Ecotones in the Spotlight—Habitat Selection of the Golden Jackal (Canis aureus Linnaeus, 1758) in the Agricultural Landscapes of Central Europe
<p>(<b>a</b>) Location of the study area within which 4 female and 3 male golden jackals (<span class="html-italic">Canis aureus</span>) were tracked with GPS collars. (<b>b</b>) First post-release localization points recorded by the collars. (<b>c</b>) The habitat structure of the study area indicating all localization points (<span class="html-italic">n</span> = 29,840) of seven GPS-tracked golden jackals.</p> "> Figure 2
<p>The dispersal of a female (F1) and male (M2) juvenile golden jackals in November and December of 2021.</p> "> Figure 3
<p>Habitat preferences of seven GPS-tracked golden jackals (<span class="html-italic">Canis aureus</span>) in the agricultural landscapes of the southwestern part of the Pannonian Basin based on monthly Jacobs’ index values of habitat selection. The violin plots depict the distribution of Jacobs’ index values for each land cover category; jittered points represent individual data values, while X symbols indicate the mean Jacobs’ index for each category.</p> "> Figure 4
<p>Variety of the habitat preferences of seven GPS-tracked golden jackals (<span class="html-italic">Canis aureus</span>) by individuals for artificial surface; agricultural land; shrubland; forest; and wetland and water body habitat types based on monthly Jacobs’ index values of habitat selection. The boxplots represent the distribution of Jacobs’ index values for each individual, where the central horizontal line indicates the median, the box shows the interquartile range (IQR; 25th to 75th percentiles), and the whiskers extend to 1.5 times the IQR. Jittered points depict individual data values, while the dashed horizontal line at zero represents no preference.</p> "> Figure 5
<p>Preference towards agricultural lands by month based on monthly Jacobs’ index values of habitat selection of seven GPS-collared golden jackals (<span class="html-italic">Canis aureus</span>). The boxplots represent the distribution of Jacobs’ index values for agricultural lands across months, where the central horizontal line indicates the median, the box shows the interquartile range (IQR; 25th to 75th percentiles), and the whiskers extend to 1.5 times the IQR. Jittered points depict individual data values, while the dashed horizontal line at zero represents no preference.</p> "> Figure 6
<p>Distribution of distances from landscape feature edges of the localization points (<span class="html-italic">n</span> = 29,840) of seven GPS-tracked golden jackals (<span class="html-italic">Canis aureus</span>).</p> "> Figure A1
<p>Preference towards shrublands and forests by month based on monthly Jacobs’ index values of habitat selection of seven GPS-tracked golden jackals (<span class="html-italic">Canis aureus</span>).</p> "> Figure A2
<p>Hourly distances (m) from different landscape features of seven GPS-tracked golden jackals (<span class="html-italic">Canis aureus</span>) in the southwestern part of the Pannonian Basin.</p> "> Figure A2 Cont.
<p>Hourly distances (m) from different landscape features of seven GPS-tracked golden jackals (<span class="html-italic">Canis aureus</span>) in the southwestern part of the Pannonian Basin.</p> ">
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tagging and Data Collection
2.3. Data Analysis
3. Results
3.1. Home Range Size
3.2. Habitat Selection
3.3. Use of Ecotones
4. Discussion
4.1. Home Range Sizes in Different Environments
4.2. Habitat Selection Patterns of the Golden Jackal
4.3. Role of Ecotones in the Habitat Selection of Golden Jackals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ID | Sex | Age | MCP100 | MCP95 | MCP50 | ACH | KDE95 | KDE90 | KDE60 | KDE50 |
---|---|---|---|---|---|---|---|---|---|---|
F1 | female | juvenile | 382.5 | 344.1 | 194.5 | 230.6 | 373.6 | 283.8 | 105.8 | 76.6 |
F2 | female | adult | 21.0 | 2.3 | 0.3 | 15.9 | 2.5 | 1.7 | 0.4 | 0.3 |
F3 | female | juvenile | 23.3 | 16.6 | 0.6 | 18.9 | 4.8 | 3.1 | 0.9 | 0.7 |
F4 | female | adult | 27.8 | 5.0 | 0.6 | 21.2 | 3.3 | 2.3 | 0.6 | 0.4 |
M1 | male | adult | 18.7 | 17.1 | 0.3 | 13.0 | 6.7 | 3.9 | 0.9 | 0.6 |
M2 | male | juvenile | 719.9 | 624.6 | 115.7 | 627.5 | 526.8 | 384.9 | 99.7 | 65.5 |
M3 | male | adult | 25.1 | 5.7 | 0.5 | 19.1 | 4.8 | 3.5 | 0.7 | 0.5 |
References
- Rutkowski, R.; Krofel, M.; Giannatos, G.; Ćirović, D.; Männil, P.; Volokh, A.M.; Lanszki, J.; Heltai, M.; Szabó, L.; Banea, O.C.; et al. A European Concern? Genetic Structure and Expansion of Golden Jackals (Canis aureus) in Europe and the Caucasus. PLoS ONE 2015, 10, e0141236. [Google Scholar] [CrossRef] [PubMed]
- Krofel, M.; Hočevar, L.; Fležar, U.; Topličanec, I.; Oliveira, T. Golden Jackal as a New Kleptoparasite for Eurasian Lynx in Europe. Glob. Ecol. Conserv. 2022, 36, e02116. [Google Scholar] [CrossRef]
- Serva, D.; Iannella, M.; Cittadino, V.; Biondi, M. A Shifting Carnivore’s Community: Habitat Modeling Suggests Increased Overlap between the Golden Jackal and the Eurasian Lynx in Europe. Front. Ecol. Evol. 2023, 11, 1165968. [Google Scholar] [CrossRef]
- Hatlauf, J.; Bayer, K.; Trouwborst, A.; Hackländer, K. New Rules or Old Concepts? The Golden Jackal (Canis aureus) and Its Legal Status in Central Europe. Eur. J. Wildl. Res. 2021, 67, 25. [Google Scholar] [CrossRef]
- Trouwborst, A.; Krofel, M.; Linnell, J.D.C. Legal Implications of Range Expansions in a Terrestrial Carnivore: The Case of the Golden Jackal (Canis aureus) in Europe. Biodivers. Conserv. 2015, 24, 2593–2610. [Google Scholar] [CrossRef]
- Spassov, N.; Acosta-Pankov, I. Dispersal History of the Golden Jackal (Canis aureus moreoticus Geoffroy, 1835) in Europe and Possible Causes of Its Recent Population Explosion. Biodivers. Data J. 2019, 7, e34825. [Google Scholar] [CrossRef]
- Šálek, M.; Červinka, J.; Banea, O.C.; Krofel, M.; Ćirović, D.; Selanec, I.; Penezić, A.; Grill, S.; Riegert, J. Population Densities and Habitat Use of the Golden Jackal (Canis aureus) in Farmlands across the Balkan Peninsula. Eur. J. Wildl. Res. 2014, 60, 193–200. [Google Scholar] [CrossRef]
- Fenton, S.; Moorcroft, P.R.; Ćirović, D.; Lanszki, J.; Heltai, M.; Cagnacci, F.; Breck, S.; Bogdanović, N.; Pantelić, I.; Ács, K.; et al. Movement, Space-Use and Resource Preferences of European Golden Jackals in Human-Dominated Landscapes: Insights from a Telemetry Study. Mamm. Biol. 2021, 101, 619–630. [Google Scholar] [CrossRef]
- Yusefi, G.H.; Godinho, R.; Khalatbari, L.; Broomand, S.; Fahimi, H.; Martínez-Freiría, F.; Alvares, F. Habitat Use and Population Genetics of Golden Jackals in Iran: Insights from a Generalist Species in a Highly Heterogeneous Landscape. J. Zool. Syst. Evol. Res. 2021, 59, 1503–1515. [Google Scholar] [CrossRef]
- Csányi, E.; Gaál, D.; Heltai, M.; Pölös, M.; Sándor, G.; Schally, G.; Lanszki, J. Home Ranges of Roaming Golden Jackals in a European Forest-Agricultural Landscape. J. Wildl. Manag. 2025, 89, e22688. [Google Scholar] [CrossRef]
- Dormann, C.F. Promising the Future? Global Change Projections of Species Distributions. Basic Appl. Ecol. 2007, 8, 387–397. [Google Scholar] [CrossRef]
- Sales, L.P.; Ribeiro, B.R.; Pires, M.M.; Chapman, C.A.; Loyola, R. Recalculating Route: Dispersal Constraints Will Drive the Redistribution of Amazon Primates in the Anthropocene. Ecography 2019, 42, 1789–1801. [Google Scholar] [CrossRef]
- Krofel, M.; Giannatos, G.; Ćirovič, D.; Stoyanov, S.; Newsome, T.M. Golden Jackal Expansion in Europe: A Case of Mesopredator Release Triggered by Continent-Wide Wolf Persecution? Hystrix Ital. J. Mammal. 2017, 28, 9–15. [Google Scholar] [CrossRef]
- Chapron, G.; Kaczensky, P.; Linnell, J.D.C.; Von Arx, M.; Huber, D.; Andrén, H.; López-Bao, J.V.; Adamec, M.; Álvares, F.; Anders, O.; et al. Recovery of Large Carnivores in Europe’s Modern Human-Dominated Landscapes. Science 2014, 346, 1517–1519. [Google Scholar] [CrossRef]
- European Commission; Directorate General for Environment; N2K Group EEIG; Blanco, J.; Sundseth, K. The Situation of the Wolf (Canis lupus) in the European Union: An in Depth Analysis; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Lanszki, J.; Hayward, M.W.; Ranc, N.; Zalewski, A. Dietary Flexibility Promotes Range Expansion: The Case of Golden Jackals in Eurasia. J. Biogeogr. 2022, 49, 993–1005. [Google Scholar] [CrossRef]
- Csányi, E.; Lanszki, J.; Heltai, M.; Pölös, M.; Schally, G.; Sándor, G. The First Evidence of the Monogamous Golden Jackal’s Adaptive Response to Partner Loss. Appl. Anim. Behav. Sci. 2023, 269, 106095. [Google Scholar] [CrossRef]
- Charaspet, K.; Sukmasuang, R.; Khoewsree, N.; Pla-ard, M.; Songsasen, N.; Simchareon, S. Movement, Home Range Size and Activity Pattern of the Golden Jackal (Canis aureus, Linneaus, 1758) in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Biodiversitas J. Biol. Divers. 2019, 20, 3430–3438. [Google Scholar] [CrossRef]
- Frangini, L.; Franchini, M.; Stokel, G.; Madinello, A.; Pesaro, S.; Ferfolja, S.; Filacorda, S. First Telemetry Data on Golden Jackal (Canis aureus) in Italy: Insights on the Species’ Spatial Ecology. Hystrix Ital. J. Mammal. 2022, 33, 26. [Google Scholar]
- Estes, R. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates, 20th ed.; University of California Press: Berkeley, CA, USA, 2012; ISBN 978-0-520-27297-2. [Google Scholar]
- Bogdanowicz, W.; Bilska, A.G.; Kleven, O.; Aspi, J.; Caro, A.; Harmoinen, J.; Kvist, L.; Madeira, M.J.; Pilot, M.; Kopatz, A. Species on the Move: A Genetic Story of Three Golden Jackals at the Expansion Front. Mamm. Biol. 2024, 105, 37–48. [Google Scholar] [CrossRef]
- Moehlman, P.D.; Hayssen, V. Canis aureus (Carnivore: Canidae). Mamm. Species 2018, 50, 14–25. [Google Scholar] [CrossRef]
- Shakarashvili, M.; Kopaliani, N.; Gurielidze, Z.; Dekanoidze, D.; Ninua, L.; Tarkhnishvili, D. Population Genetic Structure and Dispersal Patterns of Grey Wolfs (Canis lupus) and Golden Jackals (Canis aureus) in Georgia, the Caucasus. J. Zool. 2020, 312, 227–238. [Google Scholar] [CrossRef]
- Jaeger, M.M.; Haque, E.; Sultana, P.; Bruggers, R.L. Daytime Cover, Diet and Space-Use of Golden Jackals (Canis aureus) in Agro-Ecosystems of Bangladesh. Mammalia 2007, 71, 1–10. [Google Scholar] [CrossRef]
- Rotem, G.; Berger, H.; King, R.; Bar, P.; Saltz, D. The Effect of Anthropogenic Resources on the Space-Use Patterns of Golden Jackals. J. Wildl. Manag. 2011, 75, 132–136. [Google Scholar] [CrossRef]
- Lanszki, J.; Schally, G.; Heltai, M.; Ranc, N. Golden Jackal Expansion in Europe: First Telemetry Evidence of a Natal Dispersal. Mamm. Biol. 2018, 88, 81–84. [Google Scholar] [CrossRef]
- Krofel, M.; Berce, M.; Berce, T.; Kryštufek, B.; Lamut, S.; Tarman, J.; Fležar, U. New Mesocarnivore at the Doorstep of Central Europe: Historic Development of Golden Jackal (Canis aureus) Population in Slovenia. Mammal Res. 2023, 68, 329–339. [Google Scholar] [CrossRef]
- Lange, P.N.A.M.J.G.; Lelieveld, G.; De Knegt, H.J. Diet Composition of the Golden Jackal (Canis aureus) in South-East Europe—A Review. Mammal Rev. 2021, 51, 207–213. [Google Scholar] [CrossRef]
- Lanszki, J.; Heltai, M. Feeding Habits of Golden Jackal and Red Fox in South-Western Hungary during Winter and Spring. Mamm. Biol. 2002, 67, 129–136. [Google Scholar] [CrossRef]
- Lanszki, J.; Heltai, M.; Szabó, L. Feeding Habits and Trophic Niche Overlap between Sympatric Golden Jackal (Canis aureus) and Red Fox (Vulpes vulpes) in the Pannonian Ecoregion (Hungary). Can. J. Zool. 2006, 84, 1647–1656. [Google Scholar] [CrossRef]
- Markov, G.; Lanszki, J. Diet Composition of the Golden Jackal, Canis aureus in an Agricultural Environment. Folia Zool. 2012, 61, 44–48. [Google Scholar] [CrossRef]
- Lanszki, J.; Kurys, A.; Szabó, L.; Nagyapáti, N.; Porter, L.B.; Heltai, M. Diet Composition of the Golden Jackal and the Sympatric Red Fox in an Agricultural Area (Hungary). Folia Zool. 2016, 65, 310–322. [Google Scholar] [CrossRef]
- Aiyadurai, A.; Jhala, Y.V. Foraging and Habitat Use by Golden Jackals (Canis aureus) in the Bhal Region, Gujarat, India. J. Bombay Nat. Hist. Soc. 2006, 103, 5–12. [Google Scholar]
- Kamler, J.F.; Minge, C.; Rostro-García, S.; Gharajehdaghipour, T.; Crouthers, R.; In, V.; Pay, C.; Pin, C.; Sovanna, P.; Macdonald, D.W. Home Range, Habitat Selection, Density, and Diet of Golden Jackals in the Eastern Plains Landscape, Cambodia. J. Mammal. 2021, 102, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.K.; Jhala, Y.V. Movement Patterns and Habitat Use of Golden Jackal (Canis aureus) in Bhal Region of Gujarat. J. Bombay Nat. Hist. Soc. 2008, 105, 209–211. [Google Scholar]
- Selimovic, A.; Schöll, E.M.; Bosseler, L.; Hatlauf, J. Habitat Use of Golden Jackals (Canis aureus) in Riverine Areas of Northern Bosnia and Herzegovina. Eur. J. Wildl. Res. 2021, 67, 14. [Google Scholar] [CrossRef]
- Jenks, K.E.; Aikens, E.O.; Songsasen, N.; Calabrese, J.; Fleming, C.; Bhumpakphan, N.; Wanghongsa, S.; Kanchanasaka, B.; Songer, M.; Leimgruber, P. Comparative Movement Analysis for a Sympatric Dhole and Golden Jackal in a Human-Dominated Landscape. Raffles Bull. Zool. 2015, 63, 546–554. [Google Scholar]
- Clark, T.P.; Gilbert, F.F. Ecotones as a Measure of Deer Habitat Quality in Central Ontario. J. Appl. Ecol. 1982, 19, 751. [Google Scholar] [CrossRef]
- Gehring, T.M.; Swihart, R.K. Body Size, Niche Breadth, and Ecologically Scaled Responses to Habitat Fragmentation: Mammalian Predators in an Agricultural Landscape. Biol. Conserv. 2003, 109, 283–295. [Google Scholar] [CrossRef]
- Šálek, M.; Kreisinger, J.; Sedláček, F.; Albrecht, T. Do Prey Densities Determine Preferences of Mammalian Predators for Habitat Edges in an Agricultural Landscape? Landsc. Urban Plan. 2010, 98, 86–91. [Google Scholar] [CrossRef]
- Kark, S. Effects of Ecotones on Biodiversity. In Encyclopedia of Biodiversity; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–10. ISBN 978-0-12-226865-6. [Google Scholar]
- Pereira, R.; Matias, G.; Santos-Reis, M.; Rosalino, L.M. Influence of Habitat Edges on Spatial and Spatio-Temporal Occurrence Patterns of Mesocarnivores in Landscapes Dominated by Eucalyptus Plantations. For. Ecol. Manag. 2024, 572, 122257. [Google Scholar] [CrossRef]
- Youngmann, J.L.; Hinton, J.W.; Bakner, N.W.; Chamberlain, M.J.; D’Angelo, G.J. Recursive Use of Home Ranges and Seasonal Shifts in Foraging Behavior by a Generalist Carnivore. Ecol. Evol. 2022, 12, e9540. [Google Scholar] [CrossRef]
- Tõnisalu, G.; Väli, Ü. Edge Effect in Rodent Populations at the Border between Agricultural Landscapes and Forests. Eur. J. Wildl. Res. 2022, 68, 34. [Google Scholar] [CrossRef]
- Kaasiku, T.; Rannap, R.; Männil, P. Predation-mediated Edge Effects Reduce Survival of Wader Nests at a Wet Grassland-forest Edge. Anim. Conserv. 2022, 25, 692–703. [Google Scholar] [CrossRef]
- Väli, Ü.; Mirski, P.; Sein, G.; Abel, U.; Tõnisalu, G.; Sellis, U. Movement Patterns of an Avian Generalist Predator Indicate Functional Heterogeneity in Agricultural Landscape. Landsc. Ecol. 2020, 35, 1667–1681. [Google Scholar] [CrossRef]
- European Environment Agency. CORINE Land Cover 2018 (Vector), Europe, 6-Yearly—Version 2020_20u1, May 2020. 2019. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/a5144888-ee2a-4e5d-a7b0-2bbf21656348 (accessed on 11 November 2023).
- Google Maps. South Transdanubia. 2024. Available online: https://maps.app.goo.gl/dpim4PyWe1sNfTeP9 (accessed on 9 May 2024).
- Balaskovics, J.; Bóly Zrt. Vadgazdálkodási Üzemterve (Bóly Zrt. Game Management Plan). 2018. (In Hungarian) [Google Scholar]
- Bölöni, J.; Molnár, Z.; Kun, A. Magyarország Élőhelyei: Vegetációtipusok Leirása és Határozója: ÁNÉR 2011; MTA Ökológiai és Botanikai Kutatóintézete: Vácrátót, Hungary, 2011; ISBN 978-963-8391-51-3. [Google Scholar]
- European Environment Agency Natura 2000 Data—The European Network of Protected Sites 2024. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/6fc8ad2d-195d-40f4-bdec-576e7d1268e4 (accessed on 3 January 2024).
- Raychev, E.; Dimitrov, R.; Dimova, T.; Hristov, H. How to Determine the Age of the Golden Jackal (Canis aureus) by Cutting-Teeth Atrition and Ossification of Basal Cranial Syn-Chondroses. Bulg. J. Agric. Sci. 1999, 5, 807–810. [Google Scholar]
- Asaeedi, S.; Didehvar, F.; Mohades, A. α-Concave Hull, a Generalization of Convex Hull. Theor. Comput. Sci. 2017, 702, 48–59. [Google Scholar] [CrossRef]
- Mohr, C.O. Table of Equivalent Populations of North American Small Mammals. Am. Midl. Nat. 1947, 37, 223–249. [Google Scholar] [CrossRef]
- Worton, B.J. Kernel Methods for Estimating the Utilization Distribution in Home-Range Studies. Ecology 1989, 70, 164–168. [Google Scholar] [CrossRef]
- Calenge, C. The Package “Adehabitat” for the R Software: A Tool for the Analysis of Space and Habitat Use by Animals. Ecol. Model. 2006, 197, 516–519. [Google Scholar] [CrossRef]
- QGIS Development Team Quantum GIS Geographic Information System 2023. Available online: https://qgis.org/download/ (accessed on 6 October 2024).
- Jacobs, J. Quantitative Measurement of Food Selection. Oecologia 1974, 14, 413–417. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2; Use R!; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- JASP Team JASP 2024. Available online: https://jasp-stats.org/download/ (accessed on 10 October 2024).
ID | Sex | Age | No. of Fixes | Deployment Period | Days Tracked |
---|---|---|---|---|---|
F1 | female | juvenile | 3238 | 19 September 2021–1 February 2022 | 135 |
F2 | female | adult | 4846 | 24 April 2022–30 December 2022 | 250 |
F3 | female | juvenile | 5852 | 30 May 2022–23 March 2023 | 297 |
F4 | female | adult | 5242 | 20 November 2022–10 July 2023 | 232 |
M1 | male | adult | 1518 | 15 March 2021–17 May 2021 | 63 |
M2 | male | juvenile | 4557 | 6 November 2021–30 June 2022 | 236 |
M3 | male | adult | 4587 | 25 November 2022–9 July 2023 | 226 |
ID | Sex | Age | ACH | MCP95 | KDE95 | KDE50 |
---|---|---|---|---|---|---|
F1 | female | juvenile | 230.6 | 344.1 | 373.6 | 76.6 |
F2 | female | adult | 15.9 | 2.3 | 2.5 | 0.3 |
F3 | female | juvenile | 18.9 | 16.6 | 4.8 | 0.7 |
F4 | female | adult | 21.2 | 5.0 | 3.3 | 0.4 |
M1 | male | adult | 13.0 | 17.1 | 6.7 | 0.6 |
M2 | male | juvenile | 627.5 | 624.6 | 526.8 | 65.5 |
M3 | male | adult | 19.1 | 5.7 | 4.8 | 0.5 |
ID | No. of Fixes | ACH | MCP95 | KDE95 | KDE50 |
---|---|---|---|---|---|
Before the home range shift | |||||
F1 | 1479 | 128.1 | 93.5 | 122.7 | 25.8 |
M2 | 917 | 216.9 | 237.6 | 281.7 | 61.8 |
After the home range shift | |||||
F1 | 1687 | 63.5 | 46.3 | 41.9 | 5.2 |
M2 | 3613 | 165.4 | 143.4 | 119.0 | 18.0 |
Land Cover Categories | Habitat Interiors Within 250 m | Habitat Exteriors Within 250 m | ||
---|---|---|---|---|
Available Habitat | Use of Habitat | Available Habitat | Use of Habitat | |
Artificial surfaces | 6% | 0% | 12% | 3% |
Agricultural lands | 31% | 17% | 18% | 44% |
Shrubland | 13% | 35% | 25% | 24% |
Forest | 7% | 24% | 17% | 35% |
Wetland and water bodies | 3% | 3% | 5% | 8% |
Habitat Type | Sample Size | Home Range and Core Area Sizes | Calculation Method |
---|---|---|---|
Pristine or semi-natural habitats | |||
Low rolling hills with planted forests dominated by oak, wild Palestine cashew, and Mediterranean Maqui, Israel [25] | 8 | Home range: 21.2 ± 9.3 km2 Core area: 3.5 ± 1.6 km2 | KDE90 KDE60 |
Dipterocarp forest, mixed deciduous forest, and dry evergreen forest, Thailand [18] | 1 | Home range: 26.3 km2 | MCP95 |
High forest cover (primarily of English oak) interspersed with agricultural fields and small settlements, Hungary [8] | 1 | Home range: 66.6 km2 | MCP95 |
Dry dipterocarp forest with small patches of mixed deciduous evergreen and riparian forests, Cambodia [34] | 6 | Home range: 39.6 ± 2.7 km2 Core area: was 9.1 ± 1.1 km2 | MCP95 KDE50 |
Forest–agricultural habitats and with a high forest cover, Hungary [10] | 45 | Home range: 14.4 ± 2.3 km2 | KDE95 |
Predominantly agricultural landscapes | |||
Croplands, grasslands, and saline marshes, India [33] | 6 | Home range: 14.30 ± 4.06 km2 | MCP95 |
Agricultural villages (fruit orchards, vineyards, poultry farms), Israel [25] | 8 | Home range: 6.6 ± 4.5 km2 Core area: 1.2 ± 0.9 km2 | KDE90 KDE50 |
Agricultural and open fields with forests fragments, hedgerows, and lush vegetation bordering water channels, Serbia [8] | 4 | Home range: 9.16 ± 7.32 km2 | MCP95 |
Agricultural areas of the Po Plain, Italy [19] | 8 | Home range: 31.22 km2 (min: 2.22, max: 135.92) Core area: 3.24 km2 (min: 0.15, max: 14.84) | KDE95 KDE50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaál, D.K.; Heltai, M.; Sándor, G.; Schally, G.; Csányi, E. Ecotones in the Spotlight—Habitat Selection of the Golden Jackal (Canis aureus Linnaeus, 1758) in the Agricultural Landscapes of Central Europe. Animals 2025, 15, 760. https://doi.org/10.3390/ani15050760
Gaál DK, Heltai M, Sándor G, Schally G, Csányi E. Ecotones in the Spotlight—Habitat Selection of the Golden Jackal (Canis aureus Linnaeus, 1758) in the Agricultural Landscapes of Central Europe. Animals. 2025; 15(5):760. https://doi.org/10.3390/ani15050760
Chicago/Turabian StyleGaál, Dorottya Karolin, Miklós Heltai, Gyula Sándor, Gergely Schally, and Erika Csányi. 2025. "Ecotones in the Spotlight—Habitat Selection of the Golden Jackal (Canis aureus Linnaeus, 1758) in the Agricultural Landscapes of Central Europe" Animals 15, no. 5: 760. https://doi.org/10.3390/ani15050760
APA StyleGaál, D. K., Heltai, M., Sándor, G., Schally, G., & Csányi, E. (2025). Ecotones in the Spotlight—Habitat Selection of the Golden Jackal (Canis aureus Linnaeus, 1758) in the Agricultural Landscapes of Central Europe. Animals, 15(5), 760. https://doi.org/10.3390/ani15050760