Effects of Replacing Inorganic Sources of Copper, Manganese, and Zinc with Different Organic Forms on Mineral Status, Immune Biomarkers, and Lameness of Lactating Cows
<p>Schematic representation of experimental treatments. Treatments included 3 sources of supplemental Cu, Mn, and Zn. MHAC = replacing 50% of the sulfate form with 50% organic salts of trace minerals in methionine hydroxyl analog chelate form; AAC = replacing 50% of the sulfate form with 50% organic salts of trace minerals in amino acid complex form; S = 100% inorganic salts of trace minerals in sulfate form.</p> "> Figure 2
<p>Effects of trace mineral sources on DMI (<b>A</b>), milk yield (<b>B</b>), milk fat content (<b>C</b>), somatic cell count (<b>D</b>), milk solids (<b>E</b>), milk protein (<b>F</b>), milk lactose (<b>G</b>), and milk nitrogen (<b>H</b>) of lactating cows. The DMI was shown as the mean of the group DMI ± SD weekly. Probability values for independent variables of interest: Trt = fixed effect of diet treatments; Time = fixed effect of sampling time; Trt × Time = interaction effect of diet treatments and sampling time. Within one day or one sampling, significant differences (<span class="html-italic">p</span> ≤ 0.05) were represented as follows: * ITM vs. OTM groups (contrast differences between inorganic trace mineral treatment (S, <span class="html-italic">n</span> = 20) and organic trace mineral treatments (MHAC and AAC, <span class="html-italic">n</span> = 40)); meanwhile, tendencies (0.05 < <span class="html-italic">p</span> ≤ 0.10) were represented by ‡.</p> "> Figure 3
<p>Effects of trace mineral sources on the concentration of Cu (<b>A</b>), Mn (<b>B</b>), and Zn (<b>C</b>) in the serum of lactating cows. Probability values for independent variables of interest: Trt = fixed effect of diet treatments; Time = fixed effect of sampling time; Trt × Time = interaction effect of diet treatments and sampling time. Within one day or one sampling, significant differences (<span class="html-italic">p</span> ≤ 0.05) were represented as follows: * ITM vs. OTM groups (contrast differences between inorganic trace mineral treatment (S, <span class="html-italic">n</span> = 20) and organic trace mineral treatments (MHAC and AAC, <span class="html-italic">n</span> = 40)); meanwhile, tendencies (0.05 < <span class="html-italic">p</span> ≤ 0.10) were represented by ‡. # = MHAC vs. S; † = AAC vs. S.</p> "> Figure 4
<p>Effect of replacing inorganic trace minerals with organic trace minerals on blood IgA (<b>A</b>), IgG (<b>B</b>), IgM (<b>C</b>), ceruloplasmin (<b>D</b>), IL-4 (<b>E</b>), IL-6 (<b>F</b>), TNF-α (<b>G</b>), and T-AOC (<b>H</b>) of lactating cows. Probability values for independent variables of interest: Trt = fixed effect of diet treatments; Time = fixed effect of sampling time; Trt × Time = interaction effect of diet treatments and sampling time. Within one day or one sampling, significant differences (<span class="html-italic">p</span> ≤ 0.05) were represented as follows: * ITM vs. OTM groups (contrast differences between inorganic trace mineral treatment (S, <span class="html-italic">n</span> = 20) and organic trace mineral treatments (MHAC and AAC, <span class="html-italic">n</span> = 40)); meanwhile, tendencies (0.05 < <span class="html-italic">p</span> ≤ 0.10) were represented by ‡. # = MHAC vs. S; † = AAC vs. S.</p> "> Figure 5
<p>Effects of trace mineral sources on hoof hardness (<b>A</b>) and incidence of lameness (<b>B</b>) in lactating cows. Incidence of lameness (%) was calculated according to the number of lame cows divided by the total numbers in each group (<span class="html-italic">n</span> = 20). Cows were considered lame when their score was ≥3. Probability values for independent variables of interest: Trt = fixed effect of diet treatments; Time = fixed effect of sampling time; Trt × Time = interaction effect of diet treatments and sampling time. Within one day or one sampling, significant differences (<span class="html-italic">p</span> ≤ 0.05) were represented as follows: * ITM vs. OTM groups (contrast differences between inorganic trace mineral treatment (S, <span class="html-italic">n</span> = 20) and organic trace mineral treatments (MHAC and AAC, <span class="html-italic">n</span> = 40. # = MHAC vs. S; † = AAC vs. S.</p> ">
1. Introduction
2. Materials and Methods
2.1. The Diets, Cows, and Experimental Design
2.2. Data Collection, Sample Procedures, and Analytical Methods
2.2.1. DMI and Diet Composition
2.2.2. Milk Yield and Composition
2.2.3. Blood Sampling
2.2.4. Fecal and Urine Collection
2.3. Evaluation of Hoof Health
2.4. Determination of Mineral Concentration
2.5. Statistical Procedures
3. Results
3.1. DMI, Milk Yield, and Milk Composition
3.2. Cu, Mn, and Zn Concentrations
3.3. Blood Immune Biomarkers
3.4. Hoof Health
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2021; p. 502.
- Langova, L.; Novotna, I.; Nemcova, P.; Machacek, M.; Havlicek, Z.; Zemanova, M.; Chrast, V. Impact of Nutrients on the Hoof Health in Cattle. Animals 2020, 10, 1824. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P. A 100-Year Review: From ascorbic acid to zinc—Mineral and vitamin nutrition of dairy cows. J. Dairy Sci. 2017, 100, 10045–10060. [Google Scholar] [CrossRef] [PubMed]
- Brugger, D.; Wagner, B.; Windisch, W.M.; Schenkel, H.; Schulz, K.; Südekum, K.H.; Berk, A.; Pieper, R.; Kowalczyk, J.; Spolders, M. Review: Bioavailability of trace elements in farm animals: Definition and practical considerations for improved assessment of efficacy and safety. Animal 2022, 16, 100598. [Google Scholar] [CrossRef]
- Mion, B.; Ogilvie, L.; Van Winters, B.; Spricigo, J.F.W.; Anan, S.; Duplessis, M.; McBride, B.W.; LeBlanc, S.J.; Steele, M.A.; Ribeiro, E.d.S. Effects of replacing inorganic salts of trace minerals with organic trace minerals in the pre- and postpartum diets on mineral status, antioxidant biomarkers, and health of dairy cows. J. Anim. Sci. 2023, 101, skad041. [Google Scholar] [CrossRef]
- Zhao, X.-J.; Li, Z.-P.; Wang, J.-H.; Xing, X.-M.; Wang, Z.-Y.; Wang, L.; Wang, Z.-H. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. J. Vet. Sci. 2015, 16, 439. [Google Scholar] [CrossRef]
- Spears, J.W. Evaluation of Trace Mineral Sources. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 413–424. [Google Scholar] [CrossRef]
- Swecker, W.S. Trace Mineral Feeding and Assessment. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 385–397. [Google Scholar] [CrossRef]
- Bach, A.; Pinto, A.; Blanch, M. Association between chelated trace mineral supplementation and milk yield, reproductive performance, and lameness in dairy cattle. Livest. Sci. 2015, 182, 69–75. [Google Scholar] [CrossRef]
- Corbett, R.B. Trace Mineral Nutrition in Confinement Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Ibraheem, M.; Kvidera, S.K.; Fry, R.S.; Bradford, B.J. Meta-analysis of the effects of sulfate versus hydroxy trace mineral source on nutrient digestibility in dairy and beef cattle. J. Dairy Sci. 2023, 106, 2386–2394. [Google Scholar] [CrossRef] [PubMed]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W. Trace Mineral Bioavailability in Ruminants. J. Nutr. 2003, 133, 1506S–1509S. [Google Scholar] [CrossRef] [PubMed]
- Mion, B.; Van Winters, B.; King, K.; Spricigo, J.F.W.; Ogilvie, L.; Guan, L.; DeVries, T.J.; McBride, B.W.; LeBlanc, S.J.; Steele, M.A.; et al. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre- and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. J. Dairy Sci. 2022, 105, 6693–6709. [Google Scholar] [CrossRef] [PubMed]
- Byrne, L.; Hynes, M.J.; Connolly, C.D.; Murphy, R.A. Influence of the Chelation Process on the Stability of Organic Trace Mineral Supplements Used in Animal Nutrition. Animals 2021, 11, 1730. [Google Scholar] [CrossRef]
- Cheek, R.A.; Kegley, E.B.; Russell, J.R.; Reynolds, J.L.; Midkiff, K.A.; Galloway, D.; Powell, J.G. Supplemental trace minerals as complexed or inorganic sources for beef cattle during the receiving period. J. Anim. Sci. 2024, 102, skae056. [Google Scholar] [CrossRef] [PubMed]
- Mion, B.; Madureira, G.; Spricigo, J.F.W.; King, K.; Van Winters, B.; LaMarre, J.; LeBlanc, S.J.; Steele, M.A.; Ribeiro, E.S. Effects of source of supplementary trace minerals in pre- and postpartum diets on reproductive biology and performance in dairy cows. J. Dairy Sci. 2023, 106, 5074–5095. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, E.L.; Rathert-Williams, A.R.; Kenny, A.L.; Nagy, D.W.; Shoemake, B.M.; McFadden, T.B.; Tucker, H.A.; Meyer, A.M. Effects of copper, zinc, and manganese source and inclusion during late gestation on beef cow-calf performance, mineral transfer, and metabolism. Transl. Anim. Sci. 2023, 7, txad097. [Google Scholar] [CrossRef]
- Siciliano-Jones, J.L.; Socha, M.T.; Tomlinson, D.J.; DeFrain, J.M. Effect of Trace Mineral Source on Lactation Performance, Claw Integrity, and Fertility of Dairy Cattle. J. Dairy Sci. 2008, 91, 1985–1995. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Trevisi, E.; Li, C.; Drackley, J.K.; Socha, M.T.; Loor, J.J. Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2016, 99, 1868–1883. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.B.; Kvidera, S.; Martín-Tereso, J. Total-tract digestibility and milk productivity of dairy cows as affected by trace mineral sources. J. Dairy Sci. 2020, 103, 9081–9089. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, S.L.; Xin, J.; Wang, Y.J.; Cao, Z.J.; Guo, F.C.; Wang, Y.M. Effects of methionine hydroxy copper supplementation on lactation performance, nutrient digestibility, and blood biochemical parameters in lactating cows. J. Dairy Sci. 2012, 95, 5813–5820. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, L.; Li, S.; Wang, Y.; Jin, X.; Cao, H. Evaluating Methionine Hydroxyl Manganese and Manganese Sulfate Sources for Dairy Cows During Peak-and Mid-lactation Stage. Asian J. Anim. Vet. Adv. 2011, 6, 978–991. [Google Scholar] [CrossRef]
- Official Methods of Analysis, 19th ed.; AOAC International: Arlington, VA, USA, 2012.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- ISO 5985:2002; Animal Feeding Stuffs—Determination of Ash Insoluble in Hydrochloric Acid. International Organization for Standardization: Geneva, Switzerland, 2002. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:5985:ed-2:v1:en (accessed on 10 October 2023).
- Griffiths, L.M.; Loeffler, S.H.; Socha, M.T.; Tomlinson, D.J.; Johnson, A.B. Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Anim. Feed Sci. Technol. 2007, 137, 69–83. [Google Scholar] [CrossRef]
- Queiroz, P.J.B.; Assis, B.M.; Silva, D.C.; Noronha Filho, A.D.F.; Pancotti, A.; Rabelo, R.E.; Borges, N.C.; Vulcani, V.A.S.; Silva, L.A.F.d. Mineral composition and microstructure of the abaxial hoof wall in dairy heifers after biotin supplementation. Anat. Histol. Embryol. 2021, 50, 93–101. [Google Scholar] [CrossRef]
- Zhao, X.-J.; Wang, X.-Y.; Wang, J.-H.; Wang, Z.-Y.; Wang, L.; Wang, Z.-H. Oxidative Stress and Imbalance of Mineral Metabolism Contribute to Lameness in Dairy Cows. Biol. Trace Elem. Res. 2015, 164, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Flower, F.C.; Weary, D.M. Effect of Hoof Pathologies on Subjective Assessments of Dairy Cow Gait. J. Dairy Sci. 2006, 89, 139–146. [Google Scholar] [CrossRef]
- Shearer, J.K.; Stock, M.L.; Van Amstel, S.R.; Coetzee, J.F. Assessment and Management of Pain Associated with Lameness in Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 135–156. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.-B.; Brugger, D.; van der Drift, S.; van der Merwe, D.; Kendall, N.; Windisch, W.; Doelman, J.; Martín-Tereso, J. Zinc, Copper, and Manganese Homeostasis and Potential Trace Metal Accumulation in Dairy Cows: Longitudinal Study from Late Lactation to Subsequent Mid-Lactation. J. Nutr. 2023, 153, 1008–1018. [Google Scholar] [CrossRef]
- Cruickshank, K.M.; Hatew, B.; Gehman, A.M.; Koenig, K.M.; Ribeiro, E.S.; McBride, B.W.; Steele, M.A. The effect of supplementary selenium source on apparent and true absorption, retention, performance, and selenium status in lactating Holstein cows. J. Dairy Sci. 2024, 107, 6211–6224. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, O.; Wagner, J.J.; Spears, J.W.; Brandao, V.L.N.; Engle, T.E. Trace mineral source influences digestion, ruminal fermentation, and ruminal copper, zinc, and manganese distribution in steers fed a diet suitable for lactating dairy cows. Animal 2022, 16, 100500. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.; Huang, B.; Kou, X.; Chen, Y.; Liang, H.; Ullah, Q.; Khan, I.M.; Khan, A.; Chai, W.; Wang, C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front. Immunol. 2023, 14, 1290044. [Google Scholar] [CrossRef]
- Spears, J.W.; Kegley, E.B. Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. J. Anim. Sci. 2002, 80, 2747. [Google Scholar]
- Cope, C.M.; Mackenzie, A.M.; Wilde, D.; Sinclair, L.A. Effects of level and form of dietary zinc on dairy cow performance and health. J. Dairy Sci. 2009, 92, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Yasui, T.; Ehrhardt, R.M.; Bowman, G.R.; Vázquez-Añon, M.; Richards, J.D.; Atwell, C.A.; Overton, T.R. Effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide challenge in midlactation dairy cows. Animal 2019, 13, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, S. Is there a role for organic trace element supplements in transition cow health? Vet. J. 2008, 176, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Nocek, J.E.; Socha, M.T.; Tomlinson, D.J. The Effect of Trace Mineral Fortification Level and Source on Performance of Dairy Cattle. J. Dairy Sci. 2006, 89, 2679–2693. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, A.R.; Lean, I.J.; Stevenson, M.A.; Socha, M.T. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. J. Dairy Sci. 2010, 93, 4239–4251. [Google Scholar] [CrossRef]
- Otter, R.; Reiter, R.; Wendel, A. Alterations in the protein-synthesis, -degradation and/or -secretion rates in hepatic subcellular fractions of selenium-deficient mice. Biochem. J. 1989, 258, 535–540. [Google Scholar] [CrossRef]
- Kimball, S.R.; Chen, S.J.; Risica, R.; Jefferson, L.S.; Leure-duPree, A.E. Effects of zinc deficiency on protein synthesis and expression of specific mRNAs in rat liver. Metab. Clin. Exp. 1995, 44, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.D.; Lanier, J.S.; Kvidera, S.K.; Dann, H.M.; Ballard, C.S.; Grant, R.J. Evaluation of source of corn silage and trace minerals on lactational performance and total-tract nutrient digestibility in Holstein cows. J. Dairy Sci. 2020, 103, 3147–3160. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, M.J.; St-Pierre, N.R.; Weiss, W.P. Effect of source of trace minerals in either forage- or by-product–based diets fed to dairy cows: 2. Apparent absorption and retention of minerals. J. Dairy Sci. 2017, 100, 5368–5377. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, M.J.; Weiss, W.P. Effect of source of trace minerals in either forage- or by-product–based diets fed to dairy cows: 1. Production and macronutrient digestibility. J. Dairy Sci. 2017, 100, 5358–5367. [Google Scholar] [CrossRef] [PubMed]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.-F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Turnlund, J.R.; Keyes, W.R.; Anderson, H.L.; Acord, L.L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am. J. Clin. Nutr. 1989, 49, 870–878. [Google Scholar] [CrossRef]
- Weigand, E.; Kirchgessner, M.; Helbig, U. True absorption and endogenous fecal excretion of manganese in relation to its dietary supply in growing rats. Biol. Trace Elem. Res. 1986, 10, 265–279. [Google Scholar] [CrossRef]
- Weigand, E.; Kirchgessner, M. Total True Efficiency of Zinc Utilization: Determination and Homeostatic Dependence upon the Zinc Supply Status in Young Rats. J. Nutr. 1980, 110, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Herdt, T.H.; Rumbeiha, W.; Braselton, W.E. The Use of Blood Analyses to Evaluate Mineral Status in Livestock. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 423–444. [Google Scholar] [CrossRef]
- Mulryan, G.; Mason, J. Assessment of liver copper status in cattle from plasma copper and plasma copper enzymes. Ann. de Rech. Vet. Ann. Vet. Res. 1992, 23, 233–238. [Google Scholar]
- Wright, C.L.; Spears, J.W. Effect of Zinc Source and Dietary Level on Zinc Metabolism in Holstein Calves1. J. Dairy Sci. 2004, 87, 1085–1091. [Google Scholar] [CrossRef]
- Kincaid, R.L.; Socha, M.T. Inorganic Versus Complexed Trace Mineral Supplements on Performance of Dairy Cows1. Prof. Anim. Sci. 2004, 20, 66–73. [Google Scholar] [CrossRef]
- Ogilvie, L.; Spricigo, J.F.W.; Mion, B.; Van Winters, B.; Karrow, N.A.; McBride, B.W.; LeBlanc, S.J.; Steele, M.A.; Ribeiro, E.S. Neutrophil function and antibody production during the transition period: Effect of form of supplementary trace minerals and associations with postpartum clinical disease and blood metabolites. J. Dairy Sci. 2022, 105, 9944–9960. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; He, Y.; Zhou, D.; Pan, L.; Wu, Y. Organic amendment application affects the release behaviour, bioavailability, and speciation of heavy metals in zinc smelting slag: Insight into dissolved organic matter. J. Hazard. Mater. 2024, 465, 133105. [Google Scholar] [CrossRef] [PubMed]
- Burger, M. Nutritional factors affecting the occurrence of laminitis in dairy cows: A review. Agriprobe 2017, 14, 58–64. [Google Scholar]
- Healy, J.; Tipton, K. Ceruloplasmin and what it might do. J. Neural Transm. 2007, 114, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Cray, C.; Zaias, J.; Altman, N.H. Acute phase response in animals: A review. Comp. Med. 2009, 59, 517–526. [Google Scholar] [PubMed]
- Du, Z.; Hemken, R.W.; Harmon, R.J. Copper metabolism of holstein and jersey cows and heifers fed diets high in cupric sulfate or copper proteinate. J. Dairy Sci. 1996, 79, 1873–1880. [Google Scholar] [CrossRef]
Item | Content |
---|---|
Corn silage | 34.63 |
Alfalfa hay | 10.49 |
Corn flour | 22.60 |
Steam-flaked corn | 1.11 |
Soybean meal | 4.31 |
Cottonseed meal | 8.48 |
Pelleted dried beet pulp | 6.43 |
Sprayed corn bran | 4.49 |
Molasses | 3.38 |
Fatty acid calcium 1 | 0.70 |
Yeast culture | 0.23 |
NaHCO3 | 0.95 |
Limestone | 0.86 |
Ca (HCO3)2 | 0.34 |
MgO | 0.20 |
NaCl | 0.14 |
Urea | 0.20 |
Montmorillonite | 0.05 |
Mycotoxin adsorbent 2 | 0.07 |
Premix 3 | 0.34 |
Nutrient levels 4 | |
Crude protein | 17.83 |
Starch | 27.88 |
Ether extract | 3.65 |
Neutral detergent fiber | 29.87 |
Acid detergent fiber | 17.10 |
Ash | 7.73 |
Net energy for lactation (MJ/kg) | 1.72 |
Item | Treatment 1 | ||
---|---|---|---|
MHAC | AAC | S | |
Ca (g/kg) | 10.15 ± 0.41 | 10.55 ± 0.55 | 10.05 ± 0.51 |
P (g/kg) | 3.70 ± 0.18 | 4.05 ± 0.14 | 3.40 ± 0.20 |
Mg (g/kg) | 4.90 ± 0.22 | 5.05 ± 0.21 | 4.85 ± 0.23 |
Na (g/kg) | 8.20 ± 0.34 | 8.30 ± 0.41 | 8.35 ± 0.38 |
K (g/kg) | 17.80 ± 1.18 | 17.55 ± 1.53 | 17.30 ± 1.72 |
Fe (mg/kg) | 0.70 ± 0.05 | 0.68 ± 0.07 | 0.68 ± 0.07 |
Cu (mg/kg) | 18.35 ± 1.12 | 20.45 ± 1.45 | 17.69 ± 1.63 |
Mn (mg/kg) | 47.57 ± 2.71 | 44.53 ± 2.84 | 44.66 ± 3.26 |
Zn (mg/kg) | 76.60 ± 5.58 | 77.60 ± 4.94 | 73.64 ± 5.79 |
Se (mg/kg) | 0.50 ± 0.06 | 0.52 ± 0.04 | 0.51 ± 0.06 |
Item | Treatment 1 | SEM | p-Value 2 | ||||
---|---|---|---|---|---|---|---|
MHAC | AAC | S | Trt | Time | Trt × Time | ||
Serum | |||||||
Cu (mg/L) | 0.81 | 0.82 | 0.79 | 0.014 | 0.07 | 0.71 | 0.90 |
Mn (μg/L) | 2.76 a | 2.81 a | 2.71 b | 0.134 | <0.01 | <0.01 | 0.11 |
Zn (mg/L) | 1.15 | 1.14 | 1.13 | 0.012 | 0.16 | 0.02 | 0.90 |
Milk (mg/kg) | |||||||
Cu | 0.78 a | 0.76 a | 0.73 b | 0.015 | 0.04 | 0.53 | 0.26 |
Mn | 0.09 | 0.09 | 0.08 | 0.002 | 0.36 | 0.02 | 0.29 |
Zn | 4.24 | 4.14 | 4.12 | 0.156 | 0.94 | 0.73 | 0.96 |
Hoof keratin (mg/kg) | |||||||
Cu | 8.75 | 8.63 | 7.98 | 0.072 | 0.08 | 0.59 | 0.43 |
Mn | 5.78 | 5.72 | 5.48 | 0.043 | 0.09 | 0.42 | 0.37 |
Zn | 57.61 | 57.49 | 55.73 | 0.175 | 0.18 | 0.46 | 0.55 |
Urine (mg/L) | |||||||
Cu | 0.45 | 0.44 | 0.41 | 0.024 | 0.09 | 0.44 | 0.28 |
Mn | 0.07 | 0.06 | 0.06 | 0.003 | 0.57 | 0.52 | 0.44 |
Zn | 2.54 | 2.48 | 2.51 | 0.412 | 0.88 | 0.62 | 0.81 |
Feces (mg/kg) | |||||||
Cu | 47.31 | 51.18 | 50.93 | 0.881 | 0.22 | 0.95 | 0.15 |
Mn | 212.74 | 200.10 | 217.30 | 3.063 | 0.17 | 0.18 | 0.13 |
Zn | 192.75 | 190.20 | 198.04 | 2.550 | 0.50 | 0.29 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, M.; Ma, X.; Liu, Y.; Xu, S.; Diao, Q.; Tu, Y. Effects of Replacing Inorganic Sources of Copper, Manganese, and Zinc with Different Organic Forms on Mineral Status, Immune Biomarkers, and Lameness of Lactating Cows. Animals 2025, 15, 271. https://doi.org/10.3390/ani15020271
Cha M, Ma X, Liu Y, Xu S, Diao Q, Tu Y. Effects of Replacing Inorganic Sources of Copper, Manganese, and Zinc with Different Organic Forms on Mineral Status, Immune Biomarkers, and Lameness of Lactating Cows. Animals. 2025; 15(2):271. https://doi.org/10.3390/ani15020271
Chicago/Turabian StyleCha, Manqian, Xingjun Ma, Yunlong Liu, Shengyang Xu, Qiyu Diao, and Yan Tu. 2025. "Effects of Replacing Inorganic Sources of Copper, Manganese, and Zinc with Different Organic Forms on Mineral Status, Immune Biomarkers, and Lameness of Lactating Cows" Animals 15, no. 2: 271. https://doi.org/10.3390/ani15020271
APA StyleCha, M., Ma, X., Liu, Y., Xu, S., Diao, Q., & Tu, Y. (2025). Effects of Replacing Inorganic Sources of Copper, Manganese, and Zinc with Different Organic Forms on Mineral Status, Immune Biomarkers, and Lameness of Lactating Cows. Animals, 15(2), 271. https://doi.org/10.3390/ani15020271