Cadmium Accumulation and Depuration in the Muscle of Prussian Carp (Carassius gibelio Bloch) after Sub-Chronic Cadmium Exposure: Ameliorating Effect of Melatonin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Mortality, Body Weight and Behaviour
2.3. Heavy Metal Determination
2.4. Bioconcentration Factor (BCF)
2.5. Statistical Analysis
3. Results
3.1. Mortality, Body Weight and Behaviour
3.2. Cd Accumulation in Muscle
3.3. Zn Accumulation in Muscle
3.4. Cu Accumulation in Muscle
3.5. Fe Accumulation in Muscle
3.6. BCF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, H.; Khan, E. Environmental chemistry in the twenty-first century. Environ. Chem. Lett. 2017, 15, 329–346. [Google Scholar] [CrossRef]
- Sow, A.Y.; Ismail, A.; Zulkifli, S.Z.; Amal, M.N.; Hambali, K.A. Survey on heavy metals contamination and health risk assessment in commercially Valuable Asian Swamp Eel, Monopterus albus from Kelantan, Malaysia. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Selvi, A.; Rajasekar, A.; Theerthagiri, J.; Ananthaselvam, A.; Sathishkumar, K.; Madhavan, J.; Rahman, P.K.S.M. Integrated remediation processes toward heavy metal removal/recovery from various environments—A Review. Front. Environ. Sci. 2019, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008L0105-20130913&from=PT (accessed on 17 May 2021).
- Mensoor, M.; Said, A. Determination of heavy metals in freshwater fishes of the Tigris river in Baghdad. Fishes 2018, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Li, X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 2018, 5, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Aoshima, K. Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium—historical review and perspectives. Soil Sci. Plant Nutr. 2016, 62, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Singh, S.; Agrawal, A.; Siddiqi, N.J.; Sharma, B. Phytochemicals mediated remediation of neurotoxicityInduced by heavy metals. Biochem. Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sauliutė, G.; Stankevičiūèt, M.; Svecevičius, G.; Baršienè, J.; Valskienè, R. Assessment of heavy metals bioconcentration factor (BCF) and genotoxicity response induced by metal mixture in Salmo salar tissues. In Proceedings of the 10th International Conference on Environmental Engineering; VGTU: Vilnius, Lithuania, 2017. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B.; Łuczyński, M.J. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol. Environ. Saf. 2018, 153, 60–67. [Google Scholar] [CrossRef]
- Svecevičius, G.; Idzelis, R.L.; Mockutė, E. Accumulation of heavy metals in different body tissues of gibel carp Carassius gibelio separately exposed to a model mixture (Cu, Zn, Ni, Cr, PB, Cd) and nickel. J. Environ. Eng. Landsc. Manag. 2014, 22, 292–300. [Google Scholar] [CrossRef]
- Sánchez, J.; Montilla, M.; Gutiérrez-Panizo, C.; Sotillo, J.; Fuentes, P.; Montes, A.; Gutiérrez, A. Analytical characterization of trace elements (zinc, copper, cadmium, lead and selenium) in saliva of pigs under common pathological conditions in the field: A pilot study. BMC Vet. Res. 2020, 16, 27. [Google Scholar] [CrossRef] [Green Version]
- Bulat, Z.; Dukić-Ćosić, D.; Antonijević, B.; Buha, A.; Bulat, P.; Pavlović, Z.; Matović, V. Can zinc supplementation ameliorate cadmium-induced alterations in the bioelement content in rabbits? Arh. Hig. Rada Toksikol. 2017, 68, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Bajo, M.J.; de Atauri, P.; Ortega, F.; Westerhoff, H.V.; Gelpí, J.L.; Centelles, J.J.; Cascante, M. Effects of cadmium and mercury on the upper part of skeletal muscle glycolysis in mice. PLoS ONE 2014, 9, e80018. [Google Scholar] [CrossRef] [Green Version]
- Al-Sawafi, A.G.A.; Wang, L.; Yan, Y. Cadmium accumulation and its histological effect on brain and skeletal muscle of zebrafish. J. Heavy Met. Toxic. Dis. 2017, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Unsal, V.; Dalkiran, T.; Çiçek, M.; Kölükçü, E. The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: A Review. Adv. Pharm. Bull. 2020, 10, 184–202. [Google Scholar] [CrossRef] [Green Version]
- Mehanna, R.A.; Soliman, G.Y.; Hassaan, P.S.; Sharara, G.M.; Abdel-Moneim, R.A. Protective role of melatonin on skeletal muscle injury in rats. Int. J. Clin. Exp. Med. 2017, 10, 1490–1501. [Google Scholar]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin synthesis and function: Evolutionary history in animals and plants. Front. Endocrinol. 2019, 10, 249. [Google Scholar] [CrossRef]
- Stacchiotti, A.; Favero, G.; Rodella, L.F. Impact of melatonin on skeletal muscle and exercise. Cells 2020, 9, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witeska, M.; Kondera, E.; Lipionoga, J.; Jastrzębska, A. Changes in oxygen consumption rate and red blood parameters in common carp Cyprinus carpio L. after acute copper and cadmium exposures. Fresen. Environ. Bull. 2010, 19, 115–122. [Google Scholar]
- Silva, M.A.; Motta, T.C.S.; Tintor, D.B.; Dourado, T.A.; Alcântara, A.L.; Menegário, A.A.; Ferreira, J.R. Tilapia (Oreochromis niloticus) as a biondicator of copper and cadmium toxicity. A bioavailability approach. J. Braz. Chem. Soc. 2017, 28, 143–151. [Google Scholar] [CrossRef]
- Aarseth, J.J.; Frøiland, E.; Jørgensen, E.H. Melatonin implantation during spring and summer does not affect the seasonal rhythm of feeding in anadromous Arctic charr (Salvelinus alpinus). Polar Biol. 2010, 33, 379–388. [Google Scholar] [CrossRef]
- Sönmez, A.Y.; Aydın, I.; Hisar, O.; Kaya, H.; Hisar, S.A. Melatonin implantation in preovulatory rainbow trout (Oncorhynchus mykiss) under short photoperiod regime reduces egg quality. Turk. J. Fish. Aquat. Sci. 2014, 14, 835–839. [Google Scholar] [CrossRef]
- Porter, M.J.R.; Randall, C.F.; Bromage, N.R.; Thorpeb, J.E. The role of melatonin and the pineal gland on development and smoltification of Atlantic salmon (Salmo salar) parr. Aquaculture 1998, 168, 139–155. [Google Scholar] [CrossRef]
- Mazurais, D.; Porter, M.; Desdoits-Lethimonier, C.; Le Dréan, G.; Le Goff, P.; Randall, C.; Pakdel, F.; Bromage, N.; Kah, O. Effects of melatonin liverestrogen receptor and vitellogenin expression in rainbow trout: An in vitro and in vivo study. Gen. Comp. Endocrinol. 2000, 118, 344–353. [Google Scholar] [CrossRef]
- Drąg-Kozak, E.; Socha, M.; Gosiewski, G.; Łuszczek-Trojnar, E.; Chyb, J.; Popek, W. Protective effect of melatonin on cadmium-induced changes in some maturation and reproductive parameters of female Prussian carp (Carassius gibelio B.). Environ. Sci. Pollut. Res. 2018, 25, 9915–9927. [Google Scholar] [CrossRef] [Green Version]
- Agemian, H.; Sturtevant, D.P.; Austen, K.D. Simultaneous acid extraction of six trace metals from fish tissue by hot-block digestion and determination by atomic-absorption spectrometry. Analyst 1980, 105, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Ahmad, I.; Rashid, I. Effects of cadmium exposure on growth and survival and accumulation in various Organs of Nile Tilapia (Oreochromis niloticus, Linnaeus). J. Agric. Aquac. 2018, 1. Available online: https://escientificpublishers.com/effects-of-cadmium-exposure-on-growth-and-survival-and-accumulation-in-various-organs-of-nile-tilapi (accessed on 20 May 2021).
- Miranda, T.; Vieira, L.R.; Guilhermino, L. Neurotoxicity, behavior, and lethal effects of cadmium, microplastics, and their mixtures on Pomatoschistus microps juveniles from two wild populations exposed under laboratory conditions—implications to environmental and human risk assessment. Int. J. Environ. Res. Public Health. 2019, 16, 2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baekelandt, S.; Milla, S.; Cornet, V.; Flamion, E.; Ledoré, Y.; Redivo, B.; Antipine, S.; Mandiki, S.N.M.; Houndji, A.; Kertaoui, N.E.; et al. Seasonal simulated photoperiods influence melatonin release and immune markers of pike perch Sander lucioperca. Sci. Rep. 2020, 10, 2650. [Google Scholar] [CrossRef]
- Mondal, K.; Ghosh, S.; Haque, S. A review on contamination, bioaccumulation and toxic effect of cadmium, mercury and lead on freshwater fishes. Int. J. Zool. Stud. 2018, 3, 153–159. [Google Scholar]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Malekpouri, P.; Moshtaghie, A.A.; Hosseini, R.; Ebrahimi, E. Short and long-term effects of waterborne cadmium on growth and its muscle accumulation in common carp fish (Cyprinus carpio), an experimental study. Turk. J. Fish. Aquat. Sci. 2011, 11, 587–593. [Google Scholar]
- COMMISSION REGULATION (EC) No 488/2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:JOL_2014_138_R_0011&from=EN (accessed on 17 May 2021).
- Avallone, B.; Agnisola, C.; Cerciello, R.; Panzuto, R.; Simoniello, P.; Cretì, P.; Motta, C.M. Structural and functional changes in the zebrafish (Danio rerio) skeletal muscle after cadmium exposure. Cell Biol. Toxicol. 2015, 31, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Dubińska-Magiera, M.; Daczewska, M.; Lewicka, A.; Migocka-Patrzałek, M.; Niedbalska-Tarnowska, J.; Jagla, K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int. J. Mol. Sci. 2016, 17, 1941. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Khera, K.S.; Kondla, J.K. Heavy metal induced histopathological alterations in liver, muscle and kidney of freshwater cyprinid, Labeo rohita (Hamilton). J. Entomol. Zool. Stud. 2018, 6, 2137–2144. [Google Scholar]
- Rana, V.S. Protection of metal toxicity by melatonin—Recent advances”. EC Pharm. Toxicol 2018, 6, 851–864. [Google Scholar]
- Xin, Z.; Zhang, X.; Hu, W.; Tan, D.-X.; Han, M.; Ji, T.; Jiang, S.; Yu, Z.; Reiter, R.J.; Yang, Y. The protective effects of melatonin on organisms against the environmental pollutants of heavy metal and non-mental toxins. Melatonin Res. 2019, 2, 99–120. [Google Scholar] [CrossRef]
- Sokolović, D.T.; Lilic, L.; Milenković, V.; Stefanovic, R.; Ilic, T.P.; Mekic, B.; Ilic, I.; Stojanovic, N.M.; Ilic, I.R. Effects of melatonin on oxidative stress parameters and pathohistological changes in rat skeletal muscle tissue following carbon tetrachloride application. Saudi Pharm. J. 2018, 26, 1044–1050. [Google Scholar] [CrossRef]
- Lane, E.A.; Canty, M.J.; More, S.J. Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res. Vet. Sci. 2015, 101, 132–139. [Google Scholar] [CrossRef]
- Young, J.L.; Yan, X.; Xu, J.; Yin, X.; Zhang, X.; Arteel, G.E.; Barnes, G.N.; States, J.C.; Watson, W.H.; Kong, M.; et al. Cadmium and high-fat diet disrupt Renal, cardiac and hepatic essential metals. Sci. Rep. 2019, 9, 14675. [Google Scholar] [CrossRef] [Green Version]
- Astani, Z.F.; Jelodar, H.T.; Hasan, F. Studying the accumulation of heavy metals (Fe, Zn, Cu and Cd) in the tissue (muscle, skin, gill and gonad) and its relation with fish (Alosa braschinkowi) length and weight in Caspian Sea coasts. J. Aquac. Mar. Biol. 2018, 7, 308–312. [Google Scholar]
- Petrea, S.-M.; Costache, M.; Cristea, D.; Strungaru, S.-A.; Simionov, I.-A.; Mogodan, A.; Oprica, L.; Cristea, V.A. Machine learning approach in analyzing bioaccumulation of heavy metals in turbot Tissues. Molecules 2020, 25, 4696. [Google Scholar] [CrossRef] [PubMed]
- Sherrer, S.M.; Penland, E.; Modrich, P. The mutagen and carcinogen cadmium is a high-affinity inhibitor of the zinc-dependent mutlα endonuclease. Proc. Natl. Acad. Sci. USA 2018, 115, 7314–7319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güngör, H.; Kara, H. Effects of selenium, zinc, insulin and metallothionein on cadmium-induced oxidative stress and metallothionein gene expression levels in diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2020, 31. [Google Scholar] [CrossRef]
- Orisakwe, O.E.; Oladipo, O.O.; Ajaezi, G.C.; Udowelle, N.A. Horizontal and Vertical Distribution of Heavy Metals in Farm Produce and Livestock around Lead-Contaminated Goldmine in Dareta and Abare, Zamfara State, Northern Nigeria. J. Environ. Public Health 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Di Nicolantonio, J.J.; Mangan, D.; O’Keefe, J.H. Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart 2018, 5, e000784. [Google Scholar] [CrossRef] [Green Version]
- Vest, K.E.; Paskavitz, A.L.; Lee, J.B.; Padilla-Benavides, T. Dynamic changes in copper homeostasis and post-transcriptional regulation of Atp7a during myogenic differentiation. Metallomics 2018, 10, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Wazir, S.M.; Ghobrial, I. Copper deficiency, a new triad: Anemia, leucopenia, and myeloneuropathy. J. Community Hosp. Intern. Med. Perspect. 2017, 7, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Li, C.; Xiao, Y.; Wang, T.; Kang, Y.J. Featured Article: The loss of copper is associated with the increase in copper metabolism MURR domain 1 in ischemic hearts of mice. Exp. Biol. Med. 2018, 243, 780–785. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, D.E.; O’Brien, K.M.; Crockett, E.L. Expansion of capacities for iron transport and sequestration reflects plasma volumes and heart mass amongwhite-blooded notothenioid fishes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R649–R657. [Google Scholar] [CrossRef]
- Stugiewicz, M.; Tkaczyszyn, M.; Kasztura, M.; Banasiak, W.; Ponikowski, P.; Jankowska, E.A. The influence of iron deficiency on the functioning of skeletal muscles: Experimental evidence and clinical implications. Eur. J. Heart Fail. 2016, 18, 762–773. [Google Scholar] [CrossRef]
- Djukić-Ćosić, D.; Jovanović, M.C.; Bulat, Z.P.; Ninković, M.; Malicević, Z.; Matović, V. Relation between lipid peroxidationand iron concentration in mouse liver after acute and subacute cadmium intoxication. J. Trace Elem. Med. Biol. 2008, 22, 66–72. [Google Scholar] [CrossRef]
- Drąg-Kozak, E.; Pawlica-Gosiewska, D.; Gawlik, K.; Socha, M.; Gosiewski, G.; Łuszczek-Trojnar, E.; Solnica, B.; Popek, W. Cadmium-induced oxidative stress in Prussian carp (Carassius gibelio Bloch) hepatopancreas: Ameliorating effect of melatonin. Environ. Sci. Pollut. Res. 2019, 26, 12264–12279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valko, M.; Jomova, K.; Rhodes, C.J.; Kuča, K.; Musílek, K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 2016, 90, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Diniz, W.J.; Banerjee, P.; Regitano, L.C.A. Cross talk between mineral metabolism and meat quality: A systems biology overview. Physiol. Genom. 2019, 51, 529–538. [Google Scholar] [CrossRef]
- Bicer, M.; Akil, M.; Baltaci, A.K.; Mogulkoc, R.; Sivrikaya, A.; Akkus, H. Effect of melatonin on element distribution in the liver tissue of diabetic rats subjected to forced exercise. Bratisl. Lek. Listy 2015, 116, 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Cervantes, E.; García-Revilla, M.A.; Soto-Arredondo, K.; Villaseñor-Granados, T.; Martínez-Alfaro, M.; Robles, J. Computational study of metal complexes formed with EDTA, melatonin, and its main metabolites: Implications in lead intoxication and cluesto a plausible alternative treatment. J. Mol. Model. 2019, 25, 18. [Google Scholar] [CrossRef]
- Limson, J.; Nyokong, T.; Daya, S. The interaction of melatonin and itsprecursors with aluminium, cadmium, copper, iron, lead, and zinc: An adsorptive voltammetric study. J. Pineal Res. 1998, 24, 15–21. [Google Scholar] [CrossRef]
- Navarro-Alarcon, M.; Ruiz-Ojeda, F.J.; Blanca-Herrera, R.M.; Agil, A. Antioxidant activity of melatonin in diabetes in relation to the regulation and levels of plasma Cu, Zn, Fe, Mn, and Se in Zucker diabetic fatty rats. Nutrition 2013, 29, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Buyukokuroglu, M.E.; Oktay, M.; Kufrevioglu, O.I. On the in vitro antioxidative properties of melatonin. J. Pineal Res. 2002, 33, 167–171. [Google Scholar] [CrossRef]
- Kim, S.-G.; Jee, J.-H.; Kang, J.-C. Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after sub-chronic cadmium exposure. Environ. Pollut. 2004, 127, 117–123. [Google Scholar] [CrossRef]
- Thang, N.Q.; Tan, L.V.; Phuong, N.T.K. Cadmium accumulation and elimination in the tissues of Oreochromis sp. Vietnam. J. Chem. 2017, 55, 244–247. [Google Scholar] [CrossRef]
- Kalay, M. Elimination of Essential (Cu, Zn) and Non-Essential (Cd, Pb) Metals from Tissues of a Freshwater Fish Tilapia zilli. Turk. J. Zool. 2000, 24, 429–436. [Google Scholar]
Group | Control | Mel | Blank | 0.4 mg Cd/L + Mel | 0.4 mg Cd/L | 4.0 mg Cd/L + Mel | 0.4 mg Cd/L | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cd dose in water (mg/L) during 1–7-week period | - | - | - | 0.4 | 0.4 | 4.0 | 4.0 | ||||
Number of fish at the beginning [n] (per tank) | 49 | 49 | 49 | 49 | 49 | 49 | 49 | ||||
Group during 7–13 weeks of experiment | control | Mel | blank | 0.4 mg Cd/L + Mel | 0.4 mg Cd/L + Mel-dep | 0.4 mg Cd/L | 0.4 mg Cd/L -dep | 4.0 mg Cd/L + Mel | 4.0 mg Cd/L + Mel-dep | 4.0 mg Cd/L | 4.0 mg Cd/L -dep |
Cd dose in water (mg/L) during the 7–13-week period | - | - | - | 0.4 | - | 0.4 | - | 4.0 | - | 4.0 | - |
Number of fish at the beginning of the 7th week of the exposure/depuration | 14/14 | 14/14 | 14/14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
Week | Control | Mel | Blank | 0.4 mg Cd/L + Mel | 0.4 mg Cd/L | 4.0 mg Cd/L + Mel | 4.0 mg Cd/L | 0.4 mg Cd/L + Mel-Dep | 0.4 mg Cd/L−Dep | 4.0 mg Cd/L + Mel-Dep | 4.0 mg Cd/L−Dep |
---|---|---|---|---|---|---|---|---|---|---|---|
Exposure | Depuration | ||||||||||
0 | 217.0 ± 14.76 Aa | 205.1 ± 12.73 Aa | 198.0 ± 8.26 Aab | 226.6 ± 16.03 Aa | 196.6 ± 7.79 Aa | 210.9 ± 13.88 Aa | 217.0 ± 14.63 Aa | NT | NT | NT | NT |
1 | 218.1 ± 14.64 ABa | 206.9 ± 10.25 Aab | 210.3 ± 13.10 Aab | 210.3 ± 11.17 Aa | 212.3 ± 18.14 Aa | 174.6 ± 7.05 Ba | 213.0 ± 1.27 Aa | NT | NT | NT | NT |
4 | 227.6 ± 17.87 Aa | 218.6 ± 13.51 Aab | 201.1 ± 9.90 ABa | 216.7 ± 15.12 Aa | 165.7 ± 10.47 Ba | 185.0 ± 11.74 Aa | 183.1 ± 15.22 ABab | NT | NT | NT | NT |
7 | 205.4 ± 10.00 ABa | 210.6 ± 15.35 ABab | 209.4 ± 10.21 ABab | 210.1 ± 6.73 Aa | 184.0 ± 13.66 ABa | 172.6 ± 14.64 Ba | 168.3 ± 13.65 ABb | NT | NT | NT | NT |
10 | 183.6 ± 13.69 ABa | 199.01 ± 7.44 ABab | 167.3 ± 20.19 ABa | 205.7 ± 13.67 Aa | 168.6 ± 11.29 ABa | 165.4 ± 5.75 Ba | 146.6 ± 14.51 ABb | 199.1 ± 11.24 Aa | 192.9 ± 11.86 Aa | 165.4 ± 8.69 CBa | 137.0 ± 13.40 Ba |
13 | 217.4 ± 16.12 ABCa | 248.0 ± 19.01 ABb | 235.4 ± 14.41 ABb | 242.3 ± 12.32 Aa | 200.0 ± 10.44 CBa | 182.6 ± 10.59 Ca | 165.5 ± 19.69 Cab | 209.1 ± 18.73 ABa | 220.0 ± 11.72 ABa | 179.3 ± 12.82 Ba | 196.2 ± 16.20 ABb |
Week | Control | Mel | Blank | 0.4 mg Cd/L + Mel | 0.4 mg Cd/L | 4.0 mg Cd/L + Mel | 4.0 mg Cd/L | 0.4 mg Cd/L + Mel-Dep | 0.4 mg Cd/L−Dep | 4.0 mg Cd/L + Mel-Dep | 4.0 mg Cd/L−Dep |
---|---|---|---|---|---|---|---|---|---|---|---|
Cd in muscle (mg/kg wet weight) | |||||||||||
Exposure | Depuration | ||||||||||
0 | 0.01 ± 0.001 Aa | 0,02 ± 0.001 Aa | 0.01 ± 0.001 Aa | 0.02 ± 0.001 Aa | 0.01 ± 0.001 Aa | 0.02 ± 0.005 Aa | 0.02 ± 0.001 Aa | NT | NT | NT | NT |
1 | 0.01 ± 0.002 Aa | 0.02 ± 0.003 Aa | 0.02 ± 0.002 Aab | 0.02 ± 0.003 Aa | 0.02 ± 0.001 Aa | 0.04 ± 0.003 Bb | 0.06 ± 0.006 Cb | NT | NT | NT | NT |
4 | 0.02 ± 0.001 Abc | 0.03 ± 0.003 Ab | 0.02 ± 0.003 Bab | 0.04 ± 0.004 BCb | 0.04 ± 0.004 Cb | 0.09 ± 0.006 Dc | 0.10 ± 0.008 Ec | NT | NT | NT | NT |
7 | 0.02 ± 0.001 Ac | 0.03 ± 0.004 ABb | 0.03 ± 0.002 Abc | 0.04 ± 0.003 BCb | 0.04 ± 0.002 Cb | 0.21 ± 0.009 Dd | 0.23 ± 0.01 Dd | NT | NT | NT | NT |
10 | 0.03 ± 0.001 Ad | 0.03 ± 0.002 Ab | 0.02 ± 0.002 Bab | 0.05 ± 0.005 Cb | 0.07 ± 0.005 Dc | 0.36 ± 0.04 Ee | 0.61 ± 0.06 Fe | 0.02 ± 0.002 BCab | 0.02 ± 0.002 Cab | 0.25 ± 0.01 Dd | 0.32 ± 0.03 Ef |
13 | 0.04 ± 0.002 ABc | 0.05 ± 0.005 Ac | 0.03 ± 0.002 BCc | 0.03 ± 0.003 Cab | 0.08 ± 0.005 Dc | 0.38 ± 0.02 Ee | 0.56 ± 0.05 Fe | 0.02 ± 0.003 Bab | 0.04 ± 0.004 Aab | 0.12 ± 0.008 Dc | 0.14 ± 0.01 Dc |
Zn in muscle (mg/kg wet weight) | |||||||||||
Exposure | Depuration | ||||||||||
0 | 11.89 ± 0.58 Aa | 11.89 ± 0.61 Aa | 11.06 ± 0.65 Aab | 11.89 ± 0.61 Aa | 10.94 ± 0.50 Aa | 10.94 ± 0.69 Aac | 11.06 ± 0.47 Aa | NT | NT | NT | NT |
1 | 10.82 ± 0.33 ABa | 10.07 ± 0.38 Aa | 11.95 ± 0.67 ABCab | 11.21 ± 0.45 ABa | 12.11 ± 0.68 Ba | 13.34 ± 0.77 Cb | 12.04 ± 0.65 ABCab | NT | NT | NT | NT |
4 | 11.32 ± 0.46 Aa | 11.34 ± 0.67 ABa | 11.62 ± 0.71 ABab | 10.91 ± 0.72 ABa | 11.92 ± 0.61 ABa | 10.88 ± 0.49 Aa | 13.36 ± 0.61 Bb | NT | NT | NT | NT |
7 | 9.95 ± 0.50 Aa | 10.97 ± 0.73 ABa | 10.39 ± 0.51 Aa | 10.92 ± 0.31 Aa | 10.16 ± 0.43 Aa | 13.56 ± 0.72 Bb | 16.95 ± 0.68 Cc | NT | NT | NT | NT |
10 | 11.54 ± 0.56 Aa | 11.00 ± 1.03 Aa | 13.63 ± 0.98 Ab | 10.94 ± 0.65 Aa | 13.25 ± 0.72 Ab | 13.04 ± 0.55 Ab | 18.12 ± 1.00 Bc | 11.77 ± 0.72 Aa | 12.04 ± 0.51 Aa | 14.22 ± 0.68 Ab | 13.49 ± 0.82 Ab |
13 | 10.13 ± 0.48 Aa | 10.59 ± 0.77 Aa | 10.11 ± 0.50 Aa | 10.53 ± 0.51 ABa | 10.68 ± 0.55 ABa | 11.65 ± 0.77 ABab | 12.91 ± 0.79 Bab | 8.49 ± 0.72 Ab | 10.11 ± 1.14 Aa | 12.01 ± 0.60 Bab | 14.27 ± 1.10 Cb |
Week | Heavy Metals | Exposure | Deputation | ||
---|---|---|---|---|---|
Cd in Water | Cd in Muscles | Cd in Water | Cd in Muscles | ||
1 | Cd | 0.71 *** | - | - | - |
Zn | - | 0.34 * | - | - | |
Cu | - | 0.46 *** | - | - | |
Fe | - | NS | - | - | |
4 | Cd | 0.88 *** | - | - | - |
Zn | - | 0.29 * | - | - | |
Cu | - | 0.45 ** | - | - | |
Fe | - | 0.43 ** | - | - | |
7 | Cd | 0.89 *** | - | - | - |
Zn | - | 0.76 *** | - | - | |
Cu | - | NS | - | - | |
Fe | - | NS | - | - | |
10 | Cd | 0.92 *** | - | 0.48 *** | - |
Zn | - | 0.60 *** | - | 0.34 * | |
Cu | - | −0.32 * | - | −0.32 * | |
Fe | - | 0.52 *** | - | NS | |
13 | Cd | 0.71 *** | - | 0.58 *** | - |
Zn | - | 0.50 *** | - | 0.58 *** | |
Cu | - | −0.47 *** | - | NS | |
Fe | - | NS | - | 0.56 *** |
Week | Control | Mel | Blank | 0.4 mg Cd/L + Mel | 0.4 mg Cd/L | 4.0 mg Cd/L + Mel | 4.0 mg Cd/L | 0.4 mg Cd/L + Mel-dep | 0.4 mg Cd/L-Dep | 4.0 mg Cd/L + Mel-Dep | 4.0 mg Cd/L-Dep |
---|---|---|---|---|---|---|---|---|---|---|---|
Cu in muscle (mg/kg wet weight) | |||||||||||
Exposure | Depuration | ||||||||||
0 | 0.44 ± 0.04 Aac | 0.44 ± 0.03 Aa | 0.44 ± 0.03 Aac | 0.47 ± 0.04 Aa | 0.43 ± 0.03 Aa | 0.43 ± 0.03 Aa | 0.44 ± 0.04 Aa | NT | NT | NT | NT |
1 | 0.31 ± 0.02 Ab | 0.36 ± 0.02 Ab | 0.36 ± 0.02 Bac | 0.38 ± 0.02 Ba | 0.34 ± 0.03 Bac | 0.45 ± 0.04 Cab | 0.42 ± 0.04 Cab | NT | NT | NT | NT |
4 | 0.34 ± 0.02 ACa | 0.24 ± 0.02 BCb | 0.31 ± 0.04 Aab | 0.20 ± 0.02 BCb | 0.23 ± 0.02 Bb | 0.28 ± 0.03 Cb | 0.36 ± 0.03 ADa | NT | NT | NT | NT |
7 | 0.24 ± 0.03 Ab | 0.22 ± 0.01 Ab | 0.25 ± 0.01 Ab | 0.25 ± 0.03 Ab | 0.15 ± 0.01 Bc | 0.14 ± 0.01 Bc | 0.24 ± 0.01 Ab | NT | NT | NT | NT |
10 | 0.49 ± 0.03 Ac | 0.55 ± 0.05 Aa | 0.52 ± 0.03 Ac | 0.43 ± 0.03 ABa | 0.46 ± 0.03 ABa | 0.44 ± 0.05 ABab | 0.37 ± 0.03 Ba | 0.45 ± 0.03 Ab | 0.52 ± 0.03 Ab | 0.50 ± 0.05 Ab | 0.34 ± 0.04 Bb |
13 | 0.41 ± 0.03 Aa | 0.50 ± 0.03 BCa | 0.38 ± 0.03 Aac | 0.52 ± 0.03 Ba | 0.33 ± 0.02 ADa | 0.40 ± 0.04 Ca | 0.28 ± 0.01 Db | 0.35 ± 0.03 Cc | 0.43 ± 0.03 ABCc | 0.41 ± 0.01 ABCb | 0.46 ± 0.03 ABCc |
Fe in muscle (mg/kg wet weight) | |||||||||||
Exposure | Depuration | ||||||||||
0 | 9.46 ± 0.68 Aac | 9.45 ± 0.67 Aac | 9.46 ± 0.066 Aa | 9.45 ± 0.68 Aa | 9.31 ± 0.63 Aac | 9.03 ± 0.88 Aac | 9.46 ± 1.07 Aac | NT | NT | NT | NT |
1 | 8.24 ± 0.64 Aa | 8.65 ± 0.41 Aab | 10.78 ± 0.50 BCa | 10.61 ± 0.69 BCa | 9.99 ± 0.90 ABa | 11.79 ± 0.86 Cab | 9.58 ± 0.51 ABa | NT | NT | NT | NT |
4 | 10.74 ± 0.47 Ac | 10.7 ± 1.08 Aa | 10.66 ± 0.67 Aa | 7.39 ± 0.40 Bb | 9.77 ± 0.39 Aa | 10.42 ± 0.52 Aabc | 14.33 ± 0.63 Bb | NT | NT | NT | NT |
7 | 4.41 ± 0.29 Ab | 7.55 ± 0.40 Bb | 9.80 ± 0.63 Ca | 10.7 ± 0.60 Ca | 9.15 ± 0.70 Cac | 12.58 ± 0.81 Db | 6.97 ± 0.81 ABcd | NT | NT | NT | NT |
10 | 7.25 ± 0.74 ACa | 8.47 ± 0.59 ABab | 8.57 ± 0.83 ABb | 6.29 ± 0.40 Cb | 7.48 ± 0.42 ACc | 8.57 ± 0.73 ACc | 10.41 ± 0.77 Ba | 6.10 ± 0.28 Bb | 8.62 ± 0.69 Aab | 8.51 ± 0.53 Ab | 8.19 ± 0.77 Aa |
13 | 5.04 ± 0.36 Ab | 6.79 ± 0.74 ABb | 5.02 ± 0.26 Ab | 6.56 ± 0.53 ABb | 5.17 ± 0.31 ABb | 6.94 ± 0.47 Bd | 5.68 ± 0.39 ABd | 3.96 ± 0.46 Cc | 5.71 ± 0.51 Ab | 6.21 ± 0.34 Bc | 8.06 ± 0.58 Da |
Week | BCF | |||
---|---|---|---|---|
0.4 mg Cd/L + Mel | 0.4 mg Cd/L | 4.0 mg Cd/L + Mel | 4.0 mg Cd/L | |
1 | 0.05 ± 0.009 Aa | 0.04 ± 0.009 Aa | 0.01 ± 0.009 Ba | 0.02 ± 0.008 Ca |
4 | 0.09 ± 0.010 Ab | 0.11 ± 0.010 Ab | 0.02 ± 0.008 Bb | 0.03 ± 0.009 Bb |
7 | 0.09 ± 0.010 Ab | 0.10 ± 0.010 Ac | 0.05 ± 0.009 Bc | 0.06 ± 0.009 Bc |
10 | 0.13 ± 0.011 Ab | 0.18 ± 0.011 Bd | 0.09 ± 0.009 Ad | 0.15 ± 0.011 Cd |
13 | 0,07 ± 0.009 Ac | 0.19 ± 0.10 Bd | 0.09 ± 0.100 Cd | 0.14 ± 0.010 Dd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drąg-Kozak, E.; Łuszczek-Trojnar, E.; Socha, M. Cadmium Accumulation and Depuration in the Muscle of Prussian Carp (Carassius gibelio Bloch) after Sub-Chronic Cadmium Exposure: Ameliorating Effect of Melatonin. Animals 2021, 11, 2454. https://doi.org/10.3390/ani11082454
Drąg-Kozak E, Łuszczek-Trojnar E, Socha M. Cadmium Accumulation and Depuration in the Muscle of Prussian Carp (Carassius gibelio Bloch) after Sub-Chronic Cadmium Exposure: Ameliorating Effect of Melatonin. Animals. 2021; 11(8):2454. https://doi.org/10.3390/ani11082454
Chicago/Turabian StyleDrąg-Kozak, Ewa, Ewa Łuszczek-Trojnar, and Magdalena Socha. 2021. "Cadmium Accumulation and Depuration in the Muscle of Prussian Carp (Carassius gibelio Bloch) after Sub-Chronic Cadmium Exposure: Ameliorating Effect of Melatonin" Animals 11, no. 8: 2454. https://doi.org/10.3390/ani11082454
APA StyleDrąg-Kozak, E., Łuszczek-Trojnar, E., & Socha, M. (2021). Cadmium Accumulation and Depuration in the Muscle of Prussian Carp (Carassius gibelio Bloch) after Sub-Chronic Cadmium Exposure: Ameliorating Effect of Melatonin. Animals, 11(8), 2454. https://doi.org/10.3390/ani11082454