (<b>b</b>) Iron vs. manganese concentration. (<b>c</b>) Cation ordering vs. strontium concentration. Legend shows hosting lithology and dolomite type.</p> "> Figure 10
<p>Carbon and oxygen stable isotope analyses results. The δ<sup>18</sup>O‰ (V-PDB) vs. δ<sup>13</sup>C‰ (V-PDB) plot with dashed areas representing stable isotope ranges of Triassic and Jurassic marine calcite precipitated in equilibrium with seawater from [<a href="#B73-geosciences-15-00035" class="html-bibr">73</a>]. The grey area represents dolomites precipitated in equilibrium with Triassic and Jurassic seawater, calculated using the relation reported in [<a href="#B14-geosciences-15-00035" class="html-bibr">14</a>]. The samples are plotted according to the different host rock and dolomite types, as indicated in the legend.</p> "> Figure 11
<p>Clumped isotope thermometry results. Temperature after [<a href="#B65-geosciences-15-00035" class="html-bibr">65</a>], from Δ<sub>47</sub>dol (I-CDES) vs. δ<sup>18</sup>O‰ (V-PDB) plots. Legend indicates the host rock and dolomite types.</p> "> Figure 12
<p>(<b>a</b>) Strontium isotope analyses results. <sup>87</sup>Sr/<sup>86</sup>Sr of Late Triassic and Early Jurassic seawater from [<a href="#B74-geosciences-15-00035" class="html-bibr">74</a>]. The samples are plotted according to the host rock and dolomite types, as indicated in the legend. (<b>b</b>) <sup>87</sup>Sr/<sup>86</sup>Sr vs. δ<sup>18</sup>O‰ (V-PDB).</p> "> Figure 13
<p>Plot of δ<sup>18</sup>O (‰ V-PDB) vs. clumped isotope temperatures of dolomites; δ<sup>18</sup>O (‰ V-SMOW) of the dolomitizing fluid calculated using the fractionation factor of [<a href="#B66-geosciences-15-00035" class="html-bibr">66</a>]. Legend shows hosting lithology and dolomite type.</p> "> Figure 14
<p>Simplified 3D block model illustrating the dolomitization stages in the Gran Sasso Massif. (<b>a</b>) Early replacive dolomitization in the Upper Triassic and lower Jurassic carbonates at the northern margin of the Lazio–Abruzzi platform. (<b>b</b>) A closed fluid system persisted in the dolomitized rocks during the passive margin stage, resulting in fluid overpressure at deep burial that led to dolomite cementation in bed-parallel veins. (<b>c</b>) Fault-related dolomite cementation in breccias and veins occurred along thrust fault zones during Messinian–Pliocene compression, with minor contribution of other fluids. Extensional faults are in red; thrust faults are drawn with the same colours in the legend of <a href="#geosciences-15-00035-f002" class="html-fig">Figure 2</a>; Triassic units are in pink; Jurassic in blue; Cretaceous in green; and Cenozoic in pale brown.</p> "> Figure 15
<p>Burial history calculated using the stratigraphic thicknesses reported in [<a href="#B54-geosciences-15-00035" class="html-bibr">54</a>,<a href="#B96-geosciences-15-00035" class="html-bibr">96</a>]. Thick red lines represent the isotherms of the Central Apennines region, modified from [<a href="#B97-geosciences-15-00035" class="html-bibr">97</a>]. The proposed timing of dolomitization stages is represented by the striped and hatched areas.</p> "> Figure 16
<p>(<b>a</b>) Plot of strontium isotope ratios vs. clumped isotope temperatures. (<b>b</b>) Plot of Ca excess (mol%) vs. clumped isotope temperatures.</p> "> Figure 17
<p>(<b>a</b>) Comparison of dolomitizing fluid geochemistry in the Adriatic region from published data and from this study (red); plot of δ18O of dolomites vs. precipitation temperatures; precipitation temperatures of the literature data are measured using fluid inclusion microthermometry when >50 °C, or estimated from the regional context and burial history in the other cases. (<b>b</b>) Paleogeographic reconstruction at the Triassic–Jurassic, indicating with coloured dots the locations of the study area and of the dolomitized rocks from the literature reported in the legend; the legend describes the age of the dolostones, the dolomitization mechanisms, and the paleogeographic context; data from [<a href="#B11-geosciences-15-00035" class="html-bibr">11</a>,<a href="#B12-geosciences-15-00035" class="html-bibr">12</a>,<a href="#B13-geosciences-15-00035" class="html-bibr">13</a>,<a href="#B14-geosciences-15-00035" class="html-bibr">14</a>,<a href="#B15-geosciences-15-00035" class="html-bibr">15</a>,<a href="#B19-geosciences-15-00035" class="html-bibr">19</a>,<a href="#B30-geosciences-15-00035" class="html-bibr">30</a>,<a href="#B101-geosciences-15-00035" class="html-bibr">101</a>,<a href="#B103-geosciences-15-00035" class="html-bibr">103</a>,<a href="#B104-geosciences-15-00035" class="html-bibr">104</a>,<a href="#B105-geosciences-15-00035" class="html-bibr">105</a>]. (<b>c</b>) Conceptual model illustrating the main controls over early and late dolomitization processes in Upper Triassic and Lower Jurassic carbonates in the Adriatic region; Late Triassic pelogeography from Blakey R. <a href="https://deeptimemaps.com" target="_blank">https://deeptimemaps.com</a>, accessed on 16 January 2025.</p> ">
Abstract
:1. Introduction
2. Geologic Setting
2.1. Central Apennines
2.2. Structure of the Gran Sasso Massif
2.3. Stratigraphy of the Studied Sections
3. Methods
3.1. X-Ray Diffraction Analyses
3.2. Minor Elements Analyses
3.3. Carbon and Oxygen Isotopes Analyses
3.4. Carbonate Clumped Isotope Thermometry
3.5. Strontium Isotope Analyses
4. Results
4.1. Field Observations
4.2. Microfacies Classification
4.3. Petrography of Dolomite Types
- Host rocks are characterized by dolomicrosparites and replacive dolomites (R), planar-e to planar-s, up to 300 μm in size, and locally up to 500 μm, non-luminescent to dull purple under CL. Group 1 replacive dolomites are crosscut by stylolites, while group 2 dolomites overprint stylolites. Stylolites crosscut dolomicrosparites, planar-e and planar-s replacive dolomites, indicating that these dolomites crystallized before significant burial-related compaction (Figure 6c,d). In medium to coarse-grained non-planar and planar-s dolomites, stylolites have a faint appearance, and some dolomite crystals are in optical continuity on both sides of the stylolite, indicating dolomitization or dolomite replacement after stylolite formation (Figure 6a).
- Bedding-parallel veins are cemented by syntaxial dolomite crystals with a coarser size than the replacive dolomite in the host rock, but with very similar luminescence (Z), and are locally associated with and mutually crosscut bedding-parallel stylolites (Figure 6d).
- Fault-related dolomites (F) have locally saddle habit and display red luminescence with outer growth zones characterized by different luminescence patterns. Type F dolomites mostly occur in thrust-related breccias in the CM Fm. and in the Co Fm. (Figure 5g–j) and overgrow type Z dolomites in bedding-parallel veins (Figure 5e,f).
4.4. Mineralogical, Geochemical, and Isotopical Analyses
4.4.1. Ca/Mg Ratio and Degree of Order
4.4.2. Minor Elements
4.4.3. Carbon and Oxygen Isotopes
4.4.4. Clumped Isotope Thermometry
4.4.5. Strontium Isotopes
5. Discussion
5.1. Interpretation of Dolomite Textures
5.2. Dolomitizing Fluid Constraints from Geochemical Data
- (R) dolomitization initially occurred in a near-surface, early diagenetic environment through the influx of modified, locally evaporated seawater, and was followed by dolomite replacement from Sinemurian–Pliensbachian seawater during the Jurassic (Figure 14a).
- (Z) dolomites formed by dissolution–precipitation of (R) dolomites, which occurred at a >2 km burial depth at suprahydrostathic pore fluid pressures. (Z) dolomites have cathodoluminescence and geochemical characteristics indistinguishable from the replacive dolomite in the wall rock, suggesting that they precipitated from similar fluids in rock-buffered conditions (Figure 14b).
- (F) dolomites precipitated along thrust faults during Messinian–Early Pliocene compression and documented local opening of the system to higher-temperature fluids that migrated through tectonic fractures (Figure 14c).
5.3. Dolomitization Timing in the Gran Sasso Massif
5.4. Strengths and Pitfalls of Clumped Isotope Thermometry in a Rock-Buffered Environment
5.5. Dolomitization Mechanisms and Dolomitizing Fluids in the Adriatic Region
- The climatic and paleogeographic conditions in the Norian (i.e., hot and arid in the tropical high-pressure belt, stratified water column, and restricted water circulation) promoted the ideal conditions for the evaporation of seawater in extensive tidal flats, which extended over most of the Adriatic region. Therefore, all the carbonates that deposed were dolomitized in surficial sabkha environments by evaporated seawater;
- The Rhaetian and Hettangian were characterized by wet climatic conditions, not conducive to dolomitization at the surface. The carbonates deposed in these stages were dolomitized by different dolomitization mechanisms depending on the burial history and local tectono-stratigraphic context. However, Neotethys rifting produced extensional deformation, resulting in the dissection of the peri-Adriatic platform in structural highs and basins, along with a high geothermal gradient, promoting ideal conditions for seawater circulation into carbonate platforms. The carbonates that were affected by dolomitization are located over structural highs and along their fault-bounded slopes;
- The late dolomitization processes are controlled by the type of fluids and their modality of flow during contractional deformation. In turn, these are the result of thrust belt evolution in the Alps and Apennines in terms of topography, pressure and temperature, burial and uplift history, and the petrophysical properties of faults and fractures.
6. Conclusions
- (i)
- Replacive fabric-retentive dolomites formed at low temperatures in a near-surface environment by seawater evaporation and seepage reflux;
- (ii)
- Replacive fabric-destructive dolomites recrystallized at temperatures of 40–55 °C in a shallow to intermediate burial environment in the Jurassic. Their 87Sr/86Sr is lower than coeval seawater, testifying for replacement by younger Sinemurian–Pliensbachian seawater;
- (iii)
- Bedding-parallel dolomite veins crystallized at 50–55 °C due to suprahydrostathic fluid pressures at deep burial depth. Formation in rock-buffered conditions resulted in geochemical signatures equal to the replacive dolomites;
- (iv)
- Fault-related dolomite cements precipitated in thrust-related fractures at comparable temperatures of 50–65 °C, and from dolomitizing fluids similar to those of bedding-parallel dolomite veins. The dolomitizing fluid documents gradual changes in the chemistry of the system due to higher temperature fluids, despite the fact that rock-buffered conditions persisted.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucia, F.J.; Major, R.P. Porosity evolution through hypersaline reflux dolomitization. In Dolomites: A Volume in Honour of Dolomieu; Wiley: Hoboken, NJ, USA, 1994; pp. 325–341. [Google Scholar]
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geol. Soc. Lond. Spec. Publ. 2004, 235, 7–63. [Google Scholar] [CrossRef]
- Swart, P.K. The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology 2015, 62, 1233–1304. [Google Scholar] [CrossRef]
- Mattes, B.W.; Mountjoy, E.W. Burial dolomitization of the upper devonian miette buildup, Jasper National Park, Alberta. AAPG SEPM Spec. Publ. 1980, 28, 259–297. [Google Scholar]
- Morrow, D.W. Synsedimentary dolospar cementation: A possible Devonian example in the Camsell Formation, Northwest Territories, Canada1. Sedimentology 1990, 37, 763–773. [Google Scholar] [CrossRef]
- Barnaby, R.J.; Read, J.F. Dolomitization of a carbonate platform during late burial; Lower to Middle Cambrian Shady Dolomite, Virginia Appalachians. J. Sediment. Res. 1992, 62, 1023–1043. [Google Scholar]
- Montañez, I.P.; Read, J.F. Fluid-rock interaction history during stabilization of early dolomites, upper Knox Group (Lower Ordovician), US Appalachians. J. Sediment. Res. 1992, 62, 753–778. [Google Scholar]
- Mountjoy, E.W.; Qing, H.; McNutt, R.H. Strontium isotopic composition of Devonian dolomites, Western Canada Sedimentary Basin: Significance of sources of dolomitizing fluids. Appl. Geochem. 1992, 7, 59–75. [Google Scholar] [CrossRef]
- Swennen, R.; Vandeginste, V.; Ellam, R. Genesis of zebra dolomites (Cathedral Formation: CanadianCordillera Fold and Thrust Belt, British Columbia). J. Geochem. Explor. 2003, 78, 571–577. [Google Scholar] [CrossRef]
- Ronchi, P.; Giulio, A.D.; Ceriani, A.; Scotti, P. Contrasting fluid events giving rise to apparently similar diagenetic products; late-stage dolomite cements from the Southern Alps and central Apennines, Italy. Geol. Soc. Lond. Spec. Publ. 2010, 329, 397–413. [Google Scholar] [CrossRef]
- Iannace, A.; Capuano, M.; Galluccio, L. “Dolomites and dolomites” in Mesozoic platform carbonates of the Southern Apennines: Geometric distribution, petrography and geochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 310, 324–339. [Google Scholar] [CrossRef]
- Gabellone, T.; Iannace, A.; Gasparrini, M. Multiple dolomitization episodes in deep-water limestones of the Triassic Lagonegro basin (southern Italy): From early reflux to tectonically driven fluid flow. J. Sediment. Res. 2014, 84, 435–456. [Google Scholar] [CrossRef]
- Mozafari, M.; Swennen, R.; Balsamo, F.; El Desouky, H.; Storti, F.; Taberner, C. Fault-controlled dolomitization in the Montagna dei Fiori Anticline (Central Apennines, Italy): Record of a dominantly pre-orogenic fluid migration. Solid Earth 2019, 10, 1355–1383. [Google Scholar] [CrossRef]
- Berra, F.; Azmy, K.; Della Porta, G. Stable-isotope and fluid inclusion constraints on the timing of diagenetic events in the dolomitized Dolomia Principale inner platform (Norian, Southern Alps of Italy). Mar. Pet. Geol. 2020, 121, 104615. [Google Scholar] [CrossRef]
- Mueller, M.; Walter, B.F.; Swart, P.K.; Jöns, N.; Jacquemyn, C.; Igbokwe, O.A.; Immenhauser, A. A tale of three fluids: Fluid-inclusion and carbonate clumped-isotope paleothermometry reveals complex dolomitization and dedolomitization history of the Latemar platform. J. Sediment. Res. 2022, 92, 1141–1168. [Google Scholar] [CrossRef]
- Land, L.S. The Isotopic and Trace Element Geochemistry of Dolomite: The State of the Art; AAPG: Tulsa, OK, USA, 1980. [Google Scholar]
- Land, L.S. The origin of massive dolomite. J. Geol. Educ. 1985, 33, 112–125. [Google Scholar] [CrossRef]
- Frisia, S. Mechanisms of complete dolomitization in a carbonate shelf: Comparison between the Norian Dolomia Principale (Italy) and the Holocene of Abu Dhabi Sabkha. In Dolomites: A Volume in Honour of Dolomieu; Wiley: Hoboken, NJ, USA, 1994; pp. 55–74. [Google Scholar]
- Kaczmarek, S.E.; Thornton, B.P. The effect of temperature on stoichiometry, cation ordering, and reaction rate in high-temperature dolomitization experiments. Chem. Geol. 2017, 468, 32–41. [Google Scholar] [CrossRef]
- Machel, H.G. Recrystallization versus neomorphism, and the concept of ‘significant recrystallization in dolomite research. Sediment. Geol. 1997, 113, 161–168. [Google Scholar] [CrossRef]
- Geske, A.; Zorlu, J.; Richter, D.K.; Buhl, D.; Niedermayr, A.; Immenhauser, A. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chem. Geol. 2012, 332, 45–64. [Google Scholar] [CrossRef]
- John, C.M. Burial estimates constrained by clumped isotope thermometry: Example of the Lower Cretaceous Qishn Formation (Haushi-Huqf High, Oman). In Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction; The Geological Society: London, UK, 2018. [Google Scholar]
- Veillard, C.M.; John, C.M.; Krevor, S.; Najorka, J. Rock-buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X-ray diffraction analysis. Geochim. Cosmochim. Acta 2019, 252, 190–212. [Google Scholar] [CrossRef]
- Immenhauser, A. On the delimitation of the carbonate burial realm. Depos. Rec. 2022, 8, 524–574. [Google Scholar] [CrossRef]
- Came, R.E.; Azmy, K.; Tripati, A.; Olanipekun, B.J. Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 73–176 C. Geochim. Cosmochim. Acta 2017, 199, 31–47. [Google Scholar] [CrossRef]
- Honlet, R.; Gasparrini, M.; Muchez, P.; Swennen, R.; John, C.M. A new approach to geobarometry by combining fluid inclusion and clumped isotope thermometry in hydrothermal carbonates. Terra Nova 2018, 30, 199–206. [Google Scholar] [CrossRef]
- Bonifacie, M.; Calmels, D.; Eiler, J.M.; Horita, J.; Chaduteau, C.; Vasconcelos, C.; Agrinier, P.; Katz, A.; Passey, B.H.; Ferry, J.M.; et al. Calibration of the dolomite clumped isotope thermometer from 25 to 350 C, and implications for a universal calibration for all (Ca, Mg, Fe) CO3 carbonates. Geochim. Cosmochim. Acta 2017, 200, 255–279. [Google Scholar] [CrossRef]
- Lukoczki, G.; Haas, J.; Gregg, J.M.; Machel, H.G.; Kele, S.; John, C.M. Early dolomitization and partial burial recrystallization: A case study of Middle Triassic peritidal dolomites in the Villány Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data. Int. J. Earth Sci. 2020, 109, 1051–1070. [Google Scholar] [CrossRef]
- Iannace, A.; Gasparrini, M.; Gabellone, T.; Mazzoli, S. Late dolomitization in basinal limestones of the southern Apennines fold and thrust belt (Italy). Oil Gas Sci. Technol.–Rev. D’ifp Energ. Nouv. 2012, 67, 59–75. [Google Scholar] [CrossRef]
- Royden, L. Flexural behavior of the continental lithosphere in Italy: Constraints imposed by gravity and deflection data. J. Geophys. Res. Solid Earth 1988, 93, 7747–7766. [Google Scholar] [CrossRef]
- Bertotti, G.; Picotti, V.; Cloetingh, S. Lithospheric weakening during “retroforeland” basin formation: Tectonic evolution of the central South Alpine foredeep. Tectonics 1998, 17, 131–142. [Google Scholar] [CrossRef]
- Elter, P.; Grasso, M.; Parotto, M.; Vezzani, L. Structural setting of the Apennine-Maghrebian thrust belt. Epis. J. Int. Geosci. 2003, 26, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, D.; Cipollari, P.; Marsili, P.; Scrocca, D. Geology of the central Apennines: A regional review. J. Virtual Explor. 2010, 36, 1–37. [Google Scholar] [CrossRef]
- Ghisetti, F.; Vezzani, L. Thrust belt development in the central Apennines (Italy): Northward polarity of thrusting and out-of-sequence deformations in the Gran Sasso Chain. Tectonics 1991, 10, 904–919. [Google Scholar] [CrossRef]
- Cipollari, P.; Cosentino, D. Miocene unconformities in the Central Apennines: Geodynamic significance and sedimentary basin evolution. Tectonophysics 1995, 252, 375–389. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Late thrust propagation and sedimentary response in the thrust-belt-foredeep system of the Southern Apennines (Pliocene-Pleistocene). In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Springer: Berlin/Heidelberg, Germany, 2001; pp. 401–440. [Google Scholar]
- Leah, H.; Fondriest, M.; Lucca, A.; Storti, F.; Balsamo, F.; Di Toro, G. Coseismic extension recorded within the damage zone of the Vado di Ferruccio Thrust Fault, Central Apennines, Italy. J. Struct. Geol. 2018, 114, 121–138. [Google Scholar] [CrossRef]
- Lucca, A.; Storti, F.; Balsamo, F.; Clemenzi, L.; Fondriest, M.; Burgess, R.; Di Toro, G. From submarine to subaerial out-of-sequence thrusting and gravity-driven extensional faulting: Gran Sasso Massif, Central Apennines, Italy. Tectonics 2019, 38, 4155–4184. [Google Scholar] [CrossRef]
- Ciarapica, G. Central and Northern Apennines during the Triassic: A review. Boll. Della Soc. Geol. Ital. 1990, 109, 39–50. [Google Scholar]
- Zappaterra, E. Carbonate paleogeographic sequences of the Periadriatic region. Boll. Della Soc. Geol. Ital. 1990, 109, 5–20. [Google Scholar]
- Ciarapica, G. Regional and global changes around the Triassic–Jurassic boundary reflected in the late Norian–Hettangian history of the Apennine basins. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 244, 34–51. [Google Scholar] [CrossRef]
- Bernoulli, D. Mesozoic-Tertiary carbonate platforms, slopes and basins of the external Apennines and Sicily. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Springer: Dordrecht, The Netherlands, 2001; pp. 307–325. [Google Scholar]
- Centamore, E.; Fumanti, F.; Nisio, S. The central-northern Apennines geological evolution from Triassic to Neogene time. Boll. Soc. Geol. It. Vol. Spec. 2002, 1, 181–197. [Google Scholar]
- Santantonio, M.; Carminati, E. Jurassic rifting evolution of the Apennines and Southern Alps (Italy): Parallels and differences. Bulletin 2011, 123, 468–484. [Google Scholar] [CrossRef]
- Rusciadelli, G.; Viandante, M.G.; Calamita, F.; Cook, A.C. Burial-exhumation history of the central Apennines (Italy), from the foreland to the chain building: Thermochronological and geological data. Terra Nova 2005, 17, 560–572. [Google Scholar] [CrossRef]
- Corrado, S.; Aldega, L.; Zattin, M.; Beltrando, M.; Peccerillo, A.; Mattei, M.; Doglioni, C. Sedimentary vs. tectonic burial and exhumation along the Apennines (Italy). J. Virtual Explor. 2010, 36, 1–37. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.; Torsvik, T.H.; Schmid, S.M.; Maţenco, L.C.; Maffione, M.; Vissers, R.L.; Gürer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar]
- Ghisetti, F.; Vezzani, L. Interfering paths of deformation and development of arcs in the fold-and-thrust belt of the central Apennines (Italy). Tectonics 1997, 16, 523–536. [Google Scholar] [CrossRef]
- Ghisetti, F.; Vezzani, L. Carta Geologica del Gruppo M. Siella–M. Camicia–M. Prena–M. Brancastello (Gran Sasso d’Italia, Abruzzo), Scale, (1:25,000). 1986, S.EL.CA, Firenze. Available online: https://www.researchgate.net/publication/304482133_Carta_Geologica_del_Gruppo_MSiella-MCamicia-MPrena-MBrancastello_Gran_Sasso_d’Italia_Abruzzo_Scale_115000 (accessed on 16 January 2025).
- Adamoli, L.; Bigozzi, A.; Ciarapica, G.; Cirilli, S.; Passeri, L.; Romano, A. Upper Triassic bituminous facies and Hettangian pelagic facies in the Gran Sasso range. Boll. Della Soc. Geol. Ital. 1990, 109, 219–230. [Google Scholar]
- Bigozzi, A.; Ciarapica, G.; Cirilli, S.; Passeri, L. Eteropie di facies nel Trias superiore e nel Lias inferiore del Gran Sasso. Studi Geol. Camerti Vol. Spec. CROP11 1991, 2, 115–131. [Google Scholar]
- Barattolo, F.; Bigozzi, A. Dasycladaleans and depositional environments of the Upper Triassic-Liassic carbonate platform of the Gran Sasso (Central Apennines, Italy). Facies 1996, 35, 163–208. [Google Scholar] [CrossRef]
- Climaco, A.; Boni, M.; Iannace, A.; Zamparelli, V. Platform margins, microbial/serpulids bioconstructions and slope-to-basin sediments in the Upper Triassic of the ‘Verbicaro Unit’ (Lucania and Calabria, southern Italy). Facies 1997, 36, 37–56. [Google Scholar] [CrossRef]
- Jadoul, F.; Berra, F.; Frisia, S. Stratigraphic and paleogeographic evolution of a carbonate platform in an extensional tectonic regime: The example of the Dolomia Principale in Lombardy (Italy). Riv. Ital. Paleontol. Stratigr. 1992, 98, 29–44. [Google Scholar]
- Lumsden, D.N.; Chimahusky, J.S. Relationship Between Dolomite Nonstoichiometry and Carbonate Facies Parameters; AAPG: Tulsa, OK, USA, 1980. [Google Scholar]
- Kaczmarek, S.E.; Sibley, D.F. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: An alternative model for the geochemical evolution of natural dolomites. Sediment. Geol. 2011, 240, 30–40. [Google Scholar] [CrossRef]
- Rosenbaum, J.; Sheppard, S.M.F. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Acta 1986, 50, 1147–1150. [Google Scholar] [CrossRef]
- Schmid, T.W.; Bernasconi, S.M. An automated method for ‘clumped-isotope’measurements on small carbonate samples. Rapid Commun. Mass Spectrom. 2010, 24, 1955–1963. [Google Scholar] [CrossRef]
- Meckler, A.N.; Ziegler, M.; Millán, M.I.; Breitenbach, S.F.; Bernasconi, S.M. Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Commun. Mass Spectrom. 2014, 28, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Müller, I.A.; Fernandez, A.; Radke, J.; Van Dijk, J.; Bowen, D.; Schwieters, J.; Bernasconi, S.M. Carbonate clumped isotope analyses with the long-integration dual-inlet (LIDI) workflow: Scratching at the lower sample weight boundaries. Rapid Commun. Mass Spectrom. 2017, 31, 1057–1066. [Google Scholar] [CrossRef]
- Bernasconi, S.M.; Hu, B.; Wacker, U.; Fiebig, J.; Breitenbach, S.F.; Rutz, T. Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements. Rapid Commun. Mass Spectrom. 2013, 27, 603–612. [Google Scholar] [CrossRef]
- John, C.M.; Bowen, D. Community software for challenging isotope analysis: First applications of ‘Easotope’ to clumped isotopes. Rapid Commun. Mass Spectrom. 2016, 30, 2285–2300. [Google Scholar] [CrossRef]
- Bernasconi, S.M.; Daëron, M.; Bergmann, K.D.; Bonifacie, M.; Meckler, A.N.; Affek, H.P.; Anderson, N.; Bajnai, D.; Barkan, E.; Beverly, E.; et al. InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochem. Geophys. Geosystems 2021, 22, e2020GC009588. [Google Scholar] [CrossRef]
- Anderson, N.T.; Kelson, J.R.; Kele, S.; Daëron, M.; Bonifacie, M.; Horita, J.; Mackey, T.J.; John, C.M.; Kluge, T.; Petschnig, P.; et al. A unified clumped isotope thermometer calibration (0.5–1100 C) using carbonate-based standardization. Geophys. Res. Lett. 2021, 48, e2020GL092069. [Google Scholar] [CrossRef]
- Müller, I.A.; Rodriguez-Blanco, J.D.; Storck, J.C.; do Nascimento, G.S.; Bontognali, T.R.; Vasconcelos, C.; Benning, L.G.; Bernasconi, S.M. Calibration of the oxygen and clumped isotope thermometers for (proto-) dolomite based on synthetic and natural carbonates. Chem. Geol. 2019, 525, 1–17. [Google Scholar] [CrossRef]
- Li, D.; Shields-Zhou, G.A.; Ling, H.F.; Thirlwall, M. Dissolution methods for strontium isotope stratigraphy: Guidelines for the use of bulk carbonate and phosphorite rocks. Chem. Geol. 2011, 290, 133–144. [Google Scholar] [CrossRef]
- Vescogni, A.; Bosellini, F.R.; Cipriani, A.; Gürler, G.; Ilgar, A.; Paganelli, E. The Dagpazari carbonate platform (Mut Basin, Southern Turkey): Facies and environmental reconstruction of a coral reef system during the Middle Miocene Climatic Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 410, 213–232. [Google Scholar] [CrossRef]
- Argentino, C.; Lugli, F.; Cipriani, A.; Panieri, G. Testing miniaturized extraction chromatography protocols for combined 87Sr/86Sr and 88Sr/86Sr analyses of pore water by MC-ICP-MS. Limnol. Oceanogr. Methods 2021, 19, 431–440. [Google Scholar] [CrossRef]
- Thirlwall, M.F. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem. Geol. 1991, 94, 85–104. [Google Scholar] [CrossRef]
- Flügel, E. The Permian of Carnic Alps and microfacies. In Proceedings of the International Symposium-Central European Permian, Jabłonna, Poland, 27–29 April 1978; p. 84. [Google Scholar]
- Sibley, D.F.; Gregg, J.M. Classification of dolomite rock textures. J. Sediment. Res. 1987, 57, 967–975. [Google Scholar]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Shields, G.A.; Zhou, Y. Strontium isotope stratigraphy. In Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020; pp. 211–238. [Google Scholar]
- Malone, M.J.; Baker, P.A.; Burns, S.J. Recrystallization of dolomite: An experimental study from 50–200 °C. Geochim. Cosmochim. Acta 1996, 60, 2189–2207. [Google Scholar] [CrossRef]
- Mountjoy, E.W.; Machel, H.G.; Green, D.; Duggan, J.; Williams-Jones, A.E. Devonian matrix dolomites and deep burial carbonate cements: A comparison between the Rimbey-Meadowbrook reef trend and the deep basin of west-central Alberta, B. Can. Petrol. Geol. 1999, 47, 487–509. [Google Scholar]
- Mann, D.M.; Mackenzie, A.S. Prediction of pore fluid pressures in sedimentary basins. Mar. Pet. Geol. 1990, 7, 55–65. [Google Scholar] [CrossRef]
- Vandeginste, V.; Swennen, R.U.D.Y.; Gleeson, S.A.; Ellam, R.M.; Osadetz, K.I.R.K.; Roure, F. Zebra dolomitization as a result of focused fluid flow in the Rocky Mountains Fold and Thrust Belt, Canada. Sedimentology 2005, 52, 1067–1095. [Google Scholar] [CrossRef]
- Morrow, D.W. Zebra and boxwork fabrics in hydrothermal dolomites of northern Canada: Indicators for dilational fracturing, dissolution or in situ replacement? Sedimentology 2014, 61, 915–951. [Google Scholar] [CrossRef]
- Fontboté, L. Self-organization fabrics in carbonate-hosted ore deposits: The example of diagenetic crystallization rhythmites (DCRs). In Current Research in Geology Applied to Ore Deposits, Proceedings of the Second Biennial SGA Meeting, Granada, Spain, 9 September 1993; University of Geneva: Geneva, Switzerland, 1993; pp. 11–14. [Google Scholar]
- Merino, E.; Canals, A.; Fletcher, R.C. Genesis of self-organized zebra textures in burial dolomites: Displacive veins, induced stress, and dolomitization. Geol. Acta Int. Earth Sci. J. 2006, 4, 383–393. [Google Scholar]
- Wallace, M.W.; Hood, A. Zebra textures in carbonate rocks: Fractures produced by the force of crystallization during mineral replacement. Sediment. Geol. 2018, 368, 58–67. [Google Scholar] [CrossRef]
- Fontboté, L.; Amstutz, G.C. Facies and sequence analysis of diagenetic crystallization rhythmites in strata-bound Pb-Zn-(Ba-F-) deposits in the Triassic of Central and Southern Europe. In Mineral Deposits of the Alps and of the Alpine Epoch in Europe, Proceedings of the IV, Ismida, Berchtesgaden, 4–10 October 1981; Springer: Berlin/Heidelberg, Germany, 1983; pp. 347–358. [Google Scholar]
- Martin, J.M.; Torres-Ruiz, J.; Fontboté, L. Facies control of strata-bound ore deposits in carbonate rocks: The F-(Pb-Zn) deposits in the Alpine Triassic of the Alpujárrides, southern Spain. Miner. Depos. 1987, 22, 216–226. [Google Scholar] [CrossRef]
- Tompkins, L.A.; Murray, J.R.; Groves, D.I. Evaporites: In situ source for rhythmically banded ore in the Cadjebut Mississippi Valley-Type Zn-Pb deposit, Western Australia. Econ. Geol. 1994, 89, 467–492. [Google Scholar] [CrossRef]
- McCormick, C.A.; Corlett, H.; Clog, M.; Boyce, A.J.; Tartèse, R.; Steele-MacInnis, M.; Hollis, C. Basin scale evolution of zebra textures in fault-controlled, hydrothermal dolomite bodies: Insights from the Western Canadian Sedimentary Basin. Basin Res. 2023, 35, 2010–2039. [Google Scholar] [CrossRef]
- Phillips, W.J. Hydraulic fracturing and mineralization. J. Geol. Soc. 1972, 128, 337–359. [Google Scholar] [CrossRef]
- Jébrak, M. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geol. Rev. 1997, 12, 111–134. [Google Scholar] [CrossRef]
- Sibson, R.H. Conditions for fault-valve behaviour. Geol. Soc. Lond. Spec. Publ. 1990, 54, 15–28. [Google Scholar] [CrossRef]
- Gregg, J.M.; Sibley, D.F. Epigenetic dolomitization and the origin of xenotopic dolomite texture. J. Sediment. Res. 1984, 54, 908–931. [Google Scholar]
- Radke, B.M.; Mathis, R.L. On the formation and occurrence of saddle dolomite. J. Sediment. Res. 1980, 50, 1149–1168. [Google Scholar]
- Vahrenkamp, V.C.; Swart, P.K. New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology 1990, 18, 387–391. [Google Scholar] [CrossRef]
- Machel, H.G.; Mountjoy, E.W. Chemistry and environments of dolomitization—A reappraisal. Earth-Sci. Rev. 1986, 23, 175–222. [Google Scholar] [CrossRef]
- Banner, J.L.; Hanson, G.N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 1990, 54, 3123–3137. [Google Scholar] [CrossRef]
- Mazzullo, S.J. Geochemical and neomorphic alteration of dolomite: A review. Carbonates Evaporites 1992, 7, 21–37. [Google Scholar] [CrossRef]
- Ghisetti, F.; Vezzani, L. Carta Geologica del Gran Sasso d’Italia: Da Vado di Corno al Passo delle Capannelle (Gran Sasso d’Italia, Abruzzo), Scale (1:25,000). 1990, S.EL.CA, Firenze. Available online: https://www.researchgate.net/publication/304498733_Carta_Geologica_del_Gran_Sasso_d’Italia_da_Vado_di_Corno_al_Passo_delle_Capannelle_Scale_125000 (accessed on 16 January 2025).
- Murgia, M.V.; Ronchi, P.; Ceriani, A. Dolomitization Processes and Their Relationships with the Evolution of an Orogenic Belt Central Apennines and Peri-Adriatic Foreland, Italy; AAPG: Tulsa, OK, USA, 2004. [Google Scholar]
- Machel, H.G.; Lonnee, J. Hydrothermal dolomite—A product of poor definition and imagination. Sediment. Geol. 2002, 152, 163–171. [Google Scholar] [CrossRef]
- Sperber, C.M.; Wilkinson, B.H.; Peacor, D.R. Rock composition, dolomite stoichiometry, and rock/water reactions in dolomitic carbonate rocks. J. Geol. 1984, 92, 609–622. [Google Scholar] [CrossRef]
- Cohen, H.F.; Kaczmarek, S.E. Evaluating the Effects of Fluid Chemistry on Dolomite Stoichiometry and Reaction Rate. In AAPG ACE 2018; AAPG: Tulsa, OK, USA, 2018. [Google Scholar]
- Balog, A.; Read, J.F.; Haas, J. Climate-controlled early dolomite, Late Triassic cyclic platform carbonates, Hungary. J. Sediment. Res. 1999, 69, 267–282. [Google Scholar] [CrossRef]
- Ronchi, P.; Casaglia, F.; Ceriani, A. The multiphase dolomitization of the Liassic Calcare Massiccio and Corniola successions (Montagna dei Fiori, Northern Apennines, Italy). Boll. Della Soc. Geol. Ital. 2003, 122, 157–172. [Google Scholar]
- Ronchi, P.; Jadoul, F.; Ceriani, A.; Di Giulio, A.; Scotti, P.; Ortenzi, A.; Previde Massara, E. Multistage dolomitization and distribution of dolomitized bodies in Early Jurassic carbonate platforms (Southern Alps, Italy). Sedimentology 2011, 58, 532–565. [Google Scholar] [CrossRef]
- Ronchi, P.; Masetti, D.; Tassan, S.; Camocino, D. Hydrothermal dolomitization in platform and basin carbonate successions during thrusting: A hydrocarbon reservoir analogue (Mesozoic of Venetian Southern Alps, Italy). Mar. Pet. Geol. 2012, 29, 68–89. [Google Scholar] [CrossRef]
- Gabellone, T.; Gasparrini, M.; Iannace, A.; Invernizzi, C.; Mazzoli, S.; D’Antonio, M. Fluid channeling along thrust zones: The Lagonegro case history, southern Apennines, Italy. Geofluids 2013, 13, 140–158. [Google Scholar] [CrossRef]
Facies Code | Facies Association | Facies Type | Formation | Depositional and Diagenetic Features | Depositional Environment |
---|---|---|---|---|---|
SMF1 | Marine | Spiculite wackestone | Corniola | Co: dolomicrite, late calcite, quartz, oxides; sponge spicules, crinoids. | Intra-shelf basin |
SMF2 | Marine | Microbioclastic peloidal calcisiltite | Corniola Dolomie Bituminose | Co: dolomicrite, local bioturbation, peloids, late calcite, quartz, oxides; sponge spicules, echinoderms, crinoids. DB: dolomicrite with peloids, late quartz. | Intra-shelf basin |
SMF3 | Marine | Pelagic wackestone | Dolomie Bituminose | DB: non-fossiliferous, organic matter-rich, finely laminated dolomite. | Intra-shelf basin |
SMF4 | Slope | Microbreccia, clastic packstone | Corniola Dolomie Bituminose | Co and DB: Sedimentary breccias composed of dolomite lithoclasts and dolomicrite cement. | Slope |
SMF5 | Slope | Allochthonous bioclastic packstone | Corniola | Co: dolomicrite; echinoderms, crinoids, bivalves, ostracods. | Slope |
SMF8 | Subtidal | Whole fossil wackestone | Dolomia Principale | CM: dolomicritized algae thallii. DP: dolomicrite; cortoids, foraminifera. | Lagoon |
SMF11 | Subtidal- intertidal | Coated bioclastic grainstone | Dolomia Principale | Fabric destructive dolomite with preserved dasycladacean algae | Lagoon- tidal flat |
SMF18 | Subtidal | Packstone with abundant algae and foraminifera | Dolomia Principale | Fabric destructive dolomites; Triasina Hantkeni, Endothyridae, peloids, other foraminifera. | Lagoon |
SMF19 | Subtidal- intertidal | Densely laminated bindstone | Calacare Massiccio | Laminated dolomicrite; cyanobacteria; crinoids | Lagoon- tidal flat |
SMF20 | Subtidal- Intertidal | Laminated stromatolitic bindstone | Calacare Massiccio | Laminated dolomicrite; cyanobacteria; thrombolithic structures. | Tidal flat |
SMF21 | Supratidal- Intertidal | Fenestral bindstone/packstone | Calacare Massiccio | Laminated dolomicrite; cyanobacteria; thrombolithes; fenestrae; peloids. | Tidal flat |
SMF22 | Intertidal | Oncoid packstone | Calacare Massiccio | Laminated dolomicrite; oncoids, fenestrae. | Tidal flat |
SMF23 | Supratidal- Intertidal | Non-fossiliferous micrite | Calacare Massiccio | Homogeneous dolomicrite; peloids. | Tidal flat |
SMF24 | Intertidal | Lithoclastic packstone | Calacare Massiccio | Laminated dolomicrite; fenestrae, oncoids, oxidized pelletoids, cortoids, algae fragments, siphovalvulinae, other foraminifera. | Tidal flat |
Dolomie Bituminose | Dolomia Principale | Calcare Massiccio | Corniola | Replacive | Bedding Parallel | Thrust Related | |
---|---|---|---|---|---|---|---|
Ca (mol%) min | 51.1 | 50.2 | 50.9 | 50.3 | 50.3 | 50.5 | 50.2 |
Ca (mol%) average | 53.5 | 51.5 | 53.1 | 52.6 | 53 | 53 | 51.7 |
Ca (mol%) max | 55.9 | 56.1 | 55.5 | 55.7 | 56.3 | 55 | 54.3 |
Ordering min | 0.31 | 0.61 | 0.37 | 0.32 | 0.31 | 0.32 | 0.51 |
Ordering average | 0.59 | 0.7 | 0.57 | 0.6 | 0.59 | 0.59 | 0.67 |
Ordering max | 1 | 0.86 | 0.9 | 0.88 | 0.9 | 1 | 0.79 |
Fe (µg/g) min | 40.7 | 19 | 40 | - | 45 | 30 | 95 |
Fe (µg/g) average | 1038 | 52.3 | 802 | - | 838 | 724.1 | 368.3 |
Fe (µg/g) max | 5874 | 115 | 4479 | - | 4479 | 5874 | 642 |
Sr (µg/g) min | 8.3 | 13.8 | 0.9 | - | 0.9 | 8.3 | 35.5 |
Sr (µg/g) average | 51.9 | 29.0 | 42 | - | 44.4 | 41.7 | 42.2 |
Sr (µg/g) max | 117.7 | 35 | 89.6 | - | 89.6 | 117.7 | 48.9 |
Mn (µg/g) min | 14.8 | 10.1 | 20.9 | - | 10.1 | 14.8 | 27.4 |
Mn (µg/g) average | 31.1 | 15 | 34 | - | 30.9 | 29.6 | 29.2 |
Mn (µg/g) max | 79.7 | 18.6 | 81.5 | - | 81.5 | 79.7 | 31 |
Ba (µg/g) min | 9.2 | 8.8 | 8.9 | - | 9.9 | 8.8 | 8.9 |
Ba (µg/g) average | 13.1 | 9.4 | 11 | - | 13.2 | 9.9 | 9.1 |
Ba (µg/g) max | 16.8 | 9.9 | 27.6 | - | 27.60 | 12.8 | 9.4 |
δ18O‰ min | −2.65 | −1.91 | −6.69 | −2.14 | −2.02 | −1.91 | −6.69 |
δ18O‰ average | 0.09 | −0.51 | −0.66 | −0.79 | −0.25 | −0.47 | −1.17 |
δ18O‰ max | 2.60 | 2.63 | 1.00 | 0.61 | 2.60 | 2.63 | 0.25 |
δ13C‰ min | −1.60 | 1.91 | 0.27 | 1.97 | 1.40 | 1.69 | −1.60 |
δ13C‰ average | 0.57 | 0.25 | 0.31 | 0.25 | 2.32 | 2.33 | 2.17 |
δ13C‰ max | 2.69 | 3.22 | 2.83 | 3.07 | 3.22 | 3.12 | 2.94 |
TΔ47 (°C) min | 42.5 | 51.3 | 49.9 | - | 42.5 | 49.5 | 49.9 |
TΔ47 (°C) average | 48.0 | 56.2 | 51.9 | - | 49.1 | 51.7 | 54.5 |
TΔ47 (°C) max | 52.0 | 62.3 | 55.7 | - | 55.7 | 55.0 | 62.3 |
87Sr/86Sr min | 0.707510 | 0.707350 | 0.707390 | - | 0.707350 | 0.707400 | - |
87Sr/86Sr average | 0.707511 | 0.707464 | 0.707530 | - | 0.707517 | 0.707475 | - |
87Sr/86Sr max | 0.707540 | 0.707730 | 0.707610 | - | 0.707730 | 0.707610 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucca, A.; Mittempergher, S.; Balsamo, F.; Cipriani, A.; Cilona, A.; Storti, F. Persisting Rock-Buffered Conditions in the Upper Triassic and Lower Jurassic Dolomites of the Central Apennines (Italy) During Diagenesis, Burial, and Thrusting. Geosciences 2025, 15, 35. https://doi.org/10.3390/geosciences15020035
Lucca A, Mittempergher S, Balsamo F, Cipriani A, Cilona A, Storti F. Persisting Rock-Buffered Conditions in the Upper Triassic and Lower Jurassic Dolomites of the Central Apennines (Italy) During Diagenesis, Burial, and Thrusting. Geosciences. 2025; 15(2):35. https://doi.org/10.3390/geosciences15020035
Chicago/Turabian StyleLucca, Alessio, Silvia Mittempergher, Fabrizio Balsamo, Anna Cipriani, Antonino Cilona, and Fabrizio Storti. 2025. "Persisting Rock-Buffered Conditions in the Upper Triassic and Lower Jurassic Dolomites of the Central Apennines (Italy) During Diagenesis, Burial, and Thrusting" Geosciences 15, no. 2: 35. https://doi.org/10.3390/geosciences15020035
APA StyleLucca, A., Mittempergher, S., Balsamo, F., Cipriani, A., Cilona, A., & Storti, F. (2025). Persisting Rock-Buffered Conditions in the Upper Triassic and Lower Jurassic Dolomites of the Central Apennines (Italy) During Diagenesis, Burial, and Thrusting. Geosciences, 15(2), 35. https://doi.org/10.3390/geosciences15020035