Hair Follicle Development of Rex Rabbits Is Regulated Seasonally by Wnt10b/β-Catenin, TGFβ-BMP, IGF1, and EGF Signaling Pathways
<p>Effects of different skinning seasons on the hair follicle density of Rex rabbits; the total hair follicle density and secondary hair follicle density in Rex rabbits skinned in winter at 150 days of age were higher than those in spring, summer, and autumn seasons: (<b>A</b>) skinning in spring; (<b>B</b>) skinning in summer; (<b>C</b>) skinning in autumn; (<b>D</b>) skinning in winter. Scale bars = 200 μm.</p> "> Figure 2
<p>Effects of different skinning seasons on the protein expression of hair follicle development in Rex rabbits. (<b>A</b>) HSP70 protein expression in skin tissue; (<b>B</b>) Wnt10b protein expression in skin tissue; (<b>C</b>) CTNNB1 protein phosphorylation levels in skin tissue; (<b>D</b>) GSK-3β protein phosphorylation levels in skin tissue; (<b>E</b>) blotting strip. Data are expressed as the mean and standard error of means (SEMs), n = 8, and different letters in the same row denote a significant effect (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection and Preparation
2.3. Determination of Indicators and Methods
2.3.1. Fur Quality
2.3.2. Blood Indices
2.3.3. Total RNA Extraction and Real-Time PCR Analysis
2.3.4. Western Blotting
2.4. Data Processing
3. Results
3.1. Fur Quality
3.2. Hair Follicle Density
3.3. Fat Deposition
3.4. Serum Hormones and Biochemical Indices
3.5. Gene Expression of Hair Follicle Development
3.6. Protein Expression and Phosphorylation Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anzures, F.; Gaytán, L.; Macías-Cruz, U.; Avendãno-Reyes, L.; García, J.E.; Mellado, M. Milk yield and hair coat characteristics of Holstein cows in a hot environment. Trop. Anim. Health Prod. 2019, 51, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Leishman, E.M.; Ellis, J.; van Staaveren, N.; Barbut, S.; Vanderhout, R.J.; Osborne, V.R.; Wood, B.J.; Harlander-Matauschek, A.; Baes, C.F. Meta-analysis to predict the effects of temperature stress on meat quality of poultry. Poultry Sci. 2021, 100, 101471. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, Y.; Wang, R.; Ma, S.; Shi, L.; Wang, K.; Zhang, H.; Wang, T.; Liu, L. Seasonal differences in intestinal flora are related to rats’ intestinal water metabolism. Front. Microbiol. 2023, 14, 1109696. [Google Scholar] [CrossRef] [PubMed]
- Maya-Soriano, M.J.; Taberner, E.; Sabés-Alsina, M.; Ramon, J.; Rafel, O.; Tusell, L.; Piles, M.; López-Béjar, M. Daily exposure to summer temperatures affects the motile subpopulation structure of epididymal sperm cells but not male fertility in an in vivo rabbit model. Theriogenology 2015, 84, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Paus, R.; Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 1999, 341, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Li, L.; Fuchs, E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 2014, 157, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.R.; Schmidt-Ullrich, R.; Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 2009, 19, R132–R142. [Google Scholar] [CrossRef]
- Millar, S.E. Molecular mechanisms regulating hair follicle development. J. Investig. Dermatol. 2002, 118, 216–225. [Google Scholar] [CrossRef]
- Lee, J.; Tumbar, T. Hairy tale of signaling in hair follicle development and cycling. Semin. Cell Dev. Biol. 2012, 23, 906–916. [Google Scholar] [CrossRef]
- Rishikaysh, P.; Dev, K.; Diaz, D.; Qureshi, W.M.; Filip, S.; Mokry, J. Signaling involved in hair follicle morphogenesis and development. Int. J. Mol. Sci. 2014, 15, 1647–1670. [Google Scholar] [CrossRef]
- Calvo-Sanchez, M.I.; Fernandez-Martos, S.; Carrasco, E.; Bernabéu, C.; Quintanilla, M.; Espada, J. A role for the Tgf-beta/bmp co-receptor endoglin in the molecular oscillator that regulates the hair follicle cycle. J. Mol. Cell Biol. 2019, 11, 39–52. [Google Scholar] [CrossRef]
- Bai, L.; Sun, H.; Jiang, W.; Yang, L.; Liu, G.; Zhao, X.; Hu, H.; Wang, J.; Gao, S. DNA methylation and histone acetylation are involved in Wnt10b expression during the secondary hair follicle cycle in Angora rabbits. J. Anim. Physiol. Anim. Nutr. 2021, 105, 599–609. [Google Scholar] [CrossRef]
- Zhao, B.; Li, J.; Liu, M.; Hu, S.; Yang, N.; Liang, S.; Zhang, X.; Dai, Y.; Bao, Z.; Chen, Y.; et al. lncRNA2919 suppresses rabbit dermal papilla cell proliferation via trans-regulatory actions. Cells 2022, 11, 2443. [Google Scholar] [CrossRef]
- Liu, G.; Cheng, G.; Zhang, Y.; Gao, S.; Sun, H.; Bai, L.; Li, S.; Zhu, Y.; Wang, C.; Li, F. Pyridoxine regulates hair follicle development via the PI3K/Akt, Wnt and Notch signalling pathways in rex rabbits. Anim. Nutr. 2021, 7, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, G.; Liu, L.; Li, F. Methionine can subside hair follicle development prejudice of heat-stressed rex rabbits. FASEB J. 2022, 36, 22464. [Google Scholar] [CrossRef]
- Marai, I.F.M.; Haeeb, A.A.M.; Gad, A.E. Biological functions in young pregnant rabbit does as affected by heat stress and lighting regime under subtropical conditions of Egypt. Trop. Subtrop. Agroecosyst. 2007, 7, 165–176. [Google Scholar]
- Baumgard, L.H.; Rhoads, R.P.J. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, X.; Hsieh, J.C.F.; Monson, M.S.; Zhang, J.; Shu, D.; Nie, Q.; Persia, M.E.; Rothschild, M.F.; Lamont, S.J. Transcriptome response of liver and muscle in heat-stressed laying hens. Genes 2021, 12, 255. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Wu, Z.Y.; Zhu, Y.L.; Liu, L.; Li, F.C. Effects of dietary vitamin B6 on the skeletal muscle protein metabolism of growing rabbits. Anim. Prod. Sci. 2017, 57, 2007–2015. [Google Scholar] [CrossRef]
- LiLivak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Liu, G.; Li, S.; Liu, H.; Zhu, Y.; Bai, L.; Sun, H.; Gao, S.; Jiang, W.; Li, F. The functions of ocu-miR-205 in regulating hair follicle development in Rex rabbits. BMC Dev. Biol. 2020, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Matics, Z.; Gerencsér, Z.; Kasza, R.; Terhes, K.; Nagy, I.; Radnai, I.; Zotte, A.D.; Cullere, M.; Szendrő, Z. Effect of ambient temperature on the productive and carcass traits of growing rabbits divergently selected for body fat content. Animal 2021, 15, 100096. [Google Scholar] [CrossRef] [PubMed]
- Chiericato, G.M.; Rizzi, C.; Rostellato, V. Effect of genotype and environmental temperature on the performance of the young meat rabbit. World Rabbit Sci. 1993, 1, 119–125. [Google Scholar] [CrossRef]
- Marai, I.F.M.; Ayyat, M.S.; Gabr, H.A.; Abdel-Monem, U.M. Growth performance, some blood metabolites and carcass traits of New Zealand White broiler male rabbits as affected by heat stress and its alleviation, under Egyptian conditions. Cah. Options Méditerranéennes 1999, 41, 35–42. [Google Scholar]
- Zeferino, C.P.; Komiyama, C.M.; Fernandes, S.; Sartori, J.R.; Teixeira, P.S.S.; Moura, A.S.A.M.T. Carcass and meat quality traits of rabbits under heat stress. Animal 2013, 7, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Wen, J.; Zhang, H. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poultry Sci. 2007, 86, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Bai, X.; Xu, K.; Zhang, C.; Chen, L. Effect of phloretin ongrowth performance, serum biochemical parameters and antioxidant profile in heat-stressed broilers. Poultry Sci. 2021, 100, 101217. [Google Scholar] [CrossRef]
- Pelleymounter, M.A.; Cullen, M.J.; Baker, M.B.; Hecht, R.; Winters, D.; Boone, T. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995, 269, 540–543. [Google Scholar] [CrossRef]
- Friedman, J.M.; Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 1998, 395, 763–770. [Google Scholar] [CrossRef]
- Slimen, I.B.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physio. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef]
- Balthasar, N.; Coppari, R.; Mc, M.J.; Liu, S.M.; Lee, C.E.; Tang, V.; Kenny, C.D.; Robert, A.M.; Streamson, C.J.; Joel, K.E.; et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004, 42, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, I.S.; Matarese, G.; Lord, G.M.; Keogh, J.M.; Lawrence, E.; Agwu, C.; Sanna, V.; Jebb, S.A.; Perna, F.; Fontana, S.; et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Investig. 2002, 110, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Thuahnai, S.T.; Lund-Katz, S.; Williams, D.L.; Phillips, M.C. Scavenger receptor class B, type I-mediated uptake of various lipids into cells. Influence of the nature of the donor particle interaction with the receptor. J. Biol. Chem. 2001, 276, 43801–43808. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, D.; Le Dividich, J. Effects of warm exposure on adipose tissue and muscle metabolism in growing pigs. Comp. Biochem. Phys. Part A 1991, 100, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, Y.; Bai, L.; Wang, Y.; Yang, L.; Su, W.; Gao, S. Heat stress decreased hair follicle population in rex rabbits. J. Anim. Physio. Anim. Nutr. 2019, 103, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, C.; Elsheikh, N.A.H.; Li, C.; Yang, F.; Wang, G.; Li, L. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging 2019, 11, 5535–5547. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mu, L.; Huang, M. MicroRNA-195 suppresses rectal cancer growth and metastasis via regulation of the PI3K/AKT signaling pathway. Mol. Med. Rep. 2019, 20, 4449–4458. [Google Scholar] [CrossRef]
- Kim, W.S.; Ghassemi Nejad, J.; Peng, D.Q.; Jung, U.S.; Kim, M.J.; Jo, Y.H.; Jo, J.H.; Lee, J.S.; Lee, H.G. Identification of heat shock protein gene expression in hair follicles as a novel indicator of heat stress in beef calves. Animal 2020, 14, 1502–1509. [Google Scholar] [CrossRef]
- Xiang, M. Gene regulation by Wnt signaling pathway in the oriented differentiation of hair follicle stem cells. J. Tissue Eng. Reconstr. Surg. 2011, 7, 290–294. [Google Scholar]
- Lin, C.; Yuan, Y.; Chen, X.; Li, H.; Cai, B.; Liu, Y.; Zhang, H.; Li, Y.; Huang, K. Expression of Wnt/β-catenin signaling, stem-cell markers and proliferating cell markers in rat whisker hair follicles. J. Mol. Histol. 2015, 46, 233–240. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, Y.; Liu, H.; Liu, H.; Li, F. Wnt10b promotes hair follicles growth and dermal papilla cells proliferation via Wnt/β-Catenin signaling pathway in Rex rabbits. Biosci. Rep. 2020, 40, BSR20191248. [Google Scholar] [CrossRef]
- Taelman, V.F.; Dobrowolski, R.; Plouhinec, J.L.; Fuentealba, L.C.; Vorwald, P.P.; Gumper, I.; Sabatini, D.D.; De Robertis, E.M. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 2010, 143, 1136–1148. [Google Scholar] [CrossRef]
- Kwack, M.H.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Dickkopf 1 promotes regression of hair follicles. J. Investig. Dermatol. 2012, 132, 1554–1560. [Google Scholar] [CrossRef]
- Zhang, J.; He, X.; Tong, W.G.; Johnson, T.; Wiedemann, L.M.; Mishina, Y.; Jian, Q.; Feng, J.Q.; Li, L. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells 2006, 24, 2826–2839. [Google Scholar] [CrossRef]
- Rendl, M.; Polak, L.; Fuchs, E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Gene Develop. 2008, 22, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Kulessa, H.; Turk, G.; Hogan, B.L. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 2000, 19, 6664–6674. [Google Scholar] [CrossRef] [PubMed]
- Oshimori, N.; Fuchs, E. Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 2012, 10, 63–75. [Google Scholar] [CrossRef]
- Philpott, M.P.; Sanders, D.A.; Kealey, T. Effects of insulin and insulinlike growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. J. Investig. Dermatol. 1994, 102, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.; Thébault, R.G.; Rougeot, J.; Van, D.P.; Bonnet, M. Epidermal growth factor (EGF) facilitates depilation of the angora rabbit. Ann. Zootech. 1987, 36, 433–438. [Google Scholar] [CrossRef]
- Philpott, M.P.; Kealey, T. Effects of EGF on the morphology and patterns of DNA synthesis in isolated human hair follicles. J. Investig. Dermatol. 1994, 102, 186–191. [Google Scholar] [CrossRef]
- Richardson, G.D.; Bazzi, H.; Fantauzzo, K.A.; Waters, J.M.; Crawford, H.; Hynd, P.; Christiano, A.M.; Colin, A.B.; Jahoda, C.A.B. KGF and EGF signaling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development 2009, 136, 2153–2164. [Google Scholar] [CrossRef] [PubMed]
Raw Material Composition | Content (%) | Nutrient Levels 2 | Content (%) |
---|---|---|---|
Corn | 5.0 | Digestible energy (MJ/kg) | 10.23 |
Soybean meal | 8.0 | Dry matter | 89.82 |
Barley | 6.0 | Crude protein | 16.12 |
Wheat bran | 15.0 | Ether extract | 2.80 |
Corn germ meal | 16.0 | Crude fiber | 17.38 |
Corn husk | 17.0 | Neutral detergent fiber | 38.74 |
Alfalfa meal | 15.0 | Acid detergent fiber | 23.08 |
Soybean straw powder | 7.0 | Acid detergent lignin | 6.29 |
Rice hull powder | 8.0 | Crude ash | 9.03 |
Calcium hydrogen phosphate | 1.5 | Calcium | 0.95 |
Sodium chloride | 0.5 | Total phosphorus | 0.45 |
Premix 1 | 1.0 | Lysine | 0.60 |
Total | 100.0 | Methionine | 0.65 |
Gene | Accession Number | Primer Sequence (5′-3′) | Product Length, bp |
---|---|---|---|
GAPDH | NM_001082253.1 | F: TTCCAGTATGATTCCACCCACG | 232 |
R: GGGCTGAGATGATGACCCTTTT | |||
Wnt10b | XM_002711076.4 | F: GGCGAGAATGAGAATCCATAACAA | 196 |
R: GTTGTGGGTGTCAATGAAGATGG | |||
CTNNB1 | XM_051852655.1 | F: TGGATACCTCCCAAGTCCTGTA | 207 |
R: CCAGACGCTGAACATTAGTAGGAT | |||
GSK3β | XM_017347066.1 | F: TGAGGTCTATCTTAATCTGGTGCTG | 183 |
R: TGTGGTTTAATATCCCGATGGC | |||
DDK1 | NM_001082737.2 | F: ATGGGTATTCCCGCAGAACC | 150 |
R: CCTTGAGGACGGGCTTACAG | |||
TGFβ-1 | XM_008249704.2 | F: CTGCTGTGGCTCCTAGTGTTGA | 134 |
R: AGCCGCAGTTTGGACAGGAT | |||
BMP2 | NM_001082650.1 | F: GGTGGAACGACTGGATTGTG | 146 |
R: CGGAATCTTAGAGTTCACGGAGT | |||
BMP4 | NM_001195723.1 | F: AGGGACCAGCGAAAACTCTG | 149 |
R: TGTTTATCCGGTGGAAGCCC | |||
IGF-I | NM_001082026.1 | F: TCTCTTCTACCTGGCCCTCTG | 155 |
R: TGCTGGAGCCGTATCCTGT | |||
IGF-IR | XM_008248786.2 | F: ACGTGGAAGAACCGCATCAT | 129 |
R: GTCCTGCCCATCATACTCCG | |||
EGF | XM_017347349.1 | F: CACTGCTCAGAAGGCTACCAA | 184 |
R: GAAATGGCGGAACAGAATCAG |
Items | Spring | Summer | Autumn | Winter | SEM | p-Value |
---|---|---|---|---|---|---|
Skin weight (g) | 499.05 b | 482.37 b | 542.25 a | 558.10 a | 7.059 | <0.001 |
Skin area (cm2) | 1818.15 b | 1667.15 c | 1961.05 a | 1985.40 a | 26.640 | <0.001 |
Skin thickness (mm) | 8.66 a | 8.03 c | 8.40 b | 8.80 a | 0.053 | <0.001 |
Coat length (cm) | 1.86 a | 1.56 d | 1.64 c | 1.78 b | 0.015 | <0.001 |
Items | Spring | Summer | Autumn | Winter | SEM | p-Value |
---|---|---|---|---|---|---|
Total hair follicle density (count/mm2) | 347.13 b | 292.01 b | 340.58 b | 366.68 a | 5.586 | <0.001 |
Primary hair follicle density (count/mm2) | 13.69 | 12.99 | 13.69 | 13.46 | 0.320 | 0.861 |
Secondary hair follicle density (count/mm2) | 333.44 b | 279.02 c | 326.88 b | 353.22 a | 5.532 | <0.001 |
Secondary hair follicle/Primary hair follicle ratio | 24.81 | 22.04 | 24.11 | 26.48 | 0.611 | 0.071 |
Items | Spring | Summer | Autumn | Winter | SEM | p-Value |
---|---|---|---|---|---|---|
Shoulder fat weight (g) | 14.68 b | 12.98 b | 12.74 b | 18.42 a | 0.588 | 0.001 |
Perirenal fat weight (g) | 57.29 b | 53.05 b | 60.66 b | 86.42 a | 0.965 | 0.006 |
Perigastric fat weight (g) | 18.09 ab | 15.96 b | 17.54 ab | 22.59 a | 1.783 | 0.046 |
Items | Spring | Summer | Autumn | Winter | SEM | p-Value |
---|---|---|---|---|---|---|
Serum hormones | ||||||
Insulin (mmol/mL) | 2.79 | 2.12 | 1.65 | 3.59 | 0.395 | 0.343 |
IGF-I (ng/mL) | 0.56 | 0.53 | 0.48 | 0.50 | 0.019 | 0.539 |
Leptin (ng/mL) | 12.62 ab | 9.72 b | 12.87 ab | 15.05 a | 0.299 | 0.028 |
Serum biochemical | ||||||
Glucose (mmol/L) | 4.77 b | 5.10 b | 9.88 a | 8.83 a | 0.464 | <0.001 |
Total protein (g/L) | 56.49 | 58.89 | 60.55 | 59.43 | 0.845 | 0.394 |
Triglyceride (mmol/L) | 0.70 | 0.82 | 0.72 | 0.37 | 0.063 | 0.057 |
Cholesterol (mmol/L) | 1.10 a | 1.33 a | 1.09 a | 0.66 b | 0.070 | 0.003 |
High-density lipoprotein (HDL, mmol/L) | 0.70 a | 0.76 a | 0.71 a | 0.30 b | 0.057 | 0.008 |
Low-density lipoprotein (LDL, mmol/L) | 0.23 b | 0.41 a | 0.22 b | 0.17 b | 0.029 | 0.013 |
Items | Spring | Summer | Autumn | Winter | SEM | p-Value |
---|---|---|---|---|---|---|
Wnt10b | 0.28 b | 0.22 b | 0.21 b | 0.46 a | 0.025 | 0.038 |
CTNNB1 | 1.05 a | 0.56 b | 0.90 a | 1.30 a | 0.142 | 0.336 |
GSK3β | 3.42 a | 1.62 b | 2.21 ab | 4.68 a | 0.304 | 0.039 |
DDK1 | 0.47 b | 0.96 a | 0.68 ab | 0.26 b | 0.082 | 0.013 |
TGFβ-1 | 0.74 b | 1.67 a | 1.27 ab | 0.68 b | 0.149 | 0.048 |
BMP2 | 0.66 b | 1.58 a | 1.12 ab | 0.70 b | 0.133 | 0.039 |
BMP4 | 0.59 ab | 1.31 a | 1.17 ab | 0.56 b | 0.028 | 0.049 |
IGF-I | 0.81 ab | 0.34 b | 0.23 b | 1.28 a | 0.120 | 0.003 |
IGF-IR | 24.06 ab | 6.93 b | 28.84 ab | 34.74 a | 15.495 | 0.015 |
EGF | 2.25 ab | 0.95 b | 1.44 b | 3.97 a | 0.357 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Liu, C.; Zhang, Y.; Sun, H.; Yang, L.; Bai, L.; Gao, S. Hair Follicle Development of Rex Rabbits Is Regulated Seasonally by Wnt10b/β-Catenin, TGFβ-BMP, IGF1, and EGF Signaling Pathways. Animals 2023, 13, 3742. https://doi.org/10.3390/ani13233742
Liu G, Liu C, Zhang Y, Sun H, Yang L, Bai L, Gao S. Hair Follicle Development of Rex Rabbits Is Regulated Seasonally by Wnt10b/β-Catenin, TGFβ-BMP, IGF1, and EGF Signaling Pathways. Animals. 2023; 13(23):3742. https://doi.org/10.3390/ani13233742
Chicago/Turabian StyleLiu, Gongyan, Ce Liu, Yin Zhang, Haitao Sun, Liping Yang, Liya Bai, and Shuxia Gao. 2023. "Hair Follicle Development of Rex Rabbits Is Regulated Seasonally by Wnt10b/β-Catenin, TGFβ-BMP, IGF1, and EGF Signaling Pathways" Animals 13, no. 23: 3742. https://doi.org/10.3390/ani13233742
APA StyleLiu, G., Liu, C., Zhang, Y., Sun, H., Yang, L., Bai, L., & Gao, S. (2023). Hair Follicle Development of Rex Rabbits Is Regulated Seasonally by Wnt10b/β-Catenin, TGFβ-BMP, IGF1, and EGF Signaling Pathways. Animals, 13(23), 3742. https://doi.org/10.3390/ani13233742