Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalgae Species
2.2. Nutritional Composition of Microalgae Species
2.2.1. Proximate Analysis
2.2.2. Amino Acids
2.2.3. Fatty Acids
2.2.4. Minerals
2.3. Untargeted Metabolomic Profiling
2.3.1. Microalgae Extraction
2.3.2. HPLC-MS/MS
2.3.3. Processing of Raw HPLC-MS/MS
2.4. Statistical Analysis
3. Results and Discussion
3.1. Protein and Amino Acid Profile
3.2. Lipids and Fatty Acid Profile
3.3. Fibre and Starch Contents
3.4. Ash and Mineral Profile
Microalgae | Maximum Tolerable Level Poultry/Swine | |||
---|---|---|---|---|
Tetradesmus obliquus | Chlorella vulgaris | Nannochloropsis oceanica | ||
Non-essential trace elements | 245 | 194 | 256 | |
Toxic elements | ||||
As | 0.150 | 0.420 | 1.38 | 30 |
Cd | 0.110 | 0.520 | 0.130 | 10.0 |
Pb | 0.100 | 0.090 | 0.310 | 10.0 |
Al | 10.7 | 64.9 | 21.3 | 1000 |
Ba | 14.8 | 8.86 | 4.77 | 100 |
Be | 0.020 | 0.060 | 0.010 | |
Mo | 5.08 | 6.02 | 1.88 | 100–150 |
Ni | 1.60 | 1.74 | 0.980 | 250 |
Sb | 0.010 | 0.010 | 0.010 | |
Sn | 0.160 | 0.080 | 0.280 | |
Sr | 86.7 | 37.2 | 116 | 2000 |
Tl | ND | 0.010 | 0.020 | |
V | 1.05 | 2.83 | 5.65 | 25(growing birds)/10 |
B | 2.55 | 3.60 | 82.0 | 150 |
Ti | 116 | 60.5 | 13.3 | |
Cr | 1.21 | 2.93 | 1.86 | 500/100 |
Co | 3.32 | 0.320 | 0.500 | 25/100 |
Li | ND | ND | 1.50 | 25.0 |
Rb | 1.89 | 3.27 | 4.57 | |
Zr | 0.150 | 0.550 | 0.140 | |
Pd | 0.010 | 0.010 | ND | |
Cs | ND | 0.010 | 0.020 | |
Rare earth elements | ||||
Ga | 0.020 | 0.060 | 0.010 | |
Nb | 0.020 | 0.010 | ND |
3.5. Untargeted Metabolomic Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedman, E.; Krause-Parello, C.A. Companion animals and human health: Benefits, challenges, and the road ahead for human-animal interaction. Rev. Sci. Tech. 2018, 37, 71–82. [Google Scholar] [CrossRef] [PubMed]
- AVMA. 2021–2022 APPA National Pet Owners Survey; American Veterinary Medical Association: Stamford, CT, USA, 2021. [Google Scholar]
- FEDIAF. Annual Report 2021; FEDIAF: Bruxelles, Belgium, 2021. [Google Scholar]
- Acuff, H.L.; Dainton, A.N.; Dhakal, J.; Kiprotich, S.; Aldrich, G. Sustainability and Pet Food: Is There a Role for Veterinarians? Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Carter, R.A.; Yount, T.P.; Aretz, J.; Buff, P.R. Nutritional Sustainability of Pet Foods. Adv. Nutr. 2013, 4, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinassa, M.; Vergnano, D.; Valle, E.; Giribaldi, M.; Nery, J.; Prola, L.; Bergero, D.; Schiavone, A. Profiling Italian cat and dog owners’ perceptions of pet food quality traits. BMC Vet. Res. 2020, 16, 131. [Google Scholar] [CrossRef]
- Chang, H.; Zou, Y.; Hu, R.; Feng, H.; Wu, H.; Zhong, N.; Hu, J. Membrane applications for microbial energy conversion: A review. Environ. Chem. Lett. 2020, 18, 1581–1592. [Google Scholar] [CrossRef]
- Becker, W. Microalgae in Human and Animal Nutrition. In Handbook of Microalgal Culture; Richmond, A., Ed.; Blackwell Publishing Ltd: Hoboken, NJ, USA, 2003; pp. 312–351. [Google Scholar]
- Valente, L.M.P.; Cabrita, A.R.J.; Maia, M.R.G.; Valente, I.M.; Engrola, S.; Fonseca, A.J.M.; Ribeiro, D.; Lordelo, M.; Martins, C.F.; Falcão e Cunha, L.; et al. Microalgae as feed ingredients for livestock production and aquaculture. In Aquaculture; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 239–312. [Google Scholar]
- Araújo, R.; Calderón, F.; López, J.; Azevedo, I.; Bruhn, A.; Fluch, S.; Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Vigani, M.; Parisi, C.; Rodríguez-Cerezo, E.; Barbosa, M.J.; Sijtsma, L.; Ploeg, M.; Enzing, C. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci. Technol. 2015, 42, 81–92. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Lourenço, S.O.; Barbarino, E.; Lavín, P.L.; Lanfer Marquez, U.M.; Aidar, E. Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 2004, 39, 17–32. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Meehan, D.J.; Cabrita, A.R.J.; Silva, J.L.; Fonseca, A.J.M.; Maia, M.R.G. Effects of Chlorella vulgaris, Nannochloropsis oceanica and Tetraselmis sp. supplementation levels on In Vitro rumen fermentation. Algal Res. 2021, 56, 102284. [Google Scholar] [CrossRef]
- Aragão, C.; Cabano, M.; Colen, R.; Fuentes, J.; Dias, J. Alternative formulations for gilthead seabream diets: Towards a more sustainable production. Aquac. Nutr. 2020, 26, 444–455. [Google Scholar] [CrossRef]
- Kerr, K.R.; Beloshapka, A.N.; Morris, C.L.; Parsons, C.M.; Burke, S.L.; Utterback, P.L.; Swanson, K.S. Evaluation of four raw meat diets using domestic cats, captive exotic felids, and cecectomized roosters. J. Anim. Sci. 2013, 91, 225–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FEDIAF. Nutritional Guidelines For Complete and Complementary Pet Food for Cats and Dogs; FEDIAF: Bruxelles, Belgium, 2021. [Google Scholar]
- Oser, B.L. An integrated essential amino acid index for predicting the biological value of proteins. In Amino Acid Nutrition; Albanese, A.A., Ed.; Academic Press: New York, NY, USA, 1959; pp. 295–311. [Google Scholar]
- Lepage, G.; Roy, C.C. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 1984, 25, 1391–1396. [Google Scholar] [CrossRef]
- Maia, M.R.G.; Fonseca, A.J.M.; Cortez, P.P.; Cabrita, A.R.J. In vitro evaluation of macroalgae as unconventional ingredients in ruminant animal feeds. Algal Res. 2019, 40, 101481. [Google Scholar] [CrossRef]
- Cabrita, A.R.J.; Maia, M.R.G.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J.M. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, R.A.; Iglesias, P.; Couto, A.; Serra, C.R.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.; Enes, P.; Díaz-Rosales, P. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro- and microalgae extracts. J. Appl. Phycol. 2020, 32, 349–362. [Google Scholar] [CrossRef]
- Valente, I.M.; Maia, M.R.G.; Malushi, N.; Oliveira, H.M.; Papa, L.; Rodrigues, J.A.; Fonseca, A.J.M.; Cabrita, A.R.J. Profiling of phenolic compounds and antioxidant properties of European varieties and cultivars of Vicia faba L. pods. Phytochemistry 2018, 152, 223–229. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell. Factories 2018, 17, 36. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Yu, C.; Yin, Y.; Zhou, G. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour. Technol. 2014, 167, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, T.S.; Giromini, C.; Rebucci, R.; Baldi, A. Omega-3 Polyunsaturated fatty acids counteract inflammatory and oxidative damage of non-transformed porcine enterocytes. Animals 2020, 10, 956. [Google Scholar] [CrossRef]
- Rajabi Islami, H.; Assareh, R. Effect of different iron concentrations on growth, lipid accumulation, and fatty acid profile for biodiesel production from Tetradesmus obliquus. J. Appl. Phycol. 2019, 31, 3421–3432. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Safi, C.; Charton, M.; Pignolet, O.; Silvestre, F.; Vaca-Garcia, C.; Pontalier, P.-Y. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol. 2013, 25, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.Y.B.; Oliveira, C.D.L.; Prasad, R.; Ong, H.C.; Araujo, E.S.; Shabnam, N.; Gálvez, A.O. A multidisciplinary review of Tetradesmus obliquus: A microalga suitable for large-scale biomass production and emerging environmental applications. Rev. Aquac. 2021, 13, 1594–1618. [Google Scholar] [CrossRef]
- Faber, T.A.; Bechtel, P.J.; Hernot, D.C.; Parsons, C.M.; Swanson, K.S.; Smiley, S.; Fahey, G.C., Jr. Protein digestibility evaluations of meat and fish substrates using laboratory, avian, and ileally cannulated dog assays. J. Anim. Sci. 2010, 88, 1421–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galili, G.; Amir, R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol. J. 2013, 11, 211–222. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements for Dogs and Cat, 2nd rev. ed.; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Fascetti, A.J.; Reed, J.R.; Rogers, Q.R.; Backus, R.C. Taurine deficiency in dogs with dilated cardiomyopathy: 12 cases (1997-2001). J. Am. Vet. Med. Assoc. 2003, 223, 1137–1141. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, Phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Wayman, J.; Kelley, R.; Feugier, A.; Biourge, V. Increased dietary intake of tyrosine upregulates melanin deposition in the hair of adult black-coated dogs. Anim. Nutr. 2018, 4, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Cianciaruso, B.; Jones, M.R.; Kopple, J.D. Histidine, an essential amino acid for adult dogs. J. Nutr. 1981, 111, 1074–1084. [Google Scholar] [CrossRef]
- Yang, Y.; Du, L.; Hosokawa, M.; Miyashita, K. Total lipids content, lipid class and fatty acid composition of ten species of microalgae. J. Oleo. Sci. 2020, 69, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Luo, S.; Fan, X.; Yang, Z.; Guo, R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl. Energy 2011, 88, 3336–3341. [Google Scholar] [CrossRef]
- Roberts, M.T.; Bermingham, E.N.; Cave, N.J.; Young, W.; McKenzie, C.M.; Thomas, D.G. Macronutrient intake of dogs, self-selecting diets varying in composition offered ad libitum. J. Anim. Physiol. Anim. Nutr. 2018, 102, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conde, T.A.; Neves, B.F.; Couto, D.; Melo, T.; Neves, B.; Costa, M.; Silva, J.; Domingues, P.; Domingues, M.R. Microalgae as sustainable bio-factories of healthy lipids: Evaluating fatty acid content and antioxidant activity. Mar. Drugs 2021, 19, 357. [Google Scholar] [CrossRef]
- Calder, P.C. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, S1505–S1519. [Google Scholar] [CrossRef] [Green Version]
- Mueller, R.S.; Fettman, M.J.; Richardson, K.; Hansen, R.A.; Miller, A.; Magowitz, J.; Ogilvie, G.K. Plasma and skin concentrations of polyunsaturated fatty acids before and after supplementation with n-3 fatty acids in dogs with atopic dermatitis. Am. J. Vet. Res. 2005, 66, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.A.; Brown, C.A.; Crowell, W.A.; Barsanti, J.A.; Allen, T.; Cowell, C.; Finco, D.R. Beneficial effects of chronic administration of dietary omega-3 polyunsaturated fatty acids in dogs with renal insufficiency. J. Lab. Clin. Med. 1998, 131, 447–455. [Google Scholar] [CrossRef]
- Wander, R.C.; Hall, J.A.; Gradin, J.L.; Du, S.-H.; Jewell, D.E. The ratio of dietary (n-6) to (n-3) fatty acids influences immune system function, eicosanoid metabolism, lipid peroxidation and vitamin E status in aged dogs. J. Nutr. 1997, 127, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, D.M.; Reinhart, G.A.; Swaim, S.F.; Lauten, S.D.; Garner, C.A.; Boudreaux, M.K.; Spano, J.S.; Hoffman, C.E.; Conner, B. Evaluation of effects of dietary n-6 to n-3 fatty acid ratios on leukotriene B synthesis in dog skin and neutrophils. Vet. Derm. 1994, 5, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Wander, R.C.; Gradin, J.L.; Du, S.H.; Jewell, D.E. Effect of dietary n-6-to-n-3 fatty acid ratio on complete blood and total white blood cell counts, and T-cell subpopulations in aged dogs. Am. J. Vet. Res. 1999, 60, 319–327. [Google Scholar] [PubMed]
- de Deckere, E.A.; Korver, O.; Verschuren, P.M.; Katan, M.B. Health aspects of fish and n-3 polyunsaturated fatty acids from plant and marine origin. Eur. J. Clin. Nutr. 1998, 52, 749–753. [Google Scholar] [CrossRef] [PubMed]
- AAFCO. Laboratory methods and services committee, fiber best practices working group. In Critical Factors in Determining Fiber in Feeds and Forages; Association of Official Analytical Chemists: Champaign, IL, USA, 2017; p. 14. [Google Scholar]
- Han, K.J.; McCormick, M.E. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J. Anim. Sci. Biotechnol. 2014, 5, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.F.; Quigley, S.P.; Isherwood, P.; McLennan, S.R.; Poppi, D.P. Supplementation of cattle fed tropical grasses with microalgae increases microbial protein production and average daily gain. J. Anim. Sci. 2016, 94, 2047–2058. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Jaakkola, S.; Vanhatalo, A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim. Feed Sci. Technol. 2019, 247, 112–126. [Google Scholar] [CrossRef]
- Ding, Q.; Li, Z.; Wu, W.; Su, Y.; Sun, N.; Luo, L.; Ma, H.; He, R. Physicochemical and functional properties of dietary fiber from Nannochloropsis oceanica: A comparison of alkaline and ultrasonic-assisted alkaline extractions. LWT 2020, 133, 110080. [Google Scholar] [CrossRef]
- Silva, M.E.T.d.; Correa, K.d.P.; Martins, M.A.; da Matta, S.L.P.; Martino, H.S.D.; Coimbra, J.S.d.R. Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. J. Funct. Foods 2020, 65, 103711. [Google Scholar] [CrossRef]
- De Godoy, M.R.C.; Kerr, K.R.; Fahey, J.; George, C. Alternative dietary fiber sources in companion animal nutrition. Nutrients 2013, 5, 3099–3117. [Google Scholar] [CrossRef] [Green Version]
- Lappin, M.R.; Zug, A.; Hovenga, C.; Gagne, J.; Cross, E. Efficacy of feeding a diet containing a high concentration of mixed fiber sources for management of acute large bowel diarrhea in dogs in shelters. J. Vete. Intern. Med. 2022, 36, 488–492. [Google Scholar] [CrossRef]
- León-Saiki, G.M.; Cabrero Martí, T.; van der Veen, D.; Wijffels, R.H.; Martens, D.E. The impact of day length on cell division and efficiency of light use in a starchless mutant of Tetradesmus obliquus. Algal Res. 2018, 31, 387–394. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Y.; Huang, W.; Xu, J.; Wang, Z.; Xu, J.; Yuan, Z. Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl. Biochem. Biotechnol. 2014, 174, 2435–2445. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Inoue, A.; Takeguchi, A.; Washizu, T.; Bonkobara, M.; Arai, T. Comparison of expression of glucokinase gene and activities of enzymes related to glucose metabolism in livers between dog and cat. Vet. Res. Commun. 2005, 29, 477–485. [Google Scholar] [CrossRef]
- Bednar, G.E.; Patil, A.R.; Murray, S.M.; Grieshop, C.M.; Merchen, N.R.; Fahey, G.C., Jr. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine mode. J. Nutr. 2001, 131, 276–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, D.; Cox, M. Lehninger Principles of Biochemistry, 5th ed.; Freeman W.H.: New York, NY, USA, 2008. [Google Scholar]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. S2), S33–S50. [Google Scholar] [PubMed]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant starch–A review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Fox, J.M.; Zimba, P.V. Minerals and trace elements in microalgae. In Microalgae in Health and Disease Prevention; Levine, I.A., Fleurence, J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 177–193. [Google Scholar]
- de Souza, R.A.S.; Saldanha-Corrêa, F.M.P.; Gallego, A.G.; Neto, A.M.P. Semi-quantitative determination of ash element content for freeze-dried, defatted, sulfated and pyrolysed biomass of Scenedesmus sp. Biotechnol. Biofuels 2020, 13, 63. [Google Scholar] [CrossRef] [Green Version]
- Liu, K. Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination. Algal Res. 2017, 25, 307–321. [Google Scholar] [CrossRef]
- Batista, S.; Pereira, R.; Oliveira, B.; Baião, L.F.; Jessen, F.; Tulli, F.; Messina, M.; Silva, J.L.; Abreu, H.; Valente, L.M.P. Exploring the potential of seaweed Gracilaria gracilis and microalga Nannochloropsis oceanica, single or blended, as natural dietary ingredients for European seabass Dicentrarchus labrax. J. Appl. Phycol. 2020, 32, 2041–2059. [Google Scholar] [CrossRef]
- Mohd Yusof, Y.; Basari, J.; Ashikeen, M.; Sabuddin, R.; Muda, A.; Sulaiman, S.; Makpol, S.; Wan Ngah, W.Z. Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. Afr. J. Biotechnol. 2011, 10, 13536–13542. [Google Scholar]
- Santhakumaran, P.; Ayyappan, S.M.; Ray, J.G. Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Res. 2020, 47, 101878. [Google Scholar] [CrossRef]
- Chandler, M.L. Pet food safety: Sodium in pet foods. Top. Companion Anim. Med. 2008, 23, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Zentek, J.; Meyer, H. Normal handling of diets—Are all dogs created equal? J. Small. Anim. Pr. 1995, 36, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.M.; Pinto, E.; Matos, E.; Castanheira, F.; Almeida, A.A.; Baptista, C.S.; Segundo, M.A.; Fonseca, A.J.M.; Cabrita, A.R.J. Mineral composition of dry dog foods: Impact on nutrition and potential toxicity. J. Agric. Food Chem. 2018, 66, 7822–7830. [Google Scholar] [CrossRef] [PubMed]
- Pedrinelli, V.; Zafalon, R.V.A.; Rodrigues, R.B.A.; Perini, M.P.; Conti, R.M.C.; de Carvalho Balieiro, J.C.; Brunetto, M.A. Influence of number of ingredients, use of supplement and vegetarian or vegan preparation on the composition of homemade diets for dogs and cats. BMC Vet. Res. 2021, 17, 358. [Google Scholar] [CrossRef]
- Lulich, J.P.; Berent, A.C.; Adams, L.G.; Westropp, J.L.; Bartges, J.W.; Osborne, C.A. ACVIM Small animal consensus recommendations on the treatment and prevention of uroliths in dogs and cats. J. Vet. Intern. Med. 2016, 30, 1564–1574. [Google Scholar] [CrossRef] [Green Version]
- Herbst, S.; Dobenecker, B. Effects of phosphorus addition from organic and inorganic sources on kinetics of selected blood parameters in dogs. In Proceedings of the ESVCN European Society of Veterinary & Comparative Nutrition Congress, Munich, Germany, 7 September 2018. [Google Scholar]
- Albretsen, J. The toxicity of iron, an essential element. Vet. Med. 2006, 101, 82–90. [Google Scholar]
- Collins, J.F.; Prohaska, J.R.; Knutson, M.D. Metabolic crossroads of iron and copper. Nutr. Rev. 2010, 68, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Zentek, J.; Meyer, H. Investigations on copper deficiency in growing dogs. J. Nutr. 1991, 121, S83–S84. [Google Scholar] [CrossRef]
- van Zelst, M.; Hesta, M.; Gray, K.; Beech, K.; Cools, A.; Alexander, L.G.; Du Laing, G.; Janssens, G.P.J. Selenium digestibility and bioactivity in dogs: What the Can can, the kibble can’t. PLoS ONE 2016, 11, e0152709. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.; Maia, M.R.G.; Fonseca, A.J.M.; Cabrita, A.R.J. Zinc in dog nutrition, health and disease: A review. Animals 2021, 11, 978. [Google Scholar] [CrossRef] [PubMed]
- Wedekind, K.; Combs, G.J. Selenium in petfoods: Is bioavailability an issue? Compend Contin. Educ. Vet. 2020, 22, 17–22. [Google Scholar]
- Huber, T.L.; Laflamme, D.P.; Medleau, L.; Comer, K.M.; Rakich, P.M. Comparison of procedures for assessing adequacy of dog foods. J. Am. Vet. Med. Assoc. 1991, 199, 731–734. [Google Scholar] [PubMed]
- NRC. Mineral Tolerance of Animals; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Harwood, J.L.; Guschina, I.A. The versatility of algae and their lipid metabolism. Biochimie 2009, 91, 679–684. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 2006, 45, 160–186. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Lim, D.J.; Laserna, A.K.C.; Li, S.F.Y. Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus: Insights from untargeted metabolomics. Sci. Total Env. 2019, 650, 1239–1249. [Google Scholar] [CrossRef]
- Banskota, A.H.; Stefanova, R.; Gallant, P.; McGinn, P.J. Mono- and digalactosyldiacylglycerols: Potent nitric oxide inhibitors from the marine microalga Nannochloropsis granulata. J. Appl. Phycol. 2013, 25, 349–357. [Google Scholar] [CrossRef]
- Cañavate, J.P.; Armada, I.; Ríos, J.L.; Hachero-Cruzado, I. Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae. Phytochemistry 2016, 124, 68–78. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Betaine ether-linked glycerolipids: Chemistry and biology. Prog. Lipid Res. 1996, 35, 1–51. [Google Scholar] [CrossRef]
- Iwai, M.; Hori, K.; Sasaki-Sekimoto, Y.; Shimojima, M.; Ohta, H. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front. Microbiol. 2015, 6, 912. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H.; Nobusawa, T.; Hori, K.; Shimojima, M.; Ohta, H. Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant Physiol. 2018, 177, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, S.H.; Chan, M.L.; Marathe, G.K.; Parveen, F.; Chen, C.H.; Ke, L.Y. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int. J. Mol. Sci. 2019, 20, 1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, T.; Figueiredo, A.R.P.; da Costa, E.; Couto, D.; Silva, J.; Domingues, M.R.; Domingues, P. Ethanol Extraction of polar lipids from Nannochloropsis oceanica for food, feed, and biotechnology applications evaluated using lipidomic approaches. Mar. Drugs 2021, 19, 593. [Google Scholar] [CrossRef] [PubMed]
- Couto, D.; Melo, T.; Conde, T.A.; Costa, M.; Silva, J.; Domingues, M.R.M.; Domingues, P. Chemoplasticity of the polar lipid profile of the microalgae Chlorella vulgaris grown under heterotrophic and autotrophic conditions. Algal Res. 2021, 53, 102128. [Google Scholar] [CrossRef]
- Choi, K.J.; Nakhost, Z.; Krukonis, V.J.; Karel, M. Supercritical fluid extraction and characterization of lipids from algae scenedesmus obliquus. Food Biotechnol. 1987, 1, 263–281. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, D.; Li, M.; Shi, L. Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress. PLoS ONE 2016, 11, e0159622. [Google Scholar] [CrossRef] [Green Version]
- Nikitashina, V.; Stettin, D.; Pohnert, G. Metabolic adaptation of diatoms to hypersalinity. Phytochemistry 2022, 201, 113267. [Google Scholar] [CrossRef]
- Thomas, M.; Hughes, R.E. A relationship between ascorbic acid and threonic acid in guinea-pigs. Food Chem. Toxicol. 1983, 21, 449–452. [Google Scholar] [CrossRef]
- Samant, S.S.; Crandall, P.G.; Jarma Arroyo, S.E.; Seo, H.S. Dry pet food flavor enhancers and their impact on palatability: A review. Foods 2021, 10, 2599. [Google Scholar] [CrossRef]
- Zafalon, R.V.A.; Pedreira, R.S.; Vendramini, T.H.A.; Rentas, M.F.; Pedrinelli, V.; Rodrigues, R.B.A.; Risolia, L.W.; Perini, M.P.; Amaral, A.R.; de Carvalho Balieiro, J.C.; et al. Toxic element levels in ingredients and commercial pet foods. Sci. Rep. 2021, 11, 21007. [Google Scholar] [CrossRef]
- Jena, B.S.; Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J. Agric. Food Chem. 2002, 50, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Vega, J.A.; Arteaga-Badillo, D.A.; Sánchez-Gutiérrez, M.; Morales-González, J.A.; Vargas-Mendoza, N.; Gómez-Aldapa, C.A.; Castro-Rosas, J.; Delgado-Olivares, L.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E. Organic acids from roselle (Hibiscus sabdariffa L.)—A brief review of its pharmacological effects. Biomedicines 2020, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.C.; Singh, M.; Srere, P.A.; Glusker, J.P. Reactivity and inhibitor potential of hydroxycitrate isomers with citrate synthase, citrate lyase, and ATP citrate lyase. J. Biol. Chem. 1977, 252, 7583–7590. [Google Scholar] [CrossRef]
- Sullivan, A.C.; Triscari, J.; Hamilton, J.G.; Miller, O.N.; Wheatley, V.R. Effect of (-)-hydroxycitrate upon the accumulation of lipid in the rat. I. Lipogenesis. Lipids 1974, 9, 121–128. [Google Scholar] [CrossRef]
- Ohia, S.E.; Awe, S.O.; LeDay, A.M.; Opere, C.A.; Bagchi, D. Effect of hydroxycitric acid on serotonin release from isolated rat brain cortex. Res. Commun. Mol. Pathol. Pharm. 2001, 109, 210–216. [Google Scholar]
- Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534–2536. [Google Scholar] [CrossRef] [Green Version]
- Myers, O.D.; Sumner, S.J.; Li, S.; Barnes, S.; Du, X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: New algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal. Chem. 2017, 89, 8696–8703. [Google Scholar] [CrossRef]
Microalgae | |||
---|---|---|---|
Tetradesmus obliquus | Chlorella vulgaris | Nannochloropsis oceanica | |
DM, g kg−1 | 982 | 978 | 988 |
Ash, g | 110 | 98.9 | 340 |
CP, g | 411 | 439 | 246 |
Total lipids, g | 83.8 | 97.9 | 140 |
NDF, g | 228 | 164 | 153 |
ADF, g | 119 | 97.8 | 43.4 |
CF, g | 66.6 | 59.8 | 33.0 |
IDF, g | 229 | 179 | 207 |
SDF, g | 7.54 | 12.5 | 16.2 |
TDF, g | 237 | 192 | 223 |
Starch, g | 10.7 | 44.1 | 0.693 |
GE, MJ | 21.5 | 20.3 | 16.6 |
Microalgae | |||
---|---|---|---|
Tetradesmus obliquus | Chlorella vulgaris | Nannochloropsis oceanica | |
EAA | 172 | 269 | 130 |
Arginine | 27.2 | 46.6 | 22.1 |
Histidine | 4.61 | 9.51 | 5.19 |
Lysine | 25.3 | 53.2 | 21.9 |
Threonine | 21.7 | 28.0 | 14.5 |
Isoleucine | 15.7 | 21.8 | 11.3 |
Leucine | 28.4 | 39.7 | 20.7 |
Valine | 20.2 | 29.1 | 14.8 |
Methionine | 7.67 | 10.9 | 5.34 |
Methionine + cystine | 9.16 | 12.8 | 6.24 |
Phenylalanine | 21.3 | 29.9 | 14.3 |
Phenylalanine + tyrosine | 38.9 | 57.4 | 27.2 |
NEAA | 186 | 242 | 132 |
Cystine | 1.49 | 1.94 | 0.90 |
Tyrosine | 17.6 | 27.6 | 12.8 |
Aspartic acid + Asparagine | 31.2 | 34.9 | 21.2 |
Glutamic acid + Glutamine | 41.8 | 52.3 | 31.3 |
Alanine | 28.6 | 35.6 | 17.7 |
Glycine | 27.0 | 39.2 | 18.9 |
Proline | 19.1 | 25.5 | 15.6 |
Serine | 18.9 | 24.8 | 13.3 |
Total amino acids | 358 | 510 | 262 |
Adults, Based on MER 1 of 110 kcal/kg0.75 | Early Growth (<14 Weeks) and Reproduction | Late Growth (≥14 Weeks) | |||||||
---|---|---|---|---|---|---|---|---|---|
Tetradesmus obliquus | Chlorella vulgaris | Nannochloropsis oceanica | Tetradesmus obliquus | Chlorella vulgaris | Nannochloropsis oceanica | Tetradesmus obliquus | Chlorella vulgaris | Nannochloropsis oceanica | |
AAS 2 | |||||||||
Arginine | 175 | 281 | 238 | 154 | 247 | 209 | 137 | 219 | 186 |
Histidine | 67.1 | 130 | 126 | 54.9 | 106 | 103 | 68.6 | 133 | 129 |
Lysine | 201 | 397 | 291 | 134 | 263 | 193 | 134 | 265 | 194 |
Threonine | 140 | 169 | 156 | 124 | 151 | 139 | 126 | 153 | 141 |
Isoleucine | 114 | 149 | 137 | 112 | 146 | 135 | 117 | 152 | 140 |
Leucine | 116 | 152 | 141 | 102 | 134 | 124 | 132 | 173 | 161 |
Valine | 114 | 155 | 141 | 138 | 187 | 170 | 134 | 181 | 165 |
Methionine | 64.2 | 85.3 | 74.6 | 102 | 135 | 118 | 110 | 146 | 128 |
Methionine + cystine | 33.8 | 44.9 | 39.3 | 50.9 | 67.7 | 59.2 | 53.8 | 71.5 | 62.6 |
Phenylalanine | 132 | 173 | 148 | 152 | 200 | 171 | 159 | 208 | 178 |
Phenylalanine + tyrosine | 80.2 | 105 | 90.0 | 76.2 | 100 | 85.6 | 79.3 | 104 | 89.0 |
IEAA 3 | 101 | 145 | 128 | 103 | 147 | 129 | 108 | 155 | 137 |
Microalgae | |||
---|---|---|---|
Tetradesmus obliquus | Chlorella vulgaris | Nannochloropsis oceanica | |
SFA | 18.2 | 19.7 | 26.4 |
C8:0 | 0.006 | 0.015 | 0.074 |
C10:0 | 0.089 | 0.073 | 0.123 |
C12:0 | 0.065 | 0.127 | 0.340 |
C14:0 | 1.51 | 1.21 | 4.79 |
C16:0 | 11.7 | 11.8 | 18.8 |
C18:0 | 0.435 | 1.77 | 0.343 |
C20:0 | 0.040 | 0.016 | 0.031 |
C22:0 | 0.227 | 0.096 | 0.078 |
C24:0 | 0.235 | 0.199 | 0.050 |
BCFA | 3.39 | 3.92 | 1.25 |
iso-C14:0 | 0.066 | 0.039 | 0.030 |
iso-C15:0 | 0.254 | 0.671 | 0.388 |
anteiso-C15:0 | 0.069 | 0.163 | 0.059 |
iso-C16:0 | 0.045 | 0.128 | 0.045 |
iso-C17:0 | 2.57 | 2.80 | 0.716 |
anteiso-C17:0 | 0.386 | 0.112 | 0.016 |
OCFA | 0.536 | 0.451 | 0.490 |
C11:0 | 0.002 | BDL | 0.012 |
C13:0 | 0.005 | 0.006 | 0.016 |
C15:0 | 0.221 | 0.114 | 0.281 |
C17:0 | 0.308 | 0.330 | 0.181 |
MUFA | 10.6 | 6.96 | 27.2 |
C14:1 n-5 | 0.019 | 0.010 | 0.057 |
C16:1 n-7 | 1.12 | 1.21 | 21.5 |
C16:1 n-9 | 2.53 | 2.03 | 1.02 |
C17:1 n-8 | 1.47 | 0.096 | 0.115 |
C18:1 n-7 | 1.45 | 1.36 | 0.518 |
C18:1 n-9 | 3.59 | 2.13 | 3.82 |
C20:1 n-7 | 0.015 | 0.012 | 0.005 |
C20:1 n-9 | 0.068 | 0.035 | 0.043 |
C20:1 n-11 | 0.041 | 0.013 | 0.018 |
C22:1 n-9 | 0.033 | 0.007 | 0.024 |
C22:1 n-11 | 0.044 | 0.045 | 0.026 |
C24:1 n-9 | 0.262 | 0.020 | BDL |
PUFA | 25.8 | 29.8 | 26.9 |
C16:2 n-4 | 0.057 | 0.088 | 0.149 |
C16:3 n-4 | 0.030 | 0.022 | 0.174 |
C16:4 n-1 | 0.050 | 0.176 | 0.060 |
C18:2 n-6 | 3.69 | 10.4 | 2.77 |
C18:2 n-6t,t | 0.157 | 0.083 | 0.038 |
C18:3 n-3 | 18.6 | 18.4 | 0.227 |
C18:3 n-4 | 0.104 | 0.051 | 0.055 |
C18:3 n-6 | 0.256 | 0.045 | 0.263 |
C18:4 n-3 | 2.01 | 0.057 | 0.077 |
C20:2 n-6 | 0.016 | 0.055 | 0.058 |
C20:3 n-3 | 0.325 | 0.016 | 0.091 |
C20:3 n-6 | 0.015 | 0.024 | 0.256 |
C20:4 n-3 | BDL | 0.020 | 0.045 |
C20:4 n-6 | 0.090 | 0.158 | 4.60 |
C20:5 n-3 | 0.169 | 0.106 | 17.8 |
C21:5 n-3 | 0.059 | 0.079 | 0.193 |
C22:2 n-6 | 0.014 | 0.010 | 0.017 |
C22:4 n-6 | BDL | BDL | BDL |
C22:5 n-3 | BDL | BDL | BDL |
C22:6 n-3 | 0.195 | BDL | BDL |
Total of fatty acids | 54.6 | 56.5 | 80.4 |
n-6/n-3 ratio | 0.199 | 0.578 | 0.434 |
Microalgae | Minimum Recommended Levels for Dogs (Nutritional Maximum) 1 | |||||
---|---|---|---|---|---|---|
Tetradesmus obliquus | Chlorella vulgaris | Nannochloropsis oceanica | Adults, Based on MER 2 of 110 kcal/kg0.75 | Early Growth (<14 Weeks) and Reproduction | Late Growth (≥14 Weeks) | |
Total mineral content, g | 41.2 | 41.3 | 75.1 | |||
Essential macroelements, g | 37.7 | 39.9 | 74.4 | |||
Na | 1.80 | 0.500 | 37.8 | 1.00 | 2.20 | 2.20 |
K | 12.8 | 8.50 | 19.1 | 5.00 | 4.40 | 4.40 |
Mg | 0.540 | 0.560 | 3.91 | 0.700 | 0.400 | 0.400 |
Ca | 4.36 | 4.64 | 0.96 | 5.00 (25.0) | 10.0 (16.0) | 8.00–10.0 (18.0) |
P | 18.2 | 25.7 | 12.6 | 4.00 (16.0) | 9.00 | 7.00 |
Ca:P ratio | 0.239 | 0.181 | 0.076 | 1.00 (2:1) | 1.00 (1.6:1) | 1.00 (1.6/1.8:1) |
Essential trace elements, mg | 3213 | 1190 | 403 | |||
Fe | 2986 | 644 | 300 | 36.00 | 88.00 | 88.00 |
Mn | 108 | 163 | 35.2 | 5.80 | 5.60 | 5.60 |
Cu | 7.22 | 25.4 | 13.6 | 7.20 | 11.0 | 11.0 |
Zn | 113 | 357 | 52.5 | 72.0 | 100 | 100 |
Se | 0.310 | 0.170 | 1.36 | 0.180 | 0.400 | 0.400 |
Metabolite 1 |
---|
MGDG (18:3;O/3:1) |
DGTS (18:3/18:4) |
(-)-hydroxycitric acid (FA 6:2;O6) |
D-Threonic acid |
MGMG (13:0) II |
MGTS (16:4) |
FA 10:1;O2 I |
MGDG (18:3/3:1) |
MGDG (16:4/14:3;O) |
MGMG (13:0) I |
MGDG (9:1;O2 /16:4) |
MGMG (18:4) II |
MGDG (18:3;O/16:4) |
MGMG (16:4) II |
MGTS (18:4) II |
MGDG (16:4/17:3) |
MGMG (18:4) I |
MGMG (16:4;O) III |
C15:0 |
MGTS (18:4) I |
LPC (18:4) II |
MGMG (16:4) I |
Citric acid II |
MGDG (16:4/9:1;O) |
C16:4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrita, A.R.J.; Guilherme-Fernandes, J.; Valente, I.M.; Almeida, A.; Lima, S.A.C.; Fonseca, A.J.M.; Maia, M.R.G. Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs. Animals 2022, 12, 2643. https://doi.org/10.3390/ani12192643
Cabrita ARJ, Guilherme-Fernandes J, Valente IM, Almeida A, Lima SAC, Fonseca AJM, Maia MRG. Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs. Animals. 2022; 12(19):2643. https://doi.org/10.3390/ani12192643
Chicago/Turabian StyleCabrita, Ana R. J., Joana Guilherme-Fernandes, Inês M. Valente, Agostinho Almeida, Sofia A. C. Lima, António J. M. Fonseca, and Margarida R. G. Maia. 2022. "Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs" Animals 12, no. 19: 2643. https://doi.org/10.3390/ani12192643
APA StyleCabrita, A. R. J., Guilherme-Fernandes, J., Valente, I. M., Almeida, A., Lima, S. A. C., Fonseca, A. J. M., & Maia, M. R. G. (2022). Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs. Animals, 12(19), 2643. https://doi.org/10.3390/ani12192643