Pharmacokinetic-Pharmacodynamic Profile, Bioavailability, and Withdrawal Time of Tylosin Tartrate Following a Single Intramuscular Administration in Olive Flounder (Paralichthys olivaceus)
<p>Total ion chromatograms: (<b>a</b>) standard solution at 50 ng/mL; (<b>b</b>) blank serum sample; (<b>c</b>) blank serum sample spiked with tylosin at 10 ng/mL; (<b>d</b>) serum sample at 1 h after intramuscular administration of tylosin tartrate.</p> "> Figure 2
<p>A semilogarithmic plot of the tylosin concentration–time profile in serum following a single intramuscular administration at 10 and 20 mg/kg. Data are expressed as mean ± SD from 10 olive flounders at each time point. The minimum inhibitory concentration (MIC) value corresponds to <span class="html-italic">Streptococcus parauberis</span> MIC<sub>90</sub> (1 µg/mL) and <span class="html-italic">S. iniae</span> MIC<sub>90</sub> (0.5 µg/mL).</p> "> Figure 3
<p>Residue depletion of tylosin from muscle after a single intramuscular administration of 10 mg/kg tylosin tartrate for 1 week: (<b>a</b>) 95% statistical tolerance limit with 95% confidence; (<b>b</b>) 99% statistical tolerance limit with 95% confidence. Data are expressed from 10 olive flounders at each time point. The maximum residue limit (MRL) used was an official level of 0.1 µg/g.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals
2.3. Experimental Design
2.4. Sample Preparation and HPLC-MS/MS Analysis
2.5. Pharmacokinetic Analysis
2.6. In Vitro Antibacterial Activity
2.7. Pharmacokinetic (PK)/Pharmacodynamic (PD) Relationships
2.8. Withdrawal Period Calculation
3. Results
3.1. Analytical Method Validation
3.2. Serum Pharmacokinetics
3.3. MIC Determination of Clinical Streptococcus Isolates
3.4. PK/PD Relationships
3.5. Muscle Withdrawal Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noga, E.J. Fish Disease: Diagnosis and Treatment; John Wiley & Sons Publications: Ames, IA, USA, 2010. [Google Scholar]
- Soo, J.S.; Kwon, M.G.; Hwang, J.Y.; Hwang, S.D.; Kim, D.H.; Bae, J.S.; Park, K.H.; Lee, J.H. Estimation of pharmacological properties of ceftiofur, an injectable cephalosporin antibiotic, for treatment of streptococcosis in cultured olive flounder Paralichthys olivaceus. Aquac. Res. 2021, 52, 831–841. [Google Scholar] [CrossRef]
- NIFS. National Institute of Fisheries Science. 2020. Available online: http://www.nfqs.go.kr/hpmg/adms/actionAdmsForm.do (accessed on 28 July 2021).
- Prescott, J.F.; Baggot, J.D. Antimicrobial Therapy in Veterinary Medicine; Iowa State University Press: Ames, IA, USA, 1993. [Google Scholar]
- Brisson-Noël, A.; Trieu-Cuot, P.; Courvalin, P. Mechanism of action of spiramycin and other macrolides. J. Antimicrob. Chemother. 1988, 22, 13–23. [Google Scholar] [CrossRef]
- Prescott, J.F.; Baggot, J.D. Antimicrobial Therapy in Veterinary Medicine; Blackwell Scientific Publications: Oxford, UK, 1988. [Google Scholar]
- Gingerich, D.A.; Baggot, J.D.; Kowalski, J.J. Tylosin antimicrobial activity and pharmacokinetics in cows. Can. Vet. J. 1977, 18, 96. [Google Scholar]
- Hannan, P.C.T.; Bhogal, B.S.; Fish, J.P. Tylosin tartrate and tiamutilin effects on experimental piglet pneumonia induced with pneumonic pig lung homogenate containing mycoplasmas, bacteria and viruses. Res. Vet. Sci. 1982, 33, 76–88. [Google Scholar] [CrossRef]
- Joo, M.S.; Hwang, S.D.; Choi, K.M.; Kim, Y.J.; Hwang, J.Y.; Kwon, M.G.; Jeong, J.M.; Seo, J.S.; Lee, J.H.; Lee, H.C.; et al. Application of tylosin antibiotics to olive flounder (Paralichthys olivaceus) infected with Streptococcus parauberis. Fish. Aquat. Sci. 2020, 23, 1–18. [Google Scholar] [CrossRef]
- Baggot, J.D. Principles of drug distribution. Aust. Vet. J. 1974, 50, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Hamill, R.L.; Haney, M.E., Jr.; Stamper, M.; Wlley, P.F. Tylosin, a New Antibiotic: II. Isolation, Properties, and Preparation of Pesmycosin, a Microbiologically Active Degradation Product. Antibiot. Chemother. 1961, 11, 328–334. [Google Scholar]
- Abu-Basha, E.A.; Al-Shunnaq, A.F.; Gehring, R. Comparative pharmacokinetics and bioavailability of two tylosin formulations in chickens after oral administration. J. Hell. Vet. Med. Soc. 2012, 63, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Atef, M.; Youssef, S.A.; Atta, A.H.; El-Maaz, A.A. Disposition of tylosin in goats. Br. Vet. J. 1991, 147, 207–215. [Google Scholar] [CrossRef]
- Elazab, S.T.; Elshater, N.S.; Hashem, Y.H.; Park, S.C.; Hsu, W.H. Pharmacokinetics, tissue residues, and ex vivo pharmacodynamics of tylosin against Mycoplasma anatis in ducks. J. Vet. Pharmacol. Ther. 2020, 43, 57–66. [Google Scholar] [CrossRef]
- Litterio, N.J.; Calvinho, L.F.; Flores, M.M.; Tarabla, H.D.; Boggio, J.C. Microbiological screening test validation for detection of tylosin excretion in milk of cows with low and high somatic cell counts. J. Vet. Med. 2007, 54, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Prats, C.; El Korchi, G.; Francesch, R.; Arboix, M.; Pérez, B. Disposition kinetics of tylosin administered intravenously and intramuscularly to pigs. Res. Vet. Sci. 2002, 73, 141–144. [Google Scholar] [CrossRef]
- Saurit, A.R.; Rubio, M.; Baroni, E.; San Andrés, M.; Sánchez, S.; Boggio, J.C. Some comparative aspects of the pharmacokinetics of tylosin in buffaloes and cattle. Vet. Res. Commun. 2002, 26, 49–54. [Google Scholar] [CrossRef]
- Taha, A.A.; Elsheikh, H.A.; Khalafalla, A.E.; OSMAN, I.A.; Abdullah, A.S. Disposition kinetics of tylosin administered intravenously and intramuscularly in desert sheep and Nubian goats. Vet. J. 1999, 158, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.R.; Le Breton, A.; Horsberg, T.E.; Corsin, F. Guidelines for Antimicrobial Use in Aquaculture. Guide to Antimicrobial Use in Animals; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Soltani, M.; Shanker, S.; Munday, B.L. Chemotherapy of Cytophaga/Flexibacter-like bacteria (CFLB) infections in fish: Studies validating clinical efficacies of selected antimicrobials. J. Fish Dis. 1995, 18, 555–565. [Google Scholar] [CrossRef]
- MFDS. Korea Food Standards Codex. Ministry of Food and Drug Safety. 2020. Available online: http://www.foodsafetykorea.go.kr/foodcode/01_01.jsp (accessed on 28 July 2021).
- Commission Decision 2002/657/EC (12 August 2002). Implementing Council Directive 96/23/EC concerning the Performance of Analytical Methods and the Interpretation of Results. Available online: https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en (accessed on 28 July 2021).
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; National Committee for Clinical Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Lees, P.; Pelligand, L.; Illambas, J.; Potter, T.; Lacroix, M.; Rycroft, A.; Toutain, P.L. Pharmacokinetic/pharmacodynamic integration and modelling of amoxicillin for the calf pathogens Mannheimia haemolytica and Pasteurella multocida. J. Vet. Pharmacol. Ther. 2015, 38, 457–470. [Google Scholar] [CrossRef]
- Park, J.Y.; Awji, E.G.; Suh, J.W.; Park, S.C. Pharmacokinetics, pharmacokinetic–pharmacodynamic relationship, and withdrawal period of amoxicillin sodium in olive flounder (Paralichthys olivaceus). Xenobiotica 2016, 46, 522–529. [Google Scholar] [CrossRef]
- CVMP; EMEA. Note for Guidance; Approach towards Harmonisation of Withdrawal Periods; EMEA/CVMP/036/95 Final; Committee for Veterinary Medicinal Products and The European Agency for the Evaluation of Medicinal Products: London, UK, 1996; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/note-guidance-approach-towards-harmonisation-withdrawal-periods_en.pdf (accessed on 28 July 2021).
- EMEA. Note for Guidance on Approach towards Harmonization of Withdrawal Periods for Meat—Updated Application Software; EMEA/CVMP/563/02; The European Agency for the Evaluation of Medicinal Products Veterinary Medicines and Inspections: London, UK, 2002; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/note-guidance-approach-towards-harmonisation-withdrawal-periods-updated-application-software_en.pdf (accessed on 28 July 2021).
- CVMP. Tylosin (Extension to All Food Producing Species). Summary Report (5). EMEA/MRL/829/02-Final; European Agency for the Evaluation of Medicinal Products: London, UK, 2002; Available online: https://www.ema.europa.eu/en/documents/mrl-report/tylosin-extension-all-food-producing-species-summary-report-5-committee-veterinary-medicinal_en.pdf (accessed on 28 July 2021).
- FDA Guidance. Guidance for Industry: Bioanalytical Method Validation. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center of Veterinary Medicine (CVM). 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 28 July 2021).
- Riviere, J.E. Absorption, distribution, metabolism, and elimination. J. Vet. Pharmacol. Ther. 2009, 9, 11–46. [Google Scholar]
- Shaddad, S.A.; Hassan, S.A.; El Tayeb, I.B.; Omer, M.A.; Nour, A.O.M.; Al-Nazawi, M.H.; Homeida, A.M. Pharmacokinetics of tylosin in desert sheep after intramuscular injection. Res. J. Pharm. 2007, 1, 19–22. [Google Scholar]
- Debuf, Y. The veterinary formulary handbook of medicines used in veterinary practice. J. S. Afr. Vet. Assoc. 1991, 62, 181. [Google Scholar] [CrossRef]
- Levison, M.E.; Levison, J.H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. 2009, 23, 791–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, M.; Toutain, P.-L.; Walker, R.D. The Pharmacokinetic Pharmacodynamic (PK/PD) Relationship of Antimicrobial Agents and Its Importance in Veterinary Medicine; John Wiley & Sons Publications: Blackwell, Oxford, UK, 2006. [Google Scholar]
- Huang, L.; Zhang, H.; Li, M.; Ahmad, I.; Wang, Y.; Yuan, Z. Pharmacokinetic-pharmacodynamic modeling of tylosin against Streptococcus suis in pigs. BMC Vet. Res. 2018, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toutain, P.L.; del Castillo, J.R.; Bousquet-Mélou, A. The pharmacokinetic–pharmacodynamic approach to a rational dosage regimen for antibiotics. Res. Vet. Sci. 2002, 73, 105–114. [Google Scholar] [CrossRef]
- Nielsen, E.I.; Friberg, L.E. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol. Rev. 2013, 65, 1053–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AliAbadi, F.S.; Lees, P. Antibiotic treatment for animals: Effect on bacterial population and dosage regimen optimisation. Int. J. Antimicrob. Agents 2000, 14, 307–313. [Google Scholar] [CrossRef]
Analyte | Matrix | Spike Level (ng/g) | Measured Concentration 1 (ng/g) | Intra-Day (n = 3) | Inter-Day (n = 9) | LOD (ng/g) | LOQ 3 (ng/g) | ||
---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Precision 2 (%) | Accuracy (%) | Precision (%) | ||||||
Tylosin | Serum | 0.5 | 0.46 | 103.0 | 5.0 | 89.6 | 11.7 | 0.25 | 0.5 |
5 | 4.21 | 83.2 | 2.3 | 84.5 | 8.3 | ||||
50 | 44.20 | 94.5 | 3.6 | 86.4 | 3.5 | ||||
Muscle | 0.5 | 0.45 | 93.7 | 11.6 | 89.5 | 12.8 | 0.25 | 0.5 | |
5 | 4.58 | 89.5 | 8.8 | 92.3 | 9.0 | ||||
50 | 45.28 | 91.6 | 8.4 | 90.2 | 9.3 |
Parameter | Unit | Single Dose of Tylosin Tartrate | ||
---|---|---|---|---|
IV 10 mg/kg | IM 10 mg/kg | IM 20 mg/kg | ||
λz | 1/h | 0.03 | 0.02 | 0.03 |
t1/2λz | h | 21.07 | 33.96 | 26.04 |
Tmax | h | NA | 0.25 | 0.25 |
Cmax | µg/mL | NA | 10.76 | 16.60 |
AUC0-t | µg/mL*h | 133.63 | 98.20 | 221.83 |
AUC0-inf | µg/mL*h | 141.44 | 123.55 | 246.05 |
AUMC0-inf | µg/mL*h2 | 2318.13 | 5393.46 | 8142.39 |
MRT | h | 16.39 | 43.66 | 33.09 |
Vz | L/kg | 2.15 | - | - |
Cl | L/kg/h | 0.07 | - | - |
F | % | - | 87.35 | 86.98 |
Bacterium Name | Isolation Sources (Number of Strains) | Strain Codes | MIC (µg/mL) |
---|---|---|---|
Streptococcus iniae | Busan, olive flounder, 2004 (n = 1) | FP2140 | 0.5 |
Jeju, olive flounder, 2004 (n = 2) | FP2149 | 0.125 | |
FP2150 | 0.25 | ||
Ulsan, olive flounder, 2004 (n = 1) | FP3060 | 0.25 | |
Tongyeong, rock bream, 2006 (n = 1) | FP3187 | 0.25 | |
Pohang, olive flounder, 2007 (n = 1) | FP3358 | 0.125 | |
Taean, rock fish, 2008 (n = 1) | FP3476 | 0.25 | |
Jeju, olive flounder, 2004 (n = 4) | FP4033 | 0.25 | |
FP4143 | 0.5 | ||
FP4160 | 0.125 | ||
FP4164 | 0.25 | ||
Wando, olive flounder, 2004 (n = 1) | FP4080 | 0.25 | |
Ulsan, olive flounder, 2005 (n = 1) | FP5162 | 0.25 | |
Jeju, olive flounder, 2006 (n = 1) | FP6085 | 0.125 | |
Tongyeong, rock fish, 2012 (n = 1) | FPa4413 | 0.125 | |
Tongyeong, olive flounder, 1998 (n = 1) | BS9 | 0.25 | |
Yeosu, rainbow fish, 2010 (n = 1) | RaB6-1-a | 0.25 | |
Yeosu, saddled weever, 2010 (n = 1) | SW9-2-a-an | 0.5 | |
Yeosu, stripey, 2010 (n = 1) | st11-1-b-an | 0.5 | |
Gyeongsangbukdo, olive flounder, 2003 (n = 4) | A11022 | 0.125 | |
A11024, A11025 | 0.25 | ||
A11023 | 0.5 | ||
Streptococcus parauberis | Jeju, olive flounder, 2003 (n = 2) | KSP1 | 0.5 |
KSP4 | 1 | ||
Jeju, olive flounder, 2004 (n = 3) | KSP5, KSP10 | 0.5 | |
KSP6 | 1 | ||
Jeju, olive flounder, 2005 (n = 2) | KSP14, KSP20 | 1 | |
Haenam, olive flounder, 2005 (n = 1) | KSP22 | 2 | |
Wando, olive flounder, 2005 (n = 2) | KSP40 | 1 | |
KSP24 | 2 | ||
Jeju, olive flounder, 1999 (n = 1) | KSP45 | 1 | |
Jeju, olive flounder, 2018 (n = 9) | SPOF18J1, SPOF18J3, SPOF18J4, SPOF18J5, SPOF18J6, SPOF18J7, SPOF18J9, SPOF18J10, SPOF18J11 | 1 |
Bacterial Strain 1 | S. iniae | S. parauberis | S. iniae | S. parauberis |
---|---|---|---|---|
MIC 2 (µg/mL) | ||||
Range | 0.125–0.5 | 0.5–2 | 0.125–0.5 | 0.5–2 |
MIC50 | 0.25 | 1 | 0.25 | 1 |
MIC90 | 0.5 | 1 | 0.5 | 1 |
TT 3 doses (mg/kg, IM) | 10 mg/kg | 20 mg/kg | ||
Cmax/MIC50 | 43.04 | 10.76 | 66.40 | 16.60 |
Cmax/MIC90 | 21.52 | 10.76 | 33.20 | 16.60 |
AUC0-t/MIC50 (h) | 392.80 | 98.20 | 887.32 | 221.83 |
AUC0-t/MIC90 (h) | 196.40 | 98.20 | 443.66 | 221.83 |
AUC0-inf/MIC50 (h) | 494.20 | 123.55 | 984.20 | 246.05 |
AUC0-inf/MIC90 (h) | 247.10 | 123.55 | 492.10 | 246.05 |
T > MIC50 (h) | 84.36 | 44.75 | 101.71 | 62.66 |
T > MIC90 (h) | 64.56 | 44.75 | 81.92 | 62.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, G.W.; Kwon, M.-G.; Seo, J.S. Pharmacokinetic-Pharmacodynamic Profile, Bioavailability, and Withdrawal Time of Tylosin Tartrate Following a Single Intramuscular Administration in Olive Flounder (Paralichthys olivaceus). Animals 2021, 11, 2468. https://doi.org/10.3390/ani11082468
Lee J-H, Kim GW, Kwon M-G, Seo JS. Pharmacokinetic-Pharmacodynamic Profile, Bioavailability, and Withdrawal Time of Tylosin Tartrate Following a Single Intramuscular Administration in Olive Flounder (Paralichthys olivaceus). Animals. 2021; 11(8):2468. https://doi.org/10.3390/ani11082468
Chicago/Turabian StyleLee, Ji-Hoon, Ga Won Kim, Mun-Gyeong Kwon, and Jung Soo Seo. 2021. "Pharmacokinetic-Pharmacodynamic Profile, Bioavailability, and Withdrawal Time of Tylosin Tartrate Following a Single Intramuscular Administration in Olive Flounder (Paralichthys olivaceus)" Animals 11, no. 8: 2468. https://doi.org/10.3390/ani11082468
APA StyleLee, J. -H., Kim, G. W., Kwon, M. -G., & Seo, J. S. (2021). Pharmacokinetic-Pharmacodynamic Profile, Bioavailability, and Withdrawal Time of Tylosin Tartrate Following a Single Intramuscular Administration in Olive Flounder (Paralichthys olivaceus). Animals, 11(8), 2468. https://doi.org/10.3390/ani11082468