Strategy to Predict High and Low Frequency Behaviors Using Triaxial Accelerometers in Grazing of Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Area and Animals
2.2. Accelerometers and Animal Behavior
2.3. Data Processing and Prediction Algorithms
2.4. Resampling Methods to Deal with Imbalanced Data
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Trotter, M. Categorising sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 2018, 145, 289–297. [Google Scholar] [CrossRef]
- Diosdado, J.A.V.; Barker, Z.E.; Hodges, H.R.; Amory, J.R.; Croft, D.P.; Bell, N.J.; Codling, E.A. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelemetry 2015, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.B. Behaviour around the time of calving in dairy cows. Appl. Anim. Behav. Sci. 2012, 139, 195–202. [Google Scholar] [CrossRef]
- Thorup, V.M.; Munksgaard, L.; Robert, P.E.; Erhard, H.W.; Thomsen, P.T.; Friggens, N.C. Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms. Animal 2015, 9, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Penning, P.D. A technique to record automatically some aspects of grazing and ruminating behaviour in sheep. Grass Forage Sci. 1983, 38, 89–96. [Google Scholar] [CrossRef]
- Buerkert, A.; Schlecht, E. Performance of three GPS collars to monitor goats’ grazing itineraries on mountain pastures. Comput. Electron. Agric. 2009, 65, 85–92. [Google Scholar] [CrossRef]
- Hill, T.M.; Suarez-Mena, F.X.; Hu, W.; Dennis, T.S.; Schlotterbeck, R.L.; Timms, L.L.; Hulbert, L.E. Technical Note: Evaluation of an ear-attached movement sensor to record rumination, eating, and activity behaviors in 1-month-old calves. Prof. Anim. Sci. 2017, 33, 743–747. [Google Scholar] [CrossRef] [Green Version]
- Miller-Cushon, E.K.; Devries, T.J. Invited review: Development and expression of dairy calf feeding behaviour. Can. J. Anim. Sci. 2015, 95, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.R.; Moore, S.T.; Bishop-Hurley, G.J.; Swain, D.L. A sensor-based solution to monitor grazing cattle drinking behaviour and water intake. Comput. Electron. Agric. 2020, 168, 105141. [Google Scholar] [CrossRef]
- Roland, L.; Lidauer, L.; Sattlecker, G.; Kickinger, F.; Auer, W.; Sturm, V.; Efrosinin, D.; Drillich, M.; Iwersen, M. Monitoring drinking behavior in bucket-fed dairy calves using an ear-attached tri-axial accelerometer: A pilot study. Comput. Electron. Agric. 2018, 145, 298–301. [Google Scholar] [CrossRef]
- Rayas-Amor, A.A.; Morales-Almaráz, E.; Licona-Velázquez, G.; Vieyra-Alberto, R.; García-Martínez, A.; Martínez-García, C.G.; Cruz-Monterrosa, R.G.; Miranda-de la Lama, G.C. Triaxial accelerometers for recording grazing and ruminating time in dairy cows: An alternative to visual observations. J. Vet. Behav. 2017, 20, 102–108. [Google Scholar] [CrossRef]
- Tamura, T.; Okubo, Y.; Deguchi, Y.; Koshikawa, S.; Takahashi, M.; Chida, Y.; Okada, K. Dairy cattle behavior classifications based on decision tree learning using 3-axis neck-mounted accelerometers. Anim. Sci. J. 2019, 90, 589–596. [Google Scholar] [CrossRef]
- Riaboff, L.; Couvreur, S.; Madouasse, A.; Roig-Pons, M.; Aubin, S.; Massabie, P.; Chauvin, A.; Bédère, N.; Plantier, G. Use of predicted behavior from accelerometer data combined with GPS data to explore the relationship between dairy cow behavior and pasture characteristics. Sensors 2020, 20, 4741. [Google Scholar] [CrossRef]
- Sprinkle, J.E.; Sagers, J.K.; Hall, J.B.; Ellison, M.J.; Yelich, J.V.; Brennan, J.R.; Taylor, J.B.; Lamb, J.B. Predicting cattle grazing behavior on rangeland using accelerometers. Rangel. Ecol. Manag. 2021, 76, 157–170. [Google Scholar] [CrossRef]
- Hearnshaw, H.; Morris, C. Genetic and environmental effects on a temperament score in beef cattle. Aust. J. Agric. Res. 1984, 35, 723–733. [Google Scholar] [CrossRef]
- Zheng, Z.; Cai, Y.; Li, Y. Oversampling method for imbalanced classification. Comput. Inform. 2015, 34, 1017–1037. [Google Scholar]
- Haixiang, G.; Yijing, L.; Shang, J.; Mingyun, G.; Yuanyue, H.; Bing, G. Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 2017, 73, 220–239. [Google Scholar] [CrossRef]
- Yijing, L.; Haixiang, G.; Xiao, L.; Yanan, L.; Jinling, L. Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowl.-Based Syst. 2016, 94, 88–104. [Google Scholar] [CrossRef]
- López, V.; Fernández, A.; García, S.; Palade, V.; Herrera, F. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141. [Google Scholar] [CrossRef]
- RStudio. Team RStudio: Integrated Development Environment for R. 2020. Available online: https://www.rstudio.com/categories/integrated-development-environment/ (accessed on 2 January 2020).
- Alvarenga, F.A.P.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.; Guyon, I.; Hastie, T. Support vector machines. Mach. Learn. 1995, 20, 273–297. [Google Scholar]
- Hand, D.J.; Yu, K. Idiot’s Bayes—Not so stupid after all? Int. Stat. Rev. 2001, 69, 385–398. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.C.; Lin, C.C. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien [R Package Version 1.7-9]. Comprehensive R Archive Network (CRAN). 2021. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 5 August 2021).
- Kraemer, H.C. Extension of the kappa coefficient. Biometrics 1980, 36, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Tahir, M.A.; Kittler, J.; Mikolajczyk, K.; Yan, F. A multiple expert approach to the class imbalance problem using inverse random under sampling. In Lecture Notes in Computer Science, Proceedings of the 8th International Workshop on Multiple Classifier Systems (MCS), Reykjavik, Iceland, 10–12 June 2009; Benediktsson, J.A., Kittler, J., Roli, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5519, pp. 82–91. [Google Scholar]
- Tatler, J.; Cassey, P.; Prowse, T.A.A. High accuracy at low frequency: Detailed behavioural classification from accelerometer data. J. Exp. Biol. 2018, 221, jeb184085. [Google Scholar] [CrossRef] [Green Version]
- Gjoreski, H.; Bizjak, J.; Gjoreski, M.; Gams, M. Comparing deep and classical machine learning methods for human activity recognition using wrist accelerometer. In Proceedings of the IJCAI-16 Workshop on Deep Learning for Artificial Intelligence (DLAI), New York, NY, USA, 10 July 2016. [Google Scholar]
- Körting, T.S.; Garcia Fonseca, L.M.; Câmara, G. GeoDMA—Geographic data mining analyst. Comput. Geosci. 2013, 57, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Cattrysse, H.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Classification of ingestive-related cow behaviours using RumiWatch halter and neck-mounted accelerometers. Appl. Anim. Behav. Sci. 2019, 211, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Douglas, P.K.; Harris, S.; Yuille, A.; Cohen, M.S. Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. Neuroimage 2011, 56, 544–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escalante, H.J.; Rodriguez, S.V.; Cordero, J.; Kristensen, A.R.; Cornou, C. Sow-activity classification from acceleration patterns: A machine learning approach. Comput. Electron. Agric. 2013, 93, 17–26. [Google Scholar] [CrossRef]
- Delagarde, R.; Lamberton, P. Daily grazing time of dairy cows is recorded accurately using the Lifecorder Plus device. Appl. Anim. Behav. Sci. 2015, 165, 25–32. [Google Scholar] [CrossRef]
- Dutta, R.; Smith, D.; Rawnsley, R.; Bishop-Hurley, G.; Hills, J.; Timms, G.; Henry, D. Dynamic cattle behavioural classification using supervised ensemble classifiers. Comput. Electron. Agric. 2015, 111, 18–28. [Google Scholar] [CrossRef]
- Watanabe, N.; Sakanoue, S.; Kawamura, K.; Kozakai, T. Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer. Grassl. Sci. 2008, 54, 231–237. [Google Scholar] [CrossRef]
- Kamminga, J.W.; Meratnia, N.; Havinga, P.J.M. Dataset: Horse movement data and analysis of its potential for activity recognition. In Proceedings of the 2nd Workshop on Data Acquisition to Analysis (DATA 2019), Prague, Czech Republic, 26–28 July 2019; pp. 22–25. [Google Scholar]
- Martiskainen, P.; Järvinen, M.; Skön, J.P.; Tiirikainen, J.; Kolehmainen, M.; Mononen, J. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 2009, 119, 32–38. [Google Scholar] [CrossRef]
- Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity recognition from accelerometer data. In Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence (IAAI-17), Pittsburgh, PA, USA, 9–13 July 2005; pp. 1541–1546. [Google Scholar]
- Zughrat, A.; Mahfouf, M.; Yang, Y.Y.; Thornton, S. Support vector machines for class imbalance rail data classification with bootstrapping-based over-sampling and under-sampling. In Proceedings of the 19th World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, 24–29 August 2014; Volume 47, pp. 8756–8761. [Google Scholar]
- Bermejo, P.; Gámez, J.A.; Puerta, J.M. Improving the performance of Naive Bayes multinomial in e-mail foldering by introducing distribution-based balance of datasets. Expert Syst. Appl. 2011, 38, 2072–2080. [Google Scholar] [CrossRef]
Algorithm and Resample Training Datasets | Behaviors | Overall Accuracy | Kappa Coefficient | |||||
---|---|---|---|---|---|---|---|---|
Grazing | Ruminating | Idle | WCF | Feeding | Walking | |||
Random Forest | ||||||||
Imbalanced | 0.880 | 0.789 | ||||||
Sensitivity | 0.816 | 0.876 | 0.957 | 0.278 | 0.688 | 0.501 | ||
Specificity | 0.960 | 0.996 | 0.823 | 0.999 | 0.991 | 0.998 | ||
Over-sampling | 0.920 | 0.865 | ||||||
Sensitivity | 0.894 | 0.938 | 0.952 | 0.590 | 0.860 | 0.700 | ||
Specificity | 0.966 | 0.995 | 0.917 | 0.999 | 0.990 | 0.997 | ||
Under-sampling | 0.647 | 0.505 | ||||||
Sensitivity | 0.644 | 0.901 | 0.580 | 0.808 | 0.768 | 0.797 | ||
Specificity | 0.892 | 0.921 | 0.942 | 0.948 | 0.925 | 0.949 | ||
Support Vector Machine | ||||||||
Imbalanced | 0.611 | 0.078 | ||||||
Sensitivity | 0.039 | 0.131 | 0.995 | 0.021 | 0.100 | 0.027 | ||
Specificity | 0.998 | 0.999 | 0.059 | 0.999 | 0.999 | 0.999 | ||
Over-sampling | 0.611 | 0.078 | ||||||
Sensitivity | 0.039 | 0.131 | 0.995 | 0.021 | 0.100 | 0.027 | ||
Specificity | 0.998 | 0.999 | 0.059 | 0.999 | 0.999 | 0.999 | ||
Under-sampling | 0.267 | 0.075 | ||||||
Sensitivity | 0.970 | 0.201 | 0.066 | 0.222 | 0.096 | 0.204 | ||
Specificity | 0.120 | 0.994 | 0.992 | 0.994 | 0.994 | 0.992 | ||
Naïve Bayes Classifier | ||||||||
Imbalanced | 0.367 | 0.100 | ||||||
Sensitivity | 0.284 | 0.700 | 0.392 | 0.000 | 0.105 | 0.083 | ||
Specificity | 0.922 | 0.605 | 0.608 | 0.999 | 0.971 | 0.971 | ||
Over-sampling | 0.179 | 0.072 | ||||||
Sensitivity | 0.122 | 0.865 | 0.065 | 0.138 | 0.360 | 0.157 | ||
Specificity | 0.962 | 0.422 | 0.963 | 0.933 | 0.850 | 0.950 | ||
Under-sampling | 0.362 | 0.124 | ||||||
Sensitivity | 0.121 | 0.580 | 0.423 | 0.015 | 0.402 | 0.126 | ||
Specificity | 0.958 | 0.702 | 0.727 | 0.993 | 0.815 | 0.954 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, R.N.; Bernardes, P.A.; Romanzini, E.P.; Braga, L.G.; Brito, T.R.; Teobaldo, R.W.; Reis, R.A.; Munari, D.P. Strategy to Predict High and Low Frequency Behaviors Using Triaxial Accelerometers in Grazing of Beef Cattle. Animals 2021, 11, 3438. https://doi.org/10.3390/ani11123438
Watanabe RN, Bernardes PA, Romanzini EP, Braga LG, Brito TR, Teobaldo RW, Reis RA, Munari DP. Strategy to Predict High and Low Frequency Behaviors Using Triaxial Accelerometers in Grazing of Beef Cattle. Animals. 2021; 11(12):3438. https://doi.org/10.3390/ani11123438
Chicago/Turabian StyleWatanabe, Rafael N., Priscila A. Bernardes, Eliéder P. Romanzini, Larissa G. Braga, Thaís R. Brito, Ronyatta W. Teobaldo, Ricardo A. Reis, and Danísio P. Munari. 2021. "Strategy to Predict High and Low Frequency Behaviors Using Triaxial Accelerometers in Grazing of Beef Cattle" Animals 11, no. 12: 3438. https://doi.org/10.3390/ani11123438
APA StyleWatanabe, R. N., Bernardes, P. A., Romanzini, E. P., Braga, L. G., Brito, T. R., Teobaldo, R. W., Reis, R. A., & Munari, D. P. (2021). Strategy to Predict High and Low Frequency Behaviors Using Triaxial Accelerometers in Grazing of Beef Cattle. Animals, 11(12), 3438. https://doi.org/10.3390/ani11123438