Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species
<p>(<b>a</b>) The movement of nesting locations by elevation for individual birds year to year. Orange circles depict a bird that was banded as a nestling, and blue circles depict adults. Movements of an individual bird (<span class="html-italic">n</span> = 182) are tracked by dotted lines. (<b>b</b>) Linear regression of nesting elevation over time for recaptured birds (<span class="html-italic">n</span> = 182). Dots represent the mean (±SE) nesting elevation per bird. There was a significant positive relationship over time (LM: estimate = 15.69, SE ± 1.21, t = 12.93, <span class="html-italic">p</span> < 0.001, R<sup>2</sup> = 0.48). Area shaded blue is the 95% confidence interval.</p> "> Figure 2
<p>Age differences in elevational changes between nesting locations from one year to the next for each bird captured two or more times (<span class="html-italic">n</span> = 222). Each point represents an individual bird movement. An individual can have multiple points if it was captured more than two times. Orange circles depict a bird that was banded as a fledgling, and blue circles depict adults. The size of each point corresponds to the straight-line distance between nest boxes. Inset: Mean (±SE) elevation difference (absolute values) between fledglings and adults. Fledglings changed elevation more than adults (LMM: estimate = −8.48 ± 1.83, df = 90.97, t = −4.64, <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>Sex differences in elevational changes between nesting locations from one year to the next for fledglings captured twice (<span class="html-italic">n</span> = 87). Each point represents an individual bird movement. Green circles depict females, and blue circles depict males. The size of each point corresponds to the straight-line distance between nest boxes. Inset: Mean (±SE) elevation difference (absolute values) between males and females. Females changed elevation more than males (Mann–Whitney U test: W = 719, <span class="html-italic">p</span> < 0.001).</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Field Work and Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.-C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction Debt of High-Mountain Plants under Twenty-First-Century Climate Change. Nat. Clim. Chang. 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Charmantier, A.; Mccleery, R.H.; Cole, L.R.; Perrins, C.; Kruuk, L.E.B.; Sheldon, B.C. Adaptive Phenotypic Plasticity in Response to Climate Change in a Wild Bird Population. Science 2008, 320, 800–804. [Google Scholar] [CrossRef] [Green Version]
- Chevin, L.-M.; Lande, R.; Mace, G.M. Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory. PLoS Biol. 2010, 8, e1000357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiens, J.J.; Graham, C.H. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef] [Green Version]
- Hale, R.; Morrongiello, J.R.; Swearer, S.E. Evolutionary Traps and Range Shifts in a Rapidly Changing World. Biol. Lett. 2016, 12, 20160003. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Sgrò, C.M. Climate Change and Evolutionary Adaptation Plastic versus Genetic Change in Time and Space. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Scridel, D.; Brambilla, M.; Martin, K.; Lehikoinen, A.; Iemma, A.; Matteo, A.; Jähnig, S.; Caprio, E.; Bogliani, G.; Pedrini, P.; et al. A Review and Meta-Analysis of the Effects of Climate Change on Holarctic Mountain and Upland Bird Populations. Ibis 2018, 160, 489–515. [Google Scholar] [CrossRef] [Green Version]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s Enigma: What Causes Global Patterns of Mountain Biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef]
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, Models, and Climate Change: Assessing the Assumptions and Uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmesan, C.; Yohe, G. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Moritz, C.; Patton, J.L.; Conroy, C.J.; Parra, J.L.; White, G.C.; Beissinger, S.R. Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science 2008, 322, 261–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Both, C.; Artemyev, A.V.; Blaauw, B.; Cowie, R.J.; Dekhuijzen, A.J.; Eeva, T.; Enemar, A.; Gustafsson, L.; Ivankina, E.V.; Järvinen, A.; et al. Large-Scale Geographical Variation Confirms That Climate Change Causes Birds to Lay Earlier. Proc. R. Soc. B Biol. Sci. 2004, 271, 1657–1662. [Google Scholar] [CrossRef] [Green Version]
- Maggini, R.; Lehmann, A.; Kéry, M.; Schmid, H.; Beniston, M.; Jenni, L.; Zbinden, N. Are Swiss Birds Tracking Climate Change? Detecting Elevational Shifts Using Response Curve Shapes. Ecol. Model. 2011, 222, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Vedder, O.; Bouwhuis, S.; Sheldon, B.C. Quantitative Assessment of the Importance of Phenotypic Plasticity in Adaptation to Climate Change in Wild Bird Populations. PLoS Biol. 2013, 11, e1001605. [Google Scholar] [CrossRef] [Green Version]
- Borgman, C.C.; Wolf, B.O. The Indirect Effects of Climate Variability on the Reproductive Dynamics and Productivity of an Avian Predator in the Arid Southwest. Oecologia 2016, 180, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.J.; Donelson, J.M.; Schunter, C.; Ravasi, T.; Gaitán-Espitia, J.D. Beyond Buying Time: The Role of Plasticity in Phenotypic Adaptation to Rapid Environmental Change. Philos. Trans. R. Soc. B 2019, 374, 20180174. [Google Scholar] [CrossRef]
- Sekercioglu, C.H.; Schneider, S.H.; Fay, J.P.; Loarie, S.R. Climate Change, Elevational Range Shifts, and Bird Extinctions. Conserv. Biol. 2008, 22, 140–150. [Google Scholar] [CrossRef]
- DeLuca, W.V.; King, D.I. Montane Birds Shift Downslope despite Recent Warming in the Northern Appalachian Mountains. J. Ornithol. 2017, 158, 493–505. [Google Scholar] [CrossRef]
- Campos-Cerqueira, M.; Arendt, W.J.; Wunderle, J.M.; Aide, T.M. Have Bird Distributions Shifted along an Elevational Gradient on a Tropical Mountain? Ecol. Evol. 2017, 7, 9914–9924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wysner, T.E.; Bartlow, A.W.; Hathcock, C.D.; Fair, J.M. Long-Term Phenology of Two North American Secondary Cavity-Nesters in Response to Changing Climate Conditions. Sci. Nat. 2019, 106, 54. [Google Scholar] [CrossRef] [Green Version]
- Angert, A.L.; Crozier, L.G.; Rissler, L.J.; Gilman, S.E.; Tewksbury, J.J.; Chunco, A.J. Do Species’ Traits Predict Recent Shifts at Expanding Range Edges? Ecol. Lett. 2011, 14, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, B.; Walsh, J.; O’Brien, K.M.; Kovach, A.I. Plasticity in Nesting Adaptations of a Tidal Marsh Endemic Bird. Ecol. Evol. 2018, 8, 10780–10793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, J.S.; Chmura, H.E.; Pérez, J.H.; Quach, L.N.; Asmus, A.; Word, K.R.; McGuigan, M.A.; Sweet, S.K.; Meddle, S.L.; Gough, L.; et al. Breeding on the Leading Edge of a Northward Range Expansion: Differences in Morphology and the Stress Response in the Arctic Gambel’s White-Crowned Sparrow. Oecologia 2016, 180, 33–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, D.E.; Benton, T.G. Causes and Consequences of Animal Dispersal Strategies: Relating Individual Behaviour to Spatial Dynamics. Biol. Rev. 2005, 80, 205–225. [Google Scholar] [CrossRef] [Green Version]
- Liebl, A.L.; Martin, L.B. Exploratory Behaviour and Stressor Hyper-Responsiveness Facilitate Range Expansion of an Introduced Songbird. Proc. R. Soc. B Biol. Sci. 2012, 279, 4375–4381. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, A.; Badyaev, A.V. Coupling of Dispersal and Aggression Facilitates the Rapid Range Expansion of a Passerine Bird. Proc. Natl. Acad. Sci. USA 2007, 104, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, R.A. Adaptive Dispersal Dtrategies and the Dynamics of a Range Expansion. Am. Nat. 2008, 172, S4–S17. [Google Scholar] [CrossRef]
- Guinan, J.; Gowaty, P.; Eltzroth, E. Western Bluebird: Sialia mexicana. In The Birds of North America; Poole, A., Gill, F., Eds.; The Academy of Natural Sciences, Philadelphia and The American Ornithologist’s Union: Washington, DC, USA, 2000; Volume 150, pp. 1–32. [Google Scholar]
- Fair, J.M.; Hathcock, C.D.; Bartlow, A.W. Avian Communities Are Decreasing with Piñon Pine Mortality in the Southwest. Biol. Conserv. 2018, 226, 186–195. [Google Scholar] [CrossRef]
- Koenig, W.D.; Dickinson, J.L. Nestling Sex-Ratio Variation in Western Bluebirds. The Auk 1996, 113, 902–910. [Google Scholar] [CrossRef]
- Dickinson, J.L.; Koenig, W.D.; Pitelka, F.A. Fitness Consequences of Helping Behavior in the Western Bluebird. Behav. Ecol. 1996, 7, 168–177. [Google Scholar] [CrossRef]
- Musgrave, K.; Bartlow, A.W.; Fair, J.M. Long-term Variation in Environmental Conditions Influences Host–Parasite Fitness. Ecol. Evol. 2019, 9, 7688–7703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, J.L. Facultative Sex Ratio Adjustment by Western Bluebird Mothers with Stay-at-Home Helpers-at-the-Nest. Anim. Behav. 2004, 68, 373–380. [Google Scholar] [CrossRef]
- Pyle, P. Identification Guide to North American Passerines: A Compendium of Information on Identifying, Ageing, and Sexing Passerines in the Hand; Slate Creek Press: Point Reyes Station, CA, USA, 1987. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. Available online: https://CRAN.R-Project.Org/Package=MuMIn (accessed on 13 May 2019).
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; ISBN 3_900051_00_3. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Freeman, B.G. Competitive Interactions upon Secondary Contact Drive Elevational Divergence in Tropical Birds. Am. Nat. 2015, 186, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Pounds, J.A.; Fogden, M.P.L.; Campbell, J.H. Biological Response to Climate Change on a Tropical Mountain. Nature 1999, 398, 611–615. [Google Scholar] [CrossRef]
- Bestion, E.; Clobert, J.; Cote, J. Dispersal Response to Climate Change: Scaling down to Intraspecific Variation. Ecol. Lett. 2015, 18, 1226–1233. [Google Scholar] [CrossRef]
- Cote, J.; Clobert, J.; Brodin, T.; Fogarty, S.; Sih, A. Personality-Dependent Dispersal: Characterization, Ontogeny and Consequences for Spatially Structured Populations. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 4065–4076. [Google Scholar] [CrossRef] [Green Version]
- Lindstrom, T.; Brown, G.P.; Sisson, S.A.; Phillips, B.L.; Shine, R. Rapid Shifts in Dispersal Behavior on an Expanding Range Edge. Proc. Natl. Acad. Sci. USA 2013, 110, 13452–13456. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.C.; Fair, J.M.; Zuk, M. Coloration, Paternity, and Assortative Mating in Western Bluebirds. Ethology 2015, 121, 176–186. [Google Scholar] [CrossRef]
- Dickinson, J.L.; Akre, J.J. Extrapair Paternity, Inclusive Fitness, and within-Group. Mol. Ecol. 1998, 7, 95–105. [Google Scholar] [CrossRef]
- Emlen, S.T.; Emlen, J.M.; Levin, S.A. Sex-Ratio Selection in Species with Helpers-at-the-Nest. Am. Nat. 1986, 127, 1–8. [Google Scholar] [CrossRef]
- Wightman, C.S. Survival and Movements of Fledgling Western Bluebirds. Southwest. Nat. 2009, 54, 248–252. [Google Scholar] [CrossRef]
- Wingfield, J.C.; Krause, J.S.; Perez, J.H.; Chmura, H.E.; Németh, Z.; Word, K.R.; Calisi, R.M.; Meddle, S.L. A Mechanistic Approach to Understanding Range Shifts in a Changing World: What Makes a Pioneer? Gen. Comp. Endocrinol. 2015, 222, 44–53. [Google Scholar] [CrossRef] [Green Version]
Number of Upslope Shifts | Number of Downslope Shifts | Number Showing No Change | Total | |
---|---|---|---|---|
Adults | 34 | 30 | 71 | 135 |
Males | 14 | 9 | 21 | 44 |
Females | 20 | 21 | 50 | 91 |
Fledglings | 34 | 31 | 22 | 87 |
Males | 24 | 24 | 22 | 70 |
Females | 10 | 7 | 0 | 17 |
Total | 68 | 61 | 93 | 222 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abeyta, E.J.; Bartlow, A.W.; Hathcock, C.D.; Fair, J.M. Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species. Animals 2021, 11, 2457. https://doi.org/10.3390/ani11082457
Abeyta EJ, Bartlow AW, Hathcock CD, Fair JM. Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species. Animals. 2021; 11(8):2457. https://doi.org/10.3390/ani11082457
Chicago/Turabian StyleAbeyta, Elisa J., Andrew W. Bartlow, Charles D. Hathcock, and Jeanne M. Fair. 2021. "Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species" Animals 11, no. 8: 2457. https://doi.org/10.3390/ani11082457
APA StyleAbeyta, E. J., Bartlow, A. W., Hathcock, C. D., & Fair, J. M. (2021). Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species. Animals, 11(8), 2457. https://doi.org/10.3390/ani11082457